Implementing I/O-Efficient Data Structures Using TPIE

Lars Arger, Octavian Procopiue, and Jeffrey Scott Vitter- *

Center for Geometric and Biological Computing,
Department of Computer Science, Duke University, Durha@, 2708, USA.
{l arge, tavi, jsv}@s. duke. edu

Abstract. In recent years, many theoretically I/O-efficient algamithand data
structures have been developed. The TPIE project at Dukeetsily was started
to investigate the practical importance of these theaaktiesults. The goal of
this ongoing project is to provide@ortable extensibleflexible andeasy to use
C++ programming environment fafficientlyimplementing I/O-algorithms and
data structures. The TPIE library has been developed in tvesgs. The first
phase focused on supporting algorithms witbeguential/O pattern, while the
recently developed second phase has focused on suppontilirged/O-efficient
data structures, which exhibit a mor@ndoml/O pattern. This paper describes
the design and implementation of the second phase of TPIE.

1 Introduction

In many modern massive dataset applications I/O-commtioichetween fast internal
memory and slow disks, rather than actual internal compurtatme, is the bottle-
neck in the computation. Examples of such applications eafobnd in a wide range
of domains such as scientific computing, geographic inféiomasystems, computer
graphics, and database systems. As a result, much attdragbeen focused on the
development of 1/0-efficient algorithms and data structusee e.g. [4, 20]). While a
lot of practical and often heuristic 1/0O-efficient algoritls and data structures in ad-
hoc models have been developed in the database commungitimeoretical work on
1/0-efficiency in the algorithms community has been donéhim RParallel Disk Model
of Vitter and Shriver [21]. To investigate the practicalility of the theoretical work,
the TPIE project was started at Duke University. The goal of this dng@roject is to
provide aportable extensibleflexible andeasy to us@rogramming environment for
efficientlyimplementing algorithms and data structures developethioParallel Disk

* Supported in part by the National Science Foundation tHtoE§S grant EIA-9870734,
RI grant EIA-9972879, CAREER grant CCR—9984099, ITR gradm-B8112849, and U.S.-
Germany Cooperative Research Program grant INT-0129182.

** Supported in part by the National Science Foundation tHide§S grant EIA-9870734 and
RI grant EIA-9972879.

*** Supported in part by the National Science Foundation thHraegearch grants CCR—9877133
and EIA-9870734 and by the Army Research Office through MURhgDAAH04-96-1—
0013.

L TPIE: Transparent Parallel I/O Environment. PronunciatitE-'pl (like tea-pie)

Model. A project with similar goals, called LEDA-SM [13] (a&xtension of the LEDA
library [15]), has also been conducted at the Max-Planchiturisn Saarbrucken.

TPIE is a templated C++ librafyconsisting of a kernel and a set of I/O-efficient
algorithms and data structures implemented on top of it. Kéreel is responsible for
abstracting away the details of the transfers between didkneemory, managing data
on disk and in main memory, and providing a unified prograngnierface appearing
as the Parallel Disk Model. Each of these tasks is performyed beparate module
inside the kernel, resulting in a highly extensible and plole system. The TPIE library
has been developed in two phases. The first phase focusegpaorsng algorithms
with a sequentiall/O pattern, that is, algorithms using primitives such aansing,
sorting, merging, permuting, and distributing [19]. Howenn recent years, a growing
number of on-line I/O-efficient data structures have beemldgped, and the sequential
framework is ill-equipped to handle the mar@ndoml|/O patterns exhibited in these
structures. Therefore a second phase of the TPIE develdgrasifocused on providing
support for random access I/O patterns. Furthermore ikeséllarge number of batched
algorithms were implemented in the first phase of the progdarge number of data
structures have been implemented in the second phasgjiimgiB-trees [12], persistent
B-trees [9], R-trees [10], CRB-trees [1], K-D-B-trees [E8ld Bkd-trees [17]. The two
parts of TPIE are highly integrated, allowing seamless enmntation of algorithms
and data structures that make use of both random and segjusrtess patterrss.

