
Implementing I/O-Efficient Data Structures Using TPIE

Lars Arge?, Octavian Procopiuc??, and Jeffrey Scott Vitter? ? ?
Center for Geometric and Biological Computing,

Department of Computer Science, Duke University, Durham, NC 27708, USA.flarge,tavi,jsvg@cs.duke.edu
Abstract. In recent years, many theoretically I/O-efficient algorithms and data
structures have been developed. The TPIE project at Duke University was started
to investigate the practical importance of these theoretical results. The goal of
this ongoing project is to provide aportable, extensible, flexible, andeasy to use
C++ programming environment forefficientlyimplementing I/O-algorithms and
data structures. The TPIE library has been developed in two phases. The first
phase focused on supporting algorithms with asequentialI/O pattern, while the
recently developed second phase has focused on supporting on-line I/O-efficient
data structures, which exhibit a morerandomI/O pattern. This paper describes
the design and implementation of the second phase of TPIE.

1 Introduction

In many modern massive dataset applications I/O-communication between fast internal
memory and slow disks, rather than actual internal computation time, is the bottle-
neck in the computation. Examples of such applications can be found in a wide range
of domains such as scientific computing, geographic information systems, computer
graphics, and database systems. As a result, much attentionhas been focused on the
development of I/O-efficient algorithms and data structures (see e.g. [4, 20]). While a
lot of practical and often heuristic I/O-efficient algorithms and data structures in ad-
hoc models have been developed in the database community, most theoretical work on
I/O-efficiency in the algorithms community has been done in the Parallel Disk Model
of Vitter and Shriver [21]. To investigate the practical viability of the theoretical work,
the TPIE1 project was started at Duke University. The goal of this ongoing project is to
provide aportable, extensible, flexible, andeasy to useprogramming environment for
efficientlyimplementing algorithms and data structures developed forthe Parallel Disk? Supported in part by the National Science Foundation through ESS grant EIA–9870734,

RI grant EIA–9972879, CAREER grant CCR–9984099, ITR grant EIA–0112849, and U.S.-
Germany Cooperative Research Program grant INT–0129182.?? Supported in part by the National Science Foundation through ESS grant EIA–9870734 and
RI grant EIA–9972879.? ? ? Supported in part by the National Science Foundation through research grants CCR–9877133
and EIA–9870734 and by the Army Research Office through MURI grant DAAH04–96–1–
0013.

1 TPIE: Transparent Parallel I/O Environment. Pronunciation: ’tE-’pI (like tea-pie)

Model. A project with similar goals, called LEDA-SM [13] (anextension of the LEDA
library [15]), has also been conducted at the Max-Planck Institut in Saarbrucken.

TPIE is a templated C++ library2 consisting of a kernel and a set of I/O-efficient
algorithms and data structures implemented on top of it. Thekernel is responsible for
abstracting away the details of the transfers between disk and memory, managing data
on disk and in main memory, and providing a unified programming interface appearing
as the Parallel Disk Model. Each of these tasks is performed by a separate module
inside the kernel, resulting in a highly extensible and portable system. The TPIE library
has been developed in two phases. The first phase focused on supporting algorithms
with a sequentialI/O pattern, that is, algorithms using primitives such as scanning,
sorting, merging, permuting, and distributing [19]. However, in recent years, a growing
number of on-line I/O-efficient data structures have been developed, and the sequential
framework is ill-equipped to handle the morerandomI/O patterns exhibited in these
structures. Therefore a second phase of the TPIE development has focused on providing
support for random access I/O patterns. Furthermore, just like a large number of batched
algorithms were implemented in the first phase of the project, a large number of data
structures have been implemented in the second phase, including B-trees [12], persistent
B-trees [9], R-trees [10], CRB-trees [1], K-D-B-trees [18]and Bkd-trees [17]. The two
parts of TPIE are highly integrated, allowing seamless implementation of algorithms
and data structures that make use of both random and sequential access patterns.3

While the first part of TPIE has been described in a previous paper [19], this pa-
per describes the design and implementation details of the second phase of the system.
In Section 2 the Parallel Disk Model, as well as disk and operation technology that
influenced the TPIE design choices are first described. Section 3 then describes the ar-
chitecture of the TPIE kernel and its design goals. Section 4presents a brief description
of the data structures implemented using the random access framework, and finally Sec-
tion 5 contains a case study on the implementation of the K-D-B-tree [18] along with
some experimental results.

