
A Comprehensive Project for CS2:

Combining Key Data Structures and Algorithms into an

Integrated Web Browser and Search Engine

Tia Newhall and Lisa Meeden

Computer Science Program

Swarthmore College

Swarthmore, PA 10981

{newhall, meeden}@cs.swarthmore.edu

Abstract

We present our experience using a large, real-world ap-
plication as a course project for the second half of the
semester of a CS2 course. Our primary goal for the
project was to create an engaging application that incor-
porated most of the key data structures and algorithms
introduced in the course. Specifically, the project uses
binary search trees, priority queues, hash tables, and
graphs. The project consisted of four parts combined
to build an integrated web browser and search engine
in Java. A key benefit of an incremental, long-term
project of this type is that students quickly learn that
their initial design and implementation decisions have
a significant impact on the eventual extensibility and
performance of their software. This provides numerous
opportunities for students to recognize the importance
of software engineering techniques and complexity anal-
ysis in the development of a successful application. We
present students’ responses to the project which show
that they overwhelmingly enjoyed the project and felt
that it helped them to see how the data structures and
algorithms discussed in the course are used in real soft-
ware.

1 Introduction

At Swarthmore College, the computer science curricu-
lum offers a broad exposure to the discipline through
three introductory courses, which could be termed CS1,
CS1.5, and CS2. CS1 takes an imperative approach us-
ing C, CS1.5 takes a functional approach using Scheme
with Abelson and Sussman’s text [1], while CS2 takes an
object-oriented approach using Java with Goodrich and
Tamassia’s text [3]. Students who have already had sig-

nificant exposure to computer science in high school are
encouraged to skip CS1 and begin with either CS1.5 or
CS2. All majors are required to take CS1.5, but many
non-majors take only the CS1-CS2 sequence.

Our version of CS2 is called Algorithms and Object-

Oriented Computing. Topics for this course include the
philosophy of object-oriented programming, the basics
of algorithmic analysis, and the classic data structures
and their associated algorithms.

According to the Steelman draft of the proposed 2001
computer science curriculum [4], the “introductory com-
puter science experience should certainly expose stu-
dents to the design, construction, and application of
computer systems” [4, p. 25]. This statement argues for
the inclusion of some significant programming projects
into the introductory curriculum.

Many institutions have already taken this project-based
approach in their CS2 courses [6, 7, 2]. A survey of
these project proposals reveals that there are many is-
sues to consider when developing a course project. For
instance: should the project span the entire term or a
portion of the term; should the instructors develop the
overall system architecture or provide the students with
only an open-ended problem description; and should all
of the students work on the same problem or work on
unique pieces of a larger problem?

In developing our CS2 project, we chose to have our
project span half the term, we provided the overall sys-
tem design to the students, and we had each student
team work on the same problem. In planning for the
CS2 course, we followed the schedule of topics shown
in Table 1. We felt that the early topics, especially
Java programming and complexity analysis, were best
served by short-term homework assignments where stu-
dents could get immediate feedback on how they were
doing. In addition, students need to develop some com-
fort with the object-oriented paradigm before they can
begin to see how a larger system might be constructed.
The project began in week 7 and continued through the
end of the term. In order to meet our goal of incorpo-



Week Topic
1 Introduction to Java and OOP
2 Java and OOP continued
3 Complexity analysis
4 Stacks and queues
5 GUI programming in Java
6 Lists
7 Trees
8 Trees continued
9 Priority queues and heaps
10 Dictionaries and hashing
11 Dictionaries and hashing continued
12 Graphs
13 Graphs continued
14 Searching and sorting

Table 1: CS2 Schedule of Topics

rating all of the major data structures presented in the
course into the project, we needed to define the over-
all system architecture in advance. Finally, we wanted
each student to have hands-on experience with every key
data structure, so we chose to have all of the students
work on the same problem.

Although we found the Goodrich and Tamassia text
[3] to be particularly good in its presentation of new
data structures and algorithms (we really liked its use
of pseudo code, its illustrative examples, and its focus
on complexity analysis), we did not use the authors’
Java class library for implementing the data structures
in our course. Instead, we tried to conform to Sun’s
Java class library as much as possible. In particular, we
modeled many of our abstract data types after the Java
Collections Package.