While the first part of TPIE has been described in a previoyep§l9], this pa-
per describes the design and implementation details ofebensl phase of the system.
In Section 2 the Parallel Disk Model, as well as disk and oj@maechnology that
influenced the TPIE design choices are first described. @e8tthen describes the ar-
chitecture of the TPIE kernel and its design goals. Sectipredents a brief description
of the data structures implemented using the random ace@ssork, and finally Sec-
tion 5 contains a case study on the implementation of the B-fiee [18] along with
some experimental results.

2 The I/0O Model of Computation

In this section we discuss the physical disk technology vatitig the Parallel Disk
Model, as well as some operating system issues that infldengeortant TPIE design
choices.

Magnetic Disks. The most common external memory storage device is the miagnet
disk. A magnetic disk drive consists of one or more rotatitagtprs with one read/write
head per platter. Data are stored on the platter surfaceicectric circles called tracks.
To read or write data at a certain position on the platteryéael/write head musteek

2 The latest TPIE release can be downloaded fharhp: / / www. cs. duke. edu/ TPI E/

% The LEDA-SM library takes a slightly different approach tiogized for random access pat-
terns. The algorithms and data structures implementedyustbA-SM are somewhat com-
plementary to the ones implemented in TPIE. The kernelseofwlo libraries are compatible,
and as a result algorithms and structures implemented ferofrthe systems can easily be
ported to the other.

to the correct track and themait for the desired position on the track to pass by. Be-
cause mechanical movement is involved, the typical readribe téme is on the order

of milliseconds. By comparison, the typical transfer tinfenmain memory is a few
nanoseconds—a factor ®0° faster! Since the seek and wait time is much larger than
the time needed to read a unit of data, magnetic disks traasfrgeblock of con-
tiguous data items at a time. Accessing a block involves onlyseek and wait, so the
amortized cost per unit of data is much smaller than the dasta@essing a single unit.

Parallel Disk Model. The Parallel Disk Model (PDM) was introduced by Vitter and
Shriver [21] (see also [3]) in order to more accurately mad&lo-level main memory-
disk system with block transfers. PDM has become the stdrttie@oretical model for
designing and analyzing 1/O-efficient algorithms. The maestracts a computer as
a three-component system: a processor, a fixed amount of mmamnory, and one or
more independent disk drives. Data is transferred betwésks éind main memory in
fixed-sizeblocksand one such transfer is called H® operation(or simply anl/O).
The primary measures of algorithm performance in the mordettae number of I/Os
performed, the amount of disk space used, and the intermapgtation time. To be
able to quantify these measuré$,is normally used to denote the number of items in
the problem instancéy/ the maximum number of items that fit in main memaBythe
number of items per block, anB the number of independent disks. In this paper we
only consider the one-disk model.

Random versus sequential I/@Ising the Parallel Disk Model, a plethora of theoret-
ically I/O-efficient algorithms and data structures haverbeeveloped—refer to [4,
20] for surveys. Experimental studies (many using the TBi&em) have shown the
model’'s accuracy at predicting the relative performancealgbrithms—refer to the
above mentioned surveys for references. However, theydlavaevealed the limits of
the model, primarily its inability to distinguish betwedretcomplexities of sequential
and random 1/O patterns. Intuitively, accessing data setiplly is more efficient than
accessing blocks in a random way on disk, since the firstipeads to less seeks and
waits than the latter. Furthermore, since studies have sltbat the typical use of a
disk file is to open it, read its entire contents sequentialtyg close it, most operating
systems are optimized for such sequential access.

UNIX I/O primitives. In the UNIX operating system, optimization for sequentied a
cess is implemented usingoaffer cachelt consists of a portion of the main memory
reserved for caching data blocks from disk. More specificallhen a user requests
a data block from disk using theead() system call, the block is looked up in the
buffer cache, and if not there, it is fetched from disk inte tache. From there, the
block is copied into a user-space memory location. To oénfidor sequential access a
prefetching strategy is also implemented, such that bléal@ving a recently accessed
block are loaded into the buffer cache while computatiorei$grmed. Similarly, when
a block is written using ar i t e() system call, the block is first copied to the buffer
cache, and if necessary, a block from the buffer cache isemrib disk.

When the I/O-pattern is random rather than sequential, tiffetbcache is mostly
useless and can actually have a detrimental effect. Not ar@yesources wasted on
caching and prefetching, but the cache also incurs an egfrg of each data block.