2 The I/O Model of Computation

In this section we discuss the physical disk technology motivating the Parallel Disk
Model, as well as some operating system issues that influenced important TPIE design
choices.

Magnetic Disks.The most common external memory storage device is the magnetic
disk. A magnetic disk drive consists of one or more rotating platters with one read/write
head per platter. Data are stored on the platter surface in concentric circles called tracks.
To read or write data at a certain position on the platter, theread/write head mustseek

2 The latest TPIE release can be downloaded fromhttp://www.cs.duke.edu/TPIE/
3 The LEDA-SM library takes a slightly different approach, optimized for random access pat-

terns. The algorithms and data structures implemented using LEDA-SM are somewhat com-
plementary to the ones implemented in TPIE. The kernels of the two libraries are compatible,
and as a result algorithms and structures implemented for one of the systems can easily be
ported to the other.

to the correct track and thenwait for the desired position on the track to pass by. Be-
cause mechanical movement is involved, the typical read or write time is on the order
of milliseconds. By comparison, the typical transfer time of main memory is a few
nanoseconds—a factor of106 faster! Since the seek and wait time is much larger than
the time needed to read a unit of data, magnetic disks transfer a largeblock of con-
tiguous data items at a time. Accessing a block involves onlyone seek and wait, so the
amortized cost per unit of data is much smaller than the cost of accessing a single unit.

Parallel Disk Model. The Parallel Disk Model (PDM) was introduced by Vitter and
Shriver [21] (see also [3]) in order to more accurately modela two-level main memory-
disk system with block transfers. PDM has become the standard theoretical model for
designing and analyzing I/O-efficient algorithms. The model abstracts a computer as
a three-component system: a processor, a fixed amount of mainmemory, and one or
more independent disk drives. Data is transferred between disks and main memory in
fixed-sizeblocksand one such transfer is called anI/O operation(or simply anI/O).
The primary measures of algorithm performance in the model are the number of I/Os
performed, the amount of disk space used, and the internal computation time. To be
able to quantify these measures,N is normally used to denote the number of items in
the problem instance,M the maximum number of items that fit in main memory,B the
number of items per block, andD the number of independent disks. In this paper we
only consider the one-disk model.

Random versus sequential I/O.Using the Parallel Disk Model, a plethora of theoret-
ically I/O-efficient algorithms and data structures have been developed—refer to [4,
20] for surveys. Experimental studies (many using the TPIE system) have shown the
model’s accuracy at predicting the relative performance ofalgorithms—refer to the
above mentioned surveys for references. However, they havealso revealed the limits of
the model, primarily its inability to distinguish between the complexities of sequential
and random I/O patterns. Intuitively, accessing data sequentially is more efficient than
accessing blocks in a random way on disk, since the first pattern leads to less seeks and
waits than the latter. Furthermore, since studies have shown that the typical use of a
disk file is to open it, read its entire contents sequentially, and close it, most operating
systems are optimized for such sequential access.

UNIX I/O primitives. In the UNIX operating system, optimization for sequential ac-
cess is implemented using abuffer cache. It consists of a portion of the main memory
reserved for caching data blocks from disk. More specifically, when a user requests
a data block from disk using theread() system call, the block is looked up in the
buffer cache, and if not there, it is fetched from disk into the cache. From there, the
block is copied into a user-space memory location. To optimize for sequential access a
prefetching strategy is also implemented, such that blocksfollowing a recently accessed
block are loaded into the buffer cache while computation is performed. Similarly, when
a block is written using awrite() system call, the block is first copied to the buffer
cache, and if necessary, a block from the buffer cache is written to disk.

When the I/O-pattern is random rather than sequential, the buffer cache is mostly
useless and can actually have a detrimental effect. Not onlyare resources wasted on
caching and prefetching, but the cache also incurs an extra copy of each data block.