Our approach to teaching this material was to
first present each new data structure as an ab-
stract data type. We then considered a vari-
ety of possible implementations for that abstract
data type. For example, students were given a
Java interface called BinarySearchTree and had to
experiment with two different implementations of
this interface called LinkedBinarySearchTree and
ArrayBinarySearchTree. Different implementations of
the same abstract data type were then compared in
terms of the efficiency of their operations.

2 Project Goals

The primary goal of our CS2 project was to reinforce
the data structures and algorithms presented in class
through the creation of a challenging and fun applica-
tion. We also hoped to accomplish a number of sec-
ondary goals: to demonstrate the importance of com-
plexity analysis in determining performance efficiency

when considering design alternatives; to illustrate the
benefits of software engineering techniques; and to pro-
vide an opportunity for students to work in teams.

We found that the Java-based web browser and search
engine project lends itself well to meeting all of these
goals. To meet the primary goal of reinforcing the lec-
ture material, each part of the project focused on one
key data structure from the second half of the semester:
binary search trees, priority queues, hash tables, and
graphs. To address the importance of complexity con-
siderations, successive parts of the project enhanced the
efficiency of previous parts and required students to pro-
vide written analyses of these improvements. It proved
to be quite simple to illustrate the benefits of software
engineering. As students had to reuse their own code
over the course of two months, they came to recognize
the importance of good design and clear commenting.
The large scope of the project demonstrated the bene-
fits of teamwork as students found that having a partner
provided help with design, coding, and debugging.

An additional benefit of this type of project is that stu-
dents get excited about implementing the course pro-
gramming assignments. The reward of seeing their large
final application work keeps them interested and moti-
vated to work on the individual parts. Breaking up the
large project into smaller individual assignments makes
what seems like a daunting design and coding task man-
ageable for this level of student.

Such a project can also be used to challenge some of
the more ambitious students by providing extra credit
parts that focus on adding functionality or improving
performance in ways that may go beyond the scope of
the course. This helps to keep all students challenged
and excited about the project.

The project proved to be an excellent vehicle for demon-
strating how data structures and algorithms are used in
practice, as well as for developing programming, com-
munication and problem solving skills in students. The
fact that the students really enjoyed the project led
them to think critically about the design issues even
more than we had hoped. Many students came up with
ways in which the search engine and browser could be
improved and extended beyond the course assignment.

3 The Project

The proposed 2001 curriculum notes that “technologi-
cal advancement over the past decade has increased the
importance of many curricular topics, such as ... the
world wide web and its applications” [4, p. 8]. Most
first year college students are already very adept, per-
haps more adept than their instructors, at using the
web and its applications. Creating their own versions
of tools which they use on a nearly daily basis is an



exciting proposition for the students.

Upon completion of the project, the web tool that the
students construct has the following capabilities for a
limited portion of the web situated on our local server:

• Display a web page given a URL.

• Display connectivity information of web pages.

• Answer questions about connectivity of web pages.

• Find matching web pages given a query and display
the resulting URLs in order of best match to worst.

• Automatically display the best matching URL result
of a search.

The project was divided into four parts, which are de-
scribed in the following subsections. The entire project,
as provided to the students, is available on the web [5].

3.1 Analyzing the content of web pages

The first step to building a search engine is to analyze
web pages based on their content. This will allow us
to rate how relevant a particular page is for a given
user request. The content of a page is obviously cor-
related with the words it contains. For this portion of
the project, students used a binary search tree to store
words and calculate their frequencies in a given web
page. In class, students were asked to consider why a
binary search tree is a better data structure for this task
than a list. They were also asked to develop a list of
words that should be ignored during this analysis, such
as common short words and html tags.

Given a file name of a web page as input, this initial
piece of the project simply outputs all of the words
(which were not on the ignore list) that occurred at
least a minimum number of times.

Students were given a Scanner class to parse text files,
which included a getNextToken() method. Students
were also given the binary search tree abstract data
type, but had to complete aspects of the linked imple-
mentation such as the insertion method.

3.2 Processing user queries to locate relevant web pages

Given the word frequency counts for a web page, the
search engine must determine how to rate a page’s rel-
evance to a query. Initially, we took a rather simplistic
approach to this task—a web page’s relevance was de-
fined as the sum of the word frequency counts of each
word that appears in the query. For example, if the
query is artificial intelligence and a web page contains
the word artificial 3 times and the word intelligence 5

times, than its relevance is 8, where higher scores indi-
cate more relevance.