Therefore most UNIX-based operating systems offer altar@d/O routines, called
mrap() andnmunmap() , which avoid using the buffer cache. When the user requests
a disk block usingmap() , the block is mapped directly in user-space menfoFe
mapping is released whemnmap() is called, allowing the block to be written back to
disk. If properly implemented, these routines achieve a-oepy I/O transfer, resulting
in more efficient I/O than theead() /wri t e() functions in applications that exhibit
arandom I/O access pattern. Another important differeiete®en the two sets of func-
tions is that in order to achieve zero-copy transfer,iiap() /munmap() functions
control which user-space location a block is mapped intdhér ead() /wri t e()
case, where a copy is incurred anywavy, it is the applicatiah ¢controls the placement
of blocks in user-space. As described in the next sectibthalabove issues have in-
fluenced the design of the random access part of TPIE.

3 The TPIE Kernel

In this section we describe in some detail the architectfitbe TPIE kernel and the
main goals we tried to achieve when designing it. The keawelyell as the rest of the
TPIE library, are written in C++. We assume the reader is fiamivith object-oriented
and C++ terminology, like classes, templates, constre@nd destructors.

3.1 Overview

As mentioned in the introduction, the TPIE library has besiit lin two phases. The

first phase was initially developed for algorithms based equential scanning, like
sorting, permuting, merging, and distributing. In theggoaithms, the computation can
be viewed as a continuous process in which data is fettéamdgrom an outside source
and streams of results are written behind. This streamebaisev of I/O computation

is not utilizing the full power of the parallel disk model, thit provides a layer of

abstraction that frees the developer from worrying abouaitelike managing disk

blocks and scheduling I/Os.

The TPIE kernel designed in this first phase consists of timedules: theStream-
based Block Transfer Engine (BT Egsponsible for packaging data into blocks and
performing I/O transfers, thklemory Manager (MM)responsible for managing main
memory resources, and tgplication Method Interface (AMIWwhich provides the
public interface and various tools. The BTE implements aastr using a UNIX file
and its functionality, like reading, writing, or creatingldock, is implemented us-
ing UNIX 1/O calls. Since the performance of these calls isapzount to the per-
formance of the entire application, different BTE implertagions are provided, us-
ing different UNIX 1/O calls (see Figure 1BTE_st r eamnmap usesnmap() and
munmap(), BTE_st r eamuf s uses tha ead() andwite() system calls, and
BTE.streamst di o usesfread() andfwite(). Other implementations can
easily be added without affecting other parts of the ket Memory Manager (MM)

4 Some systems use the buffer cache to implemertp() , mapping pages from the buffer
cache into user-space memory.

module maintains a pool of main memory of given sizeand insures that this size
is not exceeded. When either a TPIE library component or pg@ieation makes a
memory allocation request, the Memory Manager reservesutheunt requested and
decreases a global counter keeping track of the availabfeane An error is returned
if no more main memory is available. Finally, the AMI provia high-level interface
to the stream functionality provided by the BTE, as well agotss tools, including
templated functions for scanning, merging, and sortingastrs. In addition, the AMI
provides tools for testing and benchmarking: a tool for lieggerrors and debugging
messages and a mechanism for reporting statistics.

As mentioned, the stream-based view of 1/O provided by thasdules is ill-
equipped for implementing on-line 1/0-efficient data stures. The second phase of
TPIE provides support for implementing these structuresusing the full power of
the disk model. Maintaining the design framework preseatsal/e, the new function-
ality is implemented using a new module, the Random-acc&gs Bs well as a new
set of AMI tools. Figure 1 depicts the interactions betwdenvarious components of
the TPIE kernel. The rest of this section describes the implgation of the Random-
access BTE module and the new AMI tools.

[Access Method Interface (AMI)]
(l A (l A
Stream-based Random-access
Block Transfer Engine (BTE) Block Transfer Engine (BTE)
BTE_stream_mmap BTE_coll_mmap

N
BTE_stream_ufs Memory BTE_coll_ufs
BTE_stream_stdio Manager (MM)

| J/ | J

Fig. 1. The structure of the TPIE kernel.