Therefore most UNIX-based operating systems offer alternative I/O routines, called
mmap() andmunmap(), which avoid using the buffer cache. When the user requests
a disk block usingmmap(), the block is mapped directly in user-space memory.4 The
mapping is released whenmunmap() is called, allowing the block to be written back to
disk. If properly implemented, these routines achieve a zero-copy I/O transfer, resulting
in more efficient I/O than theread()/write() functions in applications that exhibit
a random I/O access pattern. Another important difference between the two sets of func-
tions is that in order to achieve zero-copy transfer, themmap()/munmap() functions
control which user-space location a block is mapped into. Intheread()/write()
case, where a copy is incurred anyway, it is the application that controls the placement
of blocks in user-space. As described in the next section, all the above issues have in-
fluenced the design of the random access part of TPIE.

3 The TPIE Kernel

In this section we describe in some detail the architecture of the TPIE kernel and the
main goals we tried to achieve when designing it. The kernel,as well as the rest of the
TPIE library, are written in C++. We assume the reader is familiar with object-oriented
and C++ terminology, like classes, templates, constructors and destructors.

3.1 Overview

As mentioned in the introduction, the TPIE library has been built in two phases. The
first phase was initially developed for algorithms based on sequential scanning, like
sorting, permuting, merging, and distributing. In these algorithms, the computation can
be viewed as a continuous process in which data is fed instreamsfrom an outside source
and streams of results are written behind. This stream-based view of I/O computation
is not utilizing the full power of the parallel disk model, but it provides a layer of
abstraction that frees the developer from worrying about details like managing disk
blocks and scheduling I/Os.

The TPIE kernel designed in this first phase consists of threemodules: theStream-
based Block Transfer Engine (BTE), responsible for packaging data into blocks and
performing I/O transfers, theMemory Manager (MM), responsible for managing main
memory resources, and theApplication Method Interface (AMI), which provides the
public interface and various tools. The BTE implements a stream using a UNIX file
and its functionality, like reading, writing, or creating ablock, is implemented us-
ing UNIX I/O calls. Since the performance of these calls is paramount to the per-
formance of the entire application, different BTE implementations are provided, us-
ing different UNIX I/O calls (see Figure 1):BTE stream mmap usesmmap() and
munmap(), BTE stream ufs uses theread() andwrite() system calls, and
BTE stream stdio usesfread() andfwrite(). Other implementations can
easily be added without affecting other parts of the kernel.The Memory Manager (MM)

4 Some systems use the buffer cache to implementmmap(), mapping pages from the buffer
cache into user-space memory.

module maintains a pool of main memory of given sizeM and insures that this size
is not exceeded. When either a TPIE library component or the application makes a
memory allocation request, the Memory Manager reserves theamount requested and
decreases a global counter keeping track of the available memory. An error is returned
if no more main memory is available. Finally, the AMI provides a high-level interface
to the stream functionality provided by the BTE, as well as various tools, including
templated functions for scanning, merging, and sorting streams. In addition, the AMI
provides tools for testing and benchmarking: a tool for logging errors and debugging
messages and a mechanism for reporting statistics.

As mentioned, the stream-based view of I/O provided by thesemodules is ill-
equipped for implementing on-line I/O-efficient data structures. The second phase of
TPIE provides support for implementing these structures byusing the full power of
the disk model. Maintaining the design framework presentedabove, the new function-
ality is implemented using a new module, the Random-access BTE, as well as a new
set of AMI tools. Figure 1 depicts the interactions between the various components of
the TPIE kernel. The rest of this section describes the implementation of the Random-
access BTE module and the new AMI tools.

BTE_stream_mmap

BTE_stream_ufs

BTE_stream_stdio

Stream−based Random−access
Block Transfer Engine (BTE)Block Transfer Engine (BTE)

BTE_coll_mmap

BTE_coll_ufsMemory
Manager (MM)

Access Method Interface (AMI)

Fig. 1. The structure of the TPIE kernel.