Given a file containing a list of URLs as input, this
portion of the project initiates a text-based interaction
loop with the user that requests a query, responds to the
query, and repeats. Initially, each URL contained in the
given file is converted to a file name, the file is analyzed
for its content, and the resulting word frequency tree is
saved. To process a query, the relevance of each URL is
calculated using the saved word frequency trees and a
priority queue of the URLs is created which is ordered
by their relevance values. Using this priority queue, the
program outputs the relevant URLs in order of highest
to lowest relevance.

Students were given the priority queue abstract data
type, but had to complete aspects of the heap imple-
mentation. A number of students were dissatisfied with
the simplistic relevance measure and experimented with
other ways of calculating relevance, such as adding a
bonus if all the query words appeared in a web page.

3.3 Adding a cache of query results and creating a GUI
front-end

Because they were familiar with search engines such as
Yahoo, Lycos and Google, students quickly realized that
our unsophisticated search technique would not scale to
the entire world wide web. However, by caching pre-
vious results, the search engine would be able to sig-
nificantly improve its average response time by reusing
previously calculated relevancies.

The cache was implemented as a hash table where the
key was a string containing an entire query or an indi-
vidual word in a query. Associated with each key was
a SavedResult. Each SavedResult contained another
hash table where the key was a URL with an associated
word frequency count.

The cache was used to completely or partially compute
query results. For example, if a user entered the query
artificial intelligence, the search engine would first check
its cache to see if it had seen this same query before. If
no similar query is found, then the search engine would
see if it had any saved results for the individual words
in the query: artificial or intelligence. If a user had pre-
viously searched for artificial christmas trees, the search
engine would have cached the results for the entire query
as well as the results for each individual word. The
engine would use the cached relevancy scores for the
word artificial in every URL and would calculate the
relevancy scores for the word intelligent in every URL
and then merge the contents of the two secondary hash
tables to produce the final search result for artificial

intelligence.



In addition to creating a cache for the search engine,
students replaced the previous text-based interface with
a graphical user interface. The graphical user interface
helps to keep students excited about the project be-
cause they enjoy adding their own personal touches to
the look and feel of the application. More importantly
though, the GUI component forces them to think about
problems of good user interface design, and it allows us
to introduce event-driven and threaded programming
models.

Upon the completion of this portion of the the project,
the students have a functional search engine and web
browser for our local domain. Most students added sup-
port for displaying any URL on the entire web, which is
trivial to do using Java. Obviously, other improvements
would be necessary before this could be a viable tool for
the entire web.

3.4 Adding a hyperlink graph for examining web connec-
tivity

For the final part of the project, students added a graph
of URL links to their web browsers. Given a starting
URL as input, the graph is created by parsing the as-
sociated web page and finding href links to other local
web pages, parsing them, and so on, until a given link
depth is reached. The graph contains a vertex for each
URL and an edge between URLs if there is a hyperlink
between them.

Once this connectivity graph was built, the students cre-
ated an additional GUI to allow a user to examine fea-
tures of the local web’s structure. Given a URL, a user
can find all other URLs reachable from that point and
the shortest paths from that URL to any other reach-
able URL. A user can also print a textual representation
of the entire graph.

More importantly, this connectivity information was in-
tegrated back into the search engine. If a web page that
matches a query is linked-to by many other web pages,
then its relevancy should be increased. It was left up to
the students to decide how best to incorporate linked-to
counts into the final relevancy score for a URL.

We had students submit their projects as if they were
releasing their web browser and search engine as soft-
ware. Students created a web page that described how
to use their web tool, including details on individual
features and answers to questions that we asked about
ways in which their search engine could be made better.
In addition, students made their .class file solutions
available for us to run and test rather than submitting
their .java code. This way, students were forced to
document how to use all of the features implemented in
their program to ensure that we would test them.

3.5 Extra credit

There were several extra credit options for the project
that add functionality to web browser and search en-
gine. The extra credit extensions include:

• Adding Home, Back, and Forward buttons to the web
browser.

• Enabling links in the displayed web page and in the
list of URL results displayed by the search engine;
clicking on a link results in its page being displayed
by the web browser.

• Adding support for building the link-graph from any
starting URL (not just from our local domain). This
involves adding support for loading any web page
from the world wide web and parsing the loaded web
page to find links that are then used to load and parse
subsequent web pages.

To date, several students have completed the first two
extra credit extensions, but no one has implemented
the third extension. Additional extra credit parts that
make the search engine more efficient or implement bet-
ter criteria for ordering good matching URLs could be
added.