3.2 The Random Access Block Transfer Engine (BTE).

The Random-access BTE implements the functionalityldbak collectionwhich is a
set of fixed-size blocks. A block can be viewed as being in drie/o states: on disk
or in memory. To change the state of a block, the block catéecthould support two
operationsread, which loads a block from disk to memory, andite, which stores an
in-memory block to disk. In addition, the block collectionasild be able tareatea
new block anddeletean existing block. In order to support these operations,iqgue
block IDis assigned to each block in a block collection. When redgugst new block
using the create operation, the collection returns a newkblD, which can then be
used to read, write, or delete the block.

In our implementation, a block collection is organized agadr array of blocks
stored in a single UNIX file. A block from a collection is unigly determined by its
index in this array—thus this index is used as the block ID.ewherforming a read or
write operation we start by computing the offset of the blotthe file using the block

ID. This offset is then used to seek in the file and transfer¢lqeested block. Further-
more, the write operation usesdaty flag to avoid writing blocks that have not been
modified since they were read. This per-block dirty flag stidaé set by the user-level
application whenever the contents of the in-memory bloekraodified. Unlike read
and write, the create and delete operations modify the ditleedblock collection. To
implement these operations, we employ a stack storing te@fthe blocks previously
deleted from the collection. When a block is deleted, itsdBimply pushed onto this
stack. When a new block is requested by the create procaterstack is first checked,
and if it's not empty, the top ID is popped and returned; if $teck is empty, the block
ID corresponding to a new block at the end of the file is retdriige use of the stack
avoids costly reorganization of the collection during edelete operation. However, it
brings up a number of issues that need to be addressed tk@stack has to reside on
disk and has to be carried along with the file storing the tdotk other words, a col-
lection consists of two files: one containing data blocks anel containing block IDs.
The second issue concerns space overhead. When multipte ered delete operations
are performed on a collection, the number of blocks storg¢derdata blocks file can be
much larger than the number of blocks in the collection. Tmiglate this space over-
head, the collection can be reorganized. However, suchrgaaization would change
the IDs of some blocks in the collection and therefore it carbe performed by the
BTE, which has no knowledge of the contents of the blocks:Hlioak contains IDs of
other blocks, then the contents of that block would need tagmated as well. A re-
organization procedure, if needed, should therefore béemented on the application
level.

We decided to implement the block collection on top of the Kille system and
not, e.g., on the raw disk, to obtain portability and ease s&. Wsing raw disk I/O
would involve creating a separate disk partition dedicatedPIE data files, a non-
trivial process that usually requires administrator peges. Some operating systems
offer user-space raw 1/O, but this mechanism is not starnzeddand is offered only
by a few operating systems (such as Solaris and Linux). Omtther hand, storing a
block collection in a file allows the use of existing file utiéis to copy and archive
collections.

A BTE block collection is implemented as a C++ class that jules a standard
interface to the AMI module. The interface consists of a tmsor for opening a
collection, a destructor for closing the collection, theftelock-handling routines de-
scribed above, as well as other methods for reporting thee glizhe collection, error
handling, etc. Except for the four block-handling routirgémethods are implemented
in a base class. We implemented two BTE collections as extesnso this base class:
BTE_col | _mmap andBTE_col | _uf s. As the names sugge&TE_col | _mmap uses
mrap() andnmunmap() to perform I/O transfers, whil8TE_col | _uf s uses the
read() andwrit e() system calls. The implementation of choice for most systems
is BTE_col | _mmap since, as mentioned in Section 2, theap() / munmap() func-
tions are more suited for the random 1/O pattern exhibitecbblne algorithms. We
implementedBTE_col | _uf s to compare its performance wiBTE_col | _mmap and
to account for some systems wheneap() andmunmap() are very slow.