3.2 The Random Access Block Transfer Engine (BTE).

The Random-access BTE implements the functionality of ablock collection, which is a
set of fixed-size blocks. A block can be viewed as being in one of two states: on disk
or in memory. To change the state of a block, the block collection should support two
operations:read, which loads a block from disk to memory, andwrite, which stores an
in-memory block to disk. In addition, the block collection should be able tocreatea
new block anddeletean existing block. In order to support these operations, a unique
block ID is assigned to each block in a block collection. When requesting a new block
using the create operation, the collection returns a new block ID, which can then be
used to read, write, or delete the block.

In our implementation, a block collection is organized as a linear array of blocks
stored in a single UNIX file. A block from a collection is uniquely determined by its
index in this array—thus this index is used as the block ID. When performing a read or
write operation we start by computing the offset of the blockin the file using the block

ID. This offset is then used to seek in the file and transfer therequested block. Further-
more, the write operation uses adirty flag to avoid writing blocks that have not been
modified since they were read. This per-block dirty flag should be set by the user-level
application whenever the contents of the in-memory block are modified. Unlike read
and write, the create and delete operations modify the size of the block collection. To
implement these operations, we employ a stack storing the IDs of the blocks previously
deleted from the collection. When a block is deleted, its ID is simply pushed onto this
stack. When a new block is requested by the create procedure,the stack is first checked,
and if it’s not empty, the top ID is popped and returned; if thestack is empty, the block
ID corresponding to a new block at the end of the file is returned. The use of the stack
avoids costly reorganization of the collection during eachdelete operation. However, it
brings up a number of issues that need to be addressed. First,the stack has to reside on
disk and has to be carried along with the file storing the blocks. In other words, a col-
lection consists of two files: one containing data blocks andone containing block IDs.
The second issue concerns space overhead. When multiple create and delete operations
are performed on a collection, the number of blocks stored inthe data blocks file can be
much larger than the number of blocks in the collection. To eliminate this space over-
head, the collection can be reorganized. However, such a reorganization would change
the IDs of some blocks in the collection and therefore it cannot be performed by the
BTE, which has no knowledge of the contents of the blocks: If ablock contains IDs of
other blocks, then the contents of that block would need to beupdated as well. A re-
organization procedure, if needed, should therefore be implemented on the application
level.

We decided to implement the block collection on top of the UNIX file system and
not, e.g., on the raw disk, to obtain portability and ease of use. Using raw disk I/O
would involve creating a separate disk partition dedicatedto TPIE data files, a non-
trivial process that usually requires administrator privileges. Some operating systems
offer user-space raw I/O, but this mechanism is not standardized and is offered only
by a few operating systems (such as Solaris and Linux). On theother hand, storing a
block collection in a file allows the use of existing file utilities to copy and archive
collections.

A BTE block collection is implemented as a C++ class that provides a standard
interface to the AMI module. The interface consists of a constructor for opening a
collection, a destructor for closing the collection, the four block-handling routines de-
scribed above, as well as other methods for reporting the size of the collection, error
handling, etc. Except for the four block-handling routines, all methods are implemented
in a base class. We implemented two BTE collections as extensions to this base class:
BTE coll mmap andBTE coll ufs. As the names suggest,BTE coll mmap uses
mmap() andmunmap() to perform I/O transfers, whileBTE coll ufs uses the
read() andwrite() system calls. The implementation of choice for most systems
is BTE coll mmap since, as mentioned in Section 2, themmap()/munmap() func-
tions are more suited for the random I/O pattern exhibited byonline algorithms. We
implementedBTE coll ufs to compare its performance withBTE coll mmap and
to account for some systems wheremmap() andmunmap() are very slow.