4 Student Response to the Project

One of the most satisfying results of using this project
was that, besides meeting its pedagogical goals, stu-
dents really enjoyed it. It is so much easier for them to
learn the material if they are excited and motivated to
do the work. One student commented that “building
the Web Browser was cool and fun! My friends at other
schools were very impressed.”

Students’ written responses to end of the semester eval-
uations about the project were overwhelmingly posi-
tive. Most felt challenged, but not over burdened, by
the project. Many said they were initially a bit con-
cerned about the scope of the project, but once they
started working on it they were surprised to find that
they could do it, and they felt a great deal of satisfac-
tion upon completing it. Almost all students were able
to complete the full project. Students who did not com-
plete a part had access to our compiled solutions so that
they could continue on to the next part.

Students felt that the project helped to reinforce the
data structures and algorithms presented in class. All
“of [the project parts] required understanding the [data]
structures, both at theoretical and practical levels.” An-
other student said, “in general, the homework assign-
ments were great in helping to reinforce the material
covered in lecture.” Students felt that assignments that



included written analysis of the algorithms were partic-
ularly helpful in reinforcing their understanding.

Students said that they liked that individual assign-
ments incrementally built one large piece of real world
software: “[I liked that] each was in some sense its
own assignment, yet still cumulative, and had a distinct
functionality that was fun to get working.” In addition,
students mentioned that they learned good software de-
sign in the process of implementing this project: “build-
ing a very large piece of software gave a better look at
OO design and forced us to use good coding style [and]
techniques.”

The vast majority of students enjoyed working with a
partner and felt that it was beneficial to them. A few
students mentioned some of the difficulties of working
with a partner, such as being dependent on someone
else’s schedule and having to agree on an implementa-
tion. Overall, they felt it was a good experience despite
a few difficulties. Students mentioned the benefits of
seeing different coding styles, reducing the amount of
debugging time, dividing the work, and the chance to
discuss design decisions and come to a consensus. One
student commented that working with a partner “al-
lowed me a very clear view of what we were doing at
any point.”

5 Conclusions

We found that using a single, large, real-world appli-
cation as a second half of the semester project worked
extremely well in our CS2 course. Giving students prac-
tice learning object-oriented programming with smaller
assignments in the beginning half of the semester, re-
sulted in students feeling more confident in their ability
to complete the larger project assignment during the
second half of the semester. Our approach of giving
students starting points to each piece of the project al-
lowed students to implement a complete web browser
and search engine in only seven weeks. In addition, it
allowed students to focus on implementing the parts of
the assignment that involved the more difficult and im-
portant algorithms without overwhelming them with a
large volume of code to write.

We have used this project in our CS2 course for the
past two semesters. Responses from students in the first
semester led us to re-design a few of the parts, and the
second semester students had few, if any, problems with
understanding or completing the project assignments.
Based on the overwhelmingly enthusiastic responses we
have received from students, we plan to continue to use
this project in our CS2 course.

References

[1] Abelson, H., and Sussman, G. J. Structure and In-

terpretation of Computer Programs, Second Edition.
McGraw Hill, 2001.

[2] Godfrey, M., and Grossman, D. JDuck: Building a
software engineering tool in Java as a CS2 project.
Proceedings of the Thirtieth SIGCSE Technical Sym-

posium on Computer Science Education (1999).

[3] Goodrich, M. T., and Tamassia, R. Data Structures

and Algorithms in Java, Second Edition. John Wiley
and Sons, Inc., 2001.

[4] Joint Task Force on Computing Curriculum. Com-
puting curricula 2001: Steelman draft, August 2001.
www.acm.org/sigcse/cc2001/steelman/.

[5] Newhall, T., and Meeden, L. Building a web browser
and search engine in Java: A half semester project
for a CS2-type course. www.cs.swarthmore.edu/
˜newhall/sigcse02/cs2project.html.

[6] Rebelsky, S. A., and Flynt, C. Real-world program
design in CS2: The roles of a large-scale, multi-
group class project. Proceedings of the Thirty-First

SIGCSE Technical Symposium on Computer Sci-

ence Education (2000).

[7] Turner, J. A., and Zachary, J. L. Using course-long
programming projects in CS2. Proceedings of the

Thirtieth SIGCSE Technical Symposium on Com-

puter Science Education (1999).