3.3 The Access Method Interface (AMI).

The AMI tools needed to provide the random access 1/O funatity consist of a front-
end to the BTE block collection and a typed view of a disk bldekthe BTE, we
viewed the disk block as a fixed-size sequence of “raw” bytsvever, when imple-
menting external memory data structures, disk blocks dftere a well-defined internal
structure. For example, a disk block storing an internalenofia B -tree contains the
following: an array ofh pointers to child nodes, an arrayof- 1 keys, and a few extra
bytes for storing the value df. Therefore, the AMI contains a templated C++ class
calledAM _bl ock<E, | >. The contents of a block are partitioned into three fields: an
array of zero or more links to other blocks (i.e., block D&, array of zero or more
elements of typd= (given as a template parameter), andigfio field of typel (also
given as a template parameter). Each link is of tigve _bi d and represents the ID of
another block in the same collection. This way the structdre block is uniquely de-
termined by three parameters: the tyfesndl and the number of links. Easy access to
elements and links is provided by simple array operatorsekample, théth element
of a blockb is referenced by. el [i], and thejth link is referenced by. | k[j] .

The AM _bl ock<E, | > class is more than just a structuring mechanism for the
contents of a block. It represents the in-memory image ofoakblTo this end, con-
structing anAM _bl ock<E, | > object loads the block in memory, and destroying the
object unloads it from memory. The most general form of thestauctor is as follows.

AM _bl ock<E, | >(AM _col | ection* ¢, size_t links, AM _bid bid=0)

When a non-zero block ID is passed to the constructor, thekblgth that ID is
loaded from the given collection. When the block ID is zeroga block is created in
the collection. When deleting adM _bl ock<E, | > object, the block is deleted from
the collection or written back to disk, depending opexrsistence flagBy default, a
block ispersistentmeaning that it is kept in the collection after the in-memionage
has been destroyed. The persistence flag can be changedifadiral blocks.

As its name suggests, t#M _col | ect i on type that appears in the above con-
structor represents the AMI interface to a block collectidhe functionality of the
AM _col | ecti on class is minimal, since the block operations are handlechby t
AM _bl ock<E, | > class. The main operations are open and close, and are pedor
by the constructor and destructor. An instance of tydé& _col | ecti on is con-
structed by providing a file name, an access type, and a bipek s

AM _col l ection(char* fn, AM _collection_type ct, size_t bl_sz)

This constructor either opens an existing collection oatas and opens a new one.
The destructor closes the collection and, if so instructledetes the collection from
disk. The exact behavior is again determined hyeasistence flagwhich can be set
before calling the destructor.

3.4 Design Goals

This subsection summarizes the main goals we had in mind wésigning the TPIE
kernel and the methods we used to achieve these goals.

Ease of useThe usability of the kernel relies on its intuitive and pofuéinterface. We
started from the parallel disk model and built the Randoreas BTE module to simu-
late it. Multiple BTE implementations exist and they areilgdaterchangeable, allow-
ing an application to use alternative low-level I/O rousin€he user interface, provided
within the AMI, consists of a typed view of a block—ti#¢M _bl ock<E, | > class—
and a front-end to the block collection—tl#®1 _col | ect i on class. The design of
these two classes provides an easy to understand, yet pbapplication interface. In
addition, theAM _bl ock<E, | > class provides structure to the contents of the block
in order to facilitate the implementation of external megndata structure.

Flexibility. As illustrated in Figure 1, the TPIE kernel is composed offoedules with
a well-defined interface. Each of the modules has at leasfaullémplementation,
but alternative implementations can be provided. The bastlidates for alternative
implementations are the two BTE modules, since they alloavube of different I/O
mechanisms. The Stream-based BTE has three implememstatging different system
calls for performing the 1/O in stream operations. The Raneixcess BTE has two
implementations, which use different low-level systemsct perform the I/O in block
collection operations.

Efficiency. In order to obtain a fast library, we paid close attentiomptimizing disk
accessminimizing CPU operationsandavoiding unnecessary in-memory data move-
ment To optimize disk access, we used a per-block dirty flag thditates whether the
block needs to be written back or not. To minimize CPU operetj we used templated
classes with no virtual functions; because of their inhttlyedlynamic nature, virtual
functions are not typically inlined by C++ compilers and barelatively high function
call overhead. Finally, to avoid in-memory copying, we usieghmap() / munmap()

I/0 system calls; they typically transfer blocks of dateedity between disk and user-
space memory.

Portability. Being able to easily port the TPIE kernel on various platfemas one of
our main goals. As discussed in Section 3.1, the default odstiused for performing
the disk I/0 are those provided by the UNIX-based operatystesns and were chosen
for maximum portability. Alternative methods can be addad the existing implemen-
tations insure that the library works on all UNIX-based foains.