3.3 The Access Method Interface (AMI).

The AMI tools needed to provide the random access I/O functionality consist of a front-
end to the BTE block collection and a typed view of a disk block. In the BTE, we
viewed the disk block as a fixed-size sequence of “raw” bytes.However, when imple-
menting external memory data structures, disk blocks oftenhave a well-defined internal
structure. For example, a disk block storing an internal node of a B+-tree contains the
following: an array ofb pointers to child nodes, an array ofb� 1 keys, and a few extra
bytes for storing the value ofb. Therefore, the AMI contains a templated C++ class
calledAMI block<E,I>. The contents of a block are partitioned into three fields: an
array of zero or more links to other blocks (i.e., block IDs),an array of zero or more
elements of typeE (given as a template parameter), and aninfo field of typeI (also
given as a template parameter). Each link is of typeAMI bid and represents the ID of
another block in the same collection. This way the structureof a block is uniquely de-
termined by three parameters: the typesE andI and the number of links. Easy access to
elements and links is provided by simple array operators. For example, theith element
of a blockb is referenced byb.el[i], and thejth link is referenced byb.lk[j].

TheAMI block<E,I> class is more than just a structuring mechanism for the
contents of a block. It represents the in-memory image of a block. To this end, con-
structing anAMI block<E,I> object loads the block in memory, and destroying the
object unloads it from memory. The most general form of the constructor is as follows.

AMI_block<E,I>(AMI_collection* c, size_t links, AMI_bid bid=0)

When a non-zero block ID is passed to the constructor, the block with that ID is
loaded from the given collection. When the block ID is zero, anew block is created in
the collection. When deleting anAMI block<E,I> object, the block is deleted from
the collection or written back to disk, depending on apersistence flag. By default, a
block ispersistent, meaning that it is kept in the collection after the in-memory image
has been destroyed. The persistence flag can be changed for individual blocks.

As its name suggests, theAMI collection type that appears in the above con-
structor represents the AMI interface to a block collection. The functionality of the
AMI collection class is minimal, since the block operations are handled by the
AMI block<E,I> class. The main operations are open and close, and are performed
by the constructor and destructor. An instance of typeAMI collection is con-
structed by providing a file name, an access type, and a block size.

AMI_collection(char* fn, AMI_collection_type ct, size_t bl_sz)

This constructor either opens an existing collection or creates and opens a new one.
The destructor closes the collection and, if so instructed,deletes the collection from
disk. The exact behavior is again determined by apersistence flag, which can be set
before calling the destructor.

3.4 Design Goals

This subsection summarizes the main goals we had in mind whendesigning the TPIE
kernel and the methods we used to achieve these goals.

Ease of use.The usability of the kernel relies on its intuitive and powerful interface. We
started from the parallel disk model and built the Random-access BTE module to simu-
late it. Multiple BTE implementations exist and they are easily interchangeable, allow-
ing an application to use alternative low-level I/O routines. The user interface, provided
within the AMI, consists of a typed view of a block—theAMI block<E,I> class—
and a front-end to the block collection—theAMI collection class. The design of
these two classes provides an easy to understand, yet powerful application interface. In
addition, theAMI block<E,I> class provides structure to the contents of the block
in order to facilitate the implementation of external memory data structure.

Flexibility. As illustrated in Figure 1, the TPIE kernel is composed of four modules with
a well-defined interface. Each of the modules has at least a default implementation,
but alternative implementations can be provided. The best candidates for alternative
implementations are the two BTE modules, since they allow the use of different I/O
mechanisms. The Stream-based BTE has three implementations, using different system
calls for performing the I/O in stream operations. The Random-access BTE has two
implementations, which use different low-level system calls to perform the I/O in block
collection operations.

Efficiency. In order to obtain a fast library, we paid close attention tooptimizing disk
access, minimizing CPU operations, andavoiding unnecessary in-memory data move-
ment. To optimize disk access, we used a per-block dirty flag that indicates whether the
block needs to be written back or not. To minimize CPU operations, we used templated
classes with no virtual functions; because of their inherently dynamic nature, virtual
functions are not typically inlined by C++ compilers and have a relatively high function
call overhead. Finally, to avoid in-memory copying, we usedthemmap()/munmap()
I/O system calls; they typically transfer blocks of data directly between disk and user-
space memory.

Portability. Being able to easily port the TPIE kernel on various platforms was one of
our main goals. As discussed in Section 3.1, the default methods used for performing
the disk I/O are those provided by the UNIX-based operating systems and were chosen
for maximum portability. Alternative methods can be added,but the existing implemen-
tations insure that the library works on all UNIX-based platforms.