4 Data Structures

As mentioned in the introduction, there are various extenmemory data structures
implemented using the TPIE kernel. They are all part of therded TPIE library. In
this section, we briefly survey these data structures.

B-tree. The B-tree [12] is the classical external memory data stinedfor online search-
ing. In TPIE we implemented the more genef@lb)-tree [14], supporting insertion,
deletion, point query, range query, and bulk loadiijl these operations are encapsu-
lated in a templated C++ class. The template parametens #lle user to choose the

5 Bulk loading is a term used in the database literature ta tefeonstructing an index from a
given data set from scratch.

type of data items to be indexed, the key type, and the key adsgn function. A
full description of the(a, b)-tree implementation will be given in the full version of shi
paper.

Persistent B-treeThe persistent B-tree [9] is a generalization of the B-trest tecords
all changes to the initial structure over a series of updathswing queries to be an-
swered not only on the current structure, but on any of theipus ones as well. The
persistent B-tree can be used to answer 3-sided range gaerievertical ray shooting
gueries on segments & . More details on the implementation can be found in [5].

R-tree. The R-tree and its variants are widely used indexing datectres for spatial
data. The TPIE implementation uses the insertion heusigtioposed by Beckmann et
al. [10] (their variant is called the R*-tree) and varioudkbloading procedures. More
details are given in [6, 7].

Logarithmic method.The logarithmic method [16] is a generic dynamization mdtho
Given a static index with certain properties, it produceyaasnic structure consisting
of a set of smaller static indexes of geometrically incnegsizes. We implemented the
external memory versions of this method, as proposed by AngevVahrenhold [8] and
Agarwal et al. [2]. More details on the implementation carfdaend in [17].

K-D-B-tree. The K-D-B-tree [18] combines the properties of the kd-tré€] [and the
B-tree to handle multidimensional points in an external mgnsetting. Our implemen-
tation supports insertion, deletion, point query, rangergwand bulk loading. More
details on the implementation can be found in [17].

Bkd-tree. The Bkd-tree [17] is a data structure for indexing multidm®nal points. It
uses the kd-tree [11] and the logarithmic method to proviteigvorst-case guarantees
for the update and query operations. More details can bedfaufi7].

5 Case Study: Implementing the K-D-B-tree

We conclude this paper with some details of the K-D-B-treple@mentation in order
to illustrate how to implement a data structure using TPIE. &Wose the K-D-B-tree
because it is a relatively simple yet typical example of avased structure implemen-
tation.

The K-D-B-tree is a data structure for indexing multidimiens! points that at-
tempts to combine the query performance of the kd-tree vhi¢hupdate performance
of the B-tree. More precisely, a K-D-B-tree is a multi-wagérwith all leaves on the
same level. In two dimensions, each internal noderresponds to a rectangular region
r and the children of define a disjoint partition of obtained by recursively splitting
r using axis-parallel lines (similar to the kd-tree [11] @gohing scheme). The points
are stored in the leaves of the tree, and each leaf or inted# is stored in one disk
block.

The implementation of the K-D-B-tree is parameterized anttipec used for the
point coordinates and on the dimension of the sphce

tenmpl at e<cl ass ¢, size_t d> class Kdbtree;

The K-D-B-tree is stored in two block collections: one foe ffinternal) nodes, and
one for the leaves. Using two collections to store the K-Ird® allows us to choose
the block size of nodes and that of leawedependentlyit also allows us to have the
nodes clustered on disk, for improved performance.

By the flexible design of théM _bl ock class, we can simply extend it and use
the appropriate template parameters in order to providegfygired structure for nodes
and leaves.

tenpl at e<cl ass ¢, size_t d>

cl ass Kdbtree_node: AM _bl ock<box<c, d>, kdbtree_node_i nfo>;
tenpl at e<cl ass ¢, size_t d>

cl ass Kdbtree_l eaf: AM _bl ock<poi nt<c, d>, kdbtree_leaf _info>;