4 Data Structures

As mentioned in the introduction, there are various external memory data structures
implemented using the TPIE kernel. They are all part of the extended TPIE library. In
this section, we briefly survey these data structures.

B-tree. The B-tree [12] is the classical external memory data structure for online search-
ing. In TPIE we implemented the more general(a; b)-tree [14], supporting insertion,
deletion, point query, range query, and bulk loading.5 All these operations are encapsu-
lated in a templated C++ class. The template parameters allow the user to choose the

5 Bulk loading is a term used in the database literature to refer to constructing an index from a
given data set from scratch.

type of data items to be indexed, the key type, and the key comparison function. A
full description of the(a; b)-tree implementation will be given in the full version of this
paper.

Persistent B-tree.The persistent B-tree [9] is a generalization of the B-tree that records
all changes to the initial structure over a series of updates, allowing queries to be an-
swered not only on the current structure, but on any of the previous ones as well. The
persistent B-tree can be used to answer 3-sided range queries and vertical ray shooting
queries on segments inR2 . More details on the implementation can be found in [5].

R-tree. The R-tree and its variants are widely used indexing data structures for spatial
data. The TPIE implementation uses the insertion heuristics proposed by Beckmann et
al. [10] (their variant is called the R*-tree) and various bulk loading procedures. More
details are given in [6, 7].

Logarithmic method.The logarithmic method [16] is a generic dynamization method.
Given a static index with certain properties, it produces a dynamic structure consisting
of a set of smaller static indexes of geometrically increasing sizes. We implemented the
external memory versions of this method, as proposed by Argeand Vahrenhold [8] and
Agarwal et al. [2]. More details on the implementation can befound in [17].

K-D-B-tree. The K-D-B-tree [18] combines the properties of the kd-tree [11] and the
B-tree to handle multidimensional points in an external memory setting. Our implemen-
tation supports insertion, deletion, point query, range query and bulk loading. More
details on the implementation can be found in [17].

Bkd-tree.The Bkd-tree [17] is a data structure for indexing multidimensional points. It
uses the kd-tree [11] and the logarithmic method to provide good worst-case guarantees
for the update and query operations. More details can be found in [17].

5 Case Study: Implementing the K-D-B-tree

We conclude this paper with some details of the K-D-B-tree implementation in order
to illustrate how to implement a data structure using TPIE. We chose the K-D-B-tree
because it is a relatively simple yet typical example of a tree-based structure implemen-
tation.

The K-D-B-tree is a data structure for indexing multidimensional points that at-
tempts to combine the query performance of the kd-tree with the update performance
of the B-tree. More precisely, a K-D-B-tree is a multi-way tree with all leaves on the
same level. In two dimensions, each internal nodev corresponds to a rectangular regionr and the children ofv define a disjoint partition ofr obtained by recursively splittingr using axis-parallel lines (similar to the kd-tree [11] partitioning scheme). The points
are stored in the leaves of the tree, and each leaf or internalnode is stored in one disk
block.

The implementation of the K-D-B-tree is parameterized on the type
 used for the
point coordinates and on the dimension of the spaced.

template<class c, size_t d> class Kdbtree;

The K-D-B-tree is stored in two block collections: one for the (internal) nodes, and
one for the leaves. Using two collections to store the K-D-B-tree allows us to choose
the block size of nodes and that of leavesindependently; it also allows us to have the
nodes clustered on disk, for improved performance.

By the flexible design of theAMI block class, we can simply extend it and use
the appropriate template parameters in order to provide therequired structure for nodes
and leaves.

template<class c, size_t d>
class Kdbtree_node: AMI_block<box<c, d>, kdbtree_node_info>;
template<class c, size_t d>
class Kdbtree_leaf: AMI_block<point<c, d>, kdbtree_leaf_info>;

In other words, aKdbtree_node<c,d> object consists of an array ofd-dimen-
sional boxes of typebox<c,d>, an array of links pointing to the children of the node,
and an info element of typekdbtree_node_info. The info element stores the ac-
tual fanout of the node (which is equal to the number of boxes stored), the weight of the
node (i.e., the number of points stored in the subtree rootedat that node), and the split-
ting dimension (a parameter used by the insertion procedure, as described in [18]). The
maximum fanout of a node is computed (by theAMI_block class) using the size of the
box<c,d> class and the size of the block, which is a parameter of the nodes block col-
lection. AKdbtree_leaf<c,d> object consists of an array ofd-dimensional points
of typepoint<c,d>, no links, and an info element of typekdbtree_leaf_info
storing the number of points, a pointer to another leaf (for threading the leaves), and the
splitting dimension.