In other words, &dbt r ee_node<c, d> object consists of an array dfdimen-
sional boxes of typbox<c, d>, an array of links pointing to the children of the node,
and an info element of typledbt r ee_node_i nf 0. The info element stores the ac-
tual fanout of the node (which is equal to the number of boi@®d), the weight of the
node (i.e., the number of points stored in the subtree roatt#tiat node), and the split-
ting dimension (a parameter used by the insertion procedsréescribed in [18]). The
maximum fanout of a node is computed (by & _bl ock class) using the size of the
box<c, d> class and the size of the block, which is a parameter of thesiblbck col-
lection. AKdbt r ee_| eaf <c, d> object consists of an array dfdimensional points
of typepoi nt <c, d>, no links, and an info element of typelbt r ee_| eaf _i nfo
storing the number of points, a pointer to another leaf (fioeading the leaves), and the
splitting dimension.

As already mentioned, the operations supported by thisdmphtation of the K-
D-B-tree are insertion, deletion, point query, window gye@nd bulk loading. It has
been shown that batched algorithms for bulk loading can behrfaster than using re-
peated insertions [6]. For the K-D-B-tree, we implemented different bulk loading
algorithms, as described in [17]. Both algorithms start bstisg the input points and
then proceed to build the tree level by level, in a top down mesnThe implementa-
tion of these algorithms shows the seamless integrationdsst the stream-handling
AMI tools and the block handling AMI tools: The initial sartj is done by the built-in
AMI sort function, and the actual building is done by scamiine sorted streams and
producing blocks representing nodes and leaves of the K&

The update operations (insertion and deletion) are impteatkby closely follow-
ing the ideas from [18]. The query operations are performeihahe kd-tree [11].
Figure 2 shows the implementation of the simple point queogedure. Starting from
the root, the procedure traverses the path to the leaf thgtitraobntain the query point.
The traversal is done by iteratively fetching a node usisgbibck ID (line 7), find-
ing the child node containing the query point (line 8), anldasing the node (line 10).
When the child node is a leaf, that leaf is fetched (line 18)contents are searched
for the query point (line 13), and then the leaf is releasat (14). These pairings of
fetch and release calls are typical examples of how apmicause the TPIE kernel to
perform I/O. Intuitively,f et ch_node reads a node from disk amcel ease_node
writes it back. The point query procedure is oblivious to hibv 1/O is performed or
whether any I/O was performed at all. Indeed, the fetch atehse functions employ

1 bool find(point_t& p) {

2 bool ans; size_t i;

3 Kdbt r ee_node<c, d>* bn;

4 region_t<c,d> r;

5 kdb_i tem t<c,d> ki(r, header_.root_bid, header_.root_type);
6 while (ki.type !'= BLOCK_LEAF) {

7 bn = fetch_node(ki. bid);

8

i = bn->find(p);
9 ki = bn->el[i];
10 rel ease_node(bn);
11

}
12 Kdbt ree_| eaf <c, d>* bl = fetch_l eaf (ki.bid);
13 ans = (bl->find(p) < bl->size());

14 rel ease_| eaf (bl);
15 return ans;
16 }

Fig. 2. Implementation of the point query procedure.

acache manageto improve 1/O performance. By using application-levelltiag (in-
stead of fixed, kernel-level caching) we allow the applmatiieveloper to choose the
most appropriate caching algorithm. A few caching alganighare already provided in
TPIE, and more can be easily added by extending the cachegeanase class.

Experiments. Using the K-D-B-tree implementation, we performed expents to
show how the choice of I/O system calls affects performaweebulk loaded and per-
formed range queries on K-D-B-trees of various siz&he data sets consisted of uni-
formly distributed points in a squared-shaped region. Thapkyin Figure 3(a) shows the
running times of bulk loading, while the graph in Figure 3¢hpws the running time of
one range query, averaged over 10 similar-size querie$ &greriment was performed

4.5
1400 —— BTE_col | _nmmap —— BTE_col | _mmap
—o— BTE col | _ufs —— BTE col | _ufs

1200t i

1000

w

8001

o

600r

Time (seconds)
us

400r
1.5f

200L

60

Nuzrr?ber of poﬁwots in struc‘tll?re (in millisoons)
() (b)

Fig. 3. () Performance of K-D-B-tree bulk loading (b) Performanta range query (averaged

over 10 queries, each returning 1% of the points in the airegt

0 50
Number of points in structure (in millions)

using the two existing Random-access BTE implementati®fg: col | _mmap and
BTE col | _ufs. As expected, the running time of the bulk loading proceduae
highly sequential process—is not affected by the choicearfd®m-access BTE. On
the other hand, the performance of a range query is affe@adisantly by this choice:

6 All experiments were performed on a dedicated Pentium 0DMHz computer running
FreeBSD 4.4, with 128MB of main memory and an IBM Ultrastat 28 SCSI disk.