As already mentioned, the operations supported by this implementation of the K-
D-B-tree are insertion, deletion, point query, window query, and bulk loading. It has
been shown that batched algorithms for bulk loading can be much faster than using re-
peated insertions [6]. For the K-D-B-tree, we implemented two different bulk loading
algorithms, as described in [17]. Both algorithms start by sorting the input points and
then proceed to build the tree level by level, in a top down manner. The implementa-
tion of these algorithms shows the seamless integration between the stream-handling
AMI tools and the block handling AMI tools: The initial sorting is done by the built-in
AMI sort function, and the actual building is done by scanning the sorted streams and
producing blocks representing nodes and leaves of the K-D-B-tree.

The update operations (insertion and deletion) are implemented by closely follow-
ing the ideas from [18]. The query operations are performed as in the kd-tree [11].
Figure 2 shows the implementation of the simple point query procedure. Starting from
the root, the procedure traverses the path to the leaf that might contain the query point.
The traversal is done by iteratively fetching a node using its block ID (line 7), find-
ing the child node containing the query point (line 8), and releasing the node (line 10).
When the child node is a leaf, that leaf is fetched (line 12), its contents are searched
for the query point (line 13), and then the leaf is released (line 14). These pairings of
fetch and release calls are typical examples of how applications use the TPIE kernel to
perform I/O. Intuitively,fetch_node reads a node from disk andrelease_node
writes it back. The point query procedure is oblivious to howthe I/O is performed or
whether any I/O was performed at all. Indeed, the fetch and release functions employ

1 bool find(point_t& p) {
2 bool ans; size_t i;
3 Kdbtree_node<c,d>* bn;
4 region_t<c,d> r;
5 kdb_item_t<c,d> ki(r, header_.root_bid, header_.root_type);
6 while (ki.type != BLOCK_LEAF) {
7 bn = fetch_node(ki.bid);
8 i = bn->find(p);
9 ki = bn->el[i];

10 release_node(bn);
11 }
12 Kdbtree_leaf<c,d>* bl = fetch_leaf(ki.bid);
13 ans = (bl->find(p) < bl->size());
14 release_leaf(bl);
15 return ans;
16 }

Fig. 2. Implementation of the point query procedure.

a cache managerto improve I/O performance. By using application-level caching (in-
stead of fixed, kernel-level caching) we allow the application developer to choose the
most appropriate caching algorithm. A few caching algorithms are already provided in
TPIE, and more can be easily added by extending the cache manager base class.

Experiments. Using the K-D-B-tree implementation, we performed experiments to
show how the choice of I/O system calls affects performance.We bulk loaded and per-
formed range queries on K-D-B-trees of various sizes.6 The data sets consisted of uni-
formly distributed points in a squared-shaped region. The graph in Figure 3(a) shows the
running times of bulk loading, while the graph in Figure 3(b)shows the running time of
one range query, averaged over 10 similar-size queries. Each experiment was performed

10 20 30 40 50 60
0

200

400

600

800

1000

1200

1400

Number of points in structure (in millions)

T
im

e
(s

ec
on

ds
)

BTE_coll_mmap
BTE_coll_ufs

(a)

10 20 30 40 50 60
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of points in structure (in millions)

T
im

e
(s

ec
on

ds
)

BTE_coll_mmap
BTE_coll_ufs

(b)

Fig. 3. (a) Performance of K-D-B-tree bulk loading (b) Performanceof a range query (averaged
over 10 queries, each returning 1% of the points in the structure)

using the two existing Random-access BTE implementations:BTE_coll_mmap and
BTE_coll_ufs. As expected, the running time of the bulk loading procedure—a
highly sequential process—is not affected by the choice of Random-access BTE. On
the other hand, the performance of a range query is affected significantly by this choice:

6 All experiments were performed on a dedicated Pentium III/500MHz computer running
FreeBSD 4.4, with 128MB of main memory and an IBM Ultrastar 36LZX SCSI disk.