Using the ufs-based Random-access BTE results in higheimgtimes. This validates
our analysis from Section 2 and confirms tBaE_col | _nmap is the implementation
of choice for the Random-access BTE.

References

1.

2.

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

P. K. Agarwal, L. Arge, and S. Govindarajan. CRB-tree: Atimal indexing scheme for 2d
aggregate queries. Manuscript, 2002.
P. K. Agarwal, L. Arge, O. Procopiuc, and J. S. Vitter. Anfrawork for index bulk load-

ing and dynamization. I®roc. 28th Intl. Collog. Automata, Languages and Programgni
(ICALP), 2001.

. A. Aggarwal and J. S. Vitter. The Input/Output complexifysorting and related problems.

Communications of the ACNM1(9):1116-1127, 1988.

. L. Arge. External memory data structures. In J. AbelloMP.Pardalos, and M. G. C.

Resende, editoré¢jandbook of Massive Data Sefsmges 313—-358. Kluwer Academic Pub-
lishers, 2002.

. L. Arge, A. Danner, and S.-M. Teh. [/O-efficient point Itioa using persistent B-trees.

Manuscript, 2002.

. L. Arge, K. H. Hinrichs, J. Vahrenhold, and J. S. Vitterfi&&nt bulk operations on dynamic

R-trees.Algorithmicag 33(1):104-128, 2002.

. L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, J. Vahrehtemd J. S. Vitter. A uni-

fied approach for indexed and non-indexed spatial joindrbt. Conference on Extending
Database Technologyages 413-429, 1999.

. L. A. Arge and J. Vahrenhold. 1/O-efficient dynamic plapaint location. InProc. ACM

Symp. Computational GeometB8000.

. B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmaye asymptotically optimal

multiversion B-tree VLDB Journa) 5(4):264—-275, 1996.

N. Beckmann, H.-P. Kriegel, R. Schneider, and B. See@be R*-tree: An efficient and
robust access method for points and rectangleBrd. SIGMOD Intl. Conf. on Management
of Data pages 322-331, 1990.

J. L. Bentley. Multidimensional binary search treegise associative searchinG.ommun.
ACM, 18(9):509-517, Sept. 1975.

D. Comer. The ubiquitous B-treACM Comput. Sury11:121-137, 1979.

A. Crauser and K. Mehlhorn. LEDA-SM: Extending LEDA tasadary memory. IfProc.
Workshop on Algorithm Engineerin999.

S. Huddleston and K. Mehlhorn. A new data structure fprasenting sorted listsActa
Informaticg 17:157-184, 1982.

K. Mehlhorn and S. NahdtEDA: A Platform for Combinatorial and Geometric Computing
Cambridge University Press, Cambridge, UK, 2000.

M. H. Overmars.The Design of Dynamic Data Structureslume 156 ofLecture Notes
Comput. SciSpringer-Verlag, Heidelberg, West Germany, 1983.

O. Procopiuc, P. K. Agarwal, L. Arge, and J. S. Vitter. Bkee: A dynamic scalable kd-tree.
Manuscript, 2002.

J. T. Robinson. The K-D-B-tree: A search structure fogdamultidimensional dynamic
indexes. InProc. SIGMOD Intl. Conf. on Management of Dapmges 10-18, 1981.

D. E. Vengroff and J. S. Vitter. Supporting I/O-efficietientific computation in TPIE. In
Proc. IEEE Symp. on Parallel and Distributed Computipgges 74—77, 1995.

J. S. Vitter. External memory algorithms and data stnast: Dealing with MASSIVE data.
ACM Computing Survey83(2):209-271, 2001.

J. S. Vitter and E. A. M. Shriver. Algorithms for parallelemory, I: Two-level memories.
Algorithmica 12(2-3):110-147, 1994.