Using the ufs-based Random-access BTE results in higher running times. This validates
our analysis from Section 2 and confirms thatBTE_coll_mmap is the implementation
of choice for the Random-access BTE.

References

1. P. K. Agarwal, L. Arge, and S. Govindarajan. CRB-tree: An optimal indexing scheme for 2d
aggregate queries. Manuscript, 2002.

2. P. K. Agarwal, L. Arge, O. Procopiuc, and J. S. Vitter. A framework for index bulk load-
ing and dynamization. InProc. 28th Intl. Colloq. Automata, Languages and Programming
(ICALP), 2001.

3. A. Aggarwal and J. S. Vitter. The Input/Output complexityof sorting and related problems.
Communications of the ACM, 31(9):1116–1127, 1988.

4. L. Arge. External memory data structures. In J. Abello, P.M. Pardalos, and M. G. C.
Resende, editors,Handbook of Massive Data Sets, pages 313–358. Kluwer Academic Pub-
lishers, 2002.

5. L. Arge, A. Danner, and S.-M. Teh. I/O-efficient point location using persistent B-trees.
Manuscript, 2002.

6. L. Arge, K. H. Hinrichs, J. Vahrenhold, and J. S. Vitter. Efficient bulk operations on dynamic
R-trees.Algorithmica, 33(1):104–128, 2002.

7. L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, J. Vahrenhold, and J. S. Vitter. A uni-
fied approach for indexed and non-indexed spatial joins. InProc. Conference on Extending
Database Technology, pages 413–429, 1999.

8. L. A. Arge and J. Vahrenhold. I/O-efficient dynamic planarpoint location. InProc. ACM
Symp. Computational Geometry, 2000.

9. B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer. An asymptotically optimal
multiversion B-tree.VLDB Journal, 5(4):264–275, 1996.

10. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger.The R*-tree: An efficient and
robust access method for points and rectangles. InProc. SIGMOD Intl. Conf. on Management
of Data, pages 322–331, 1990.

11. J. L. Bentley. Multidimensional binary search trees used for associative searching.Commun.
ACM, 18(9):509–517, Sept. 1975.

12. D. Comer. The ubiquitous B-tree.ACM Comput. Surv., 11:121–137, 1979.
13. A. Crauser and K. Mehlhorn. LEDA-SM: Extending LEDA to secondary memory. InProc.

Workshop on Algorithm Engineering, 1999.
14. S. Huddleston and K. Mehlhorn. A new data structure for representing sorted lists.Acta

Informatica, 17:157–184, 1982.
15. K. Mehlhorn and S. Näher.LEDA: A Platform for Combinatorial and Geometric Computing.

Cambridge University Press, Cambridge, UK, 2000.
16. M. H. Overmars.The Design of Dynamic Data Structures, volume 156 ofLecture Notes

Comput. Sci.Springer-Verlag, Heidelberg, West Germany, 1983.
17. O. Procopiuc, P. K. Agarwal, L. Arge, and J. S. Vitter. Bkd-tree: A dynamic scalable kd-tree.

Manuscript, 2002.
18. J. T. Robinson. The K-D-B-tree: A search structure for large multidimensional dynamic

indexes. InProc. SIGMOD Intl. Conf. on Management of Data, pages 10–18, 1981.
19. D. E. Vengroff and J. S. Vitter. Supporting I/O-efficientscientific computation in TPIE. In

Proc. IEEE Symp. on Parallel and Distributed Computing, pages 74–77, 1995.
20. J. S. Vitter. External memory algorithms and data structures: Dealing with MASSIVE data.

ACM Computing Surveys, 33(2):209–271, 2001.
21. J. S. Vitter and E. A. M. Shriver. Algorithms for parallelmemory, I: Two-level memories.

Algorithmica, 12(2–3):110–147, 1994.

