
The popularity of cost-effective clus-
ters built from commodity hardware
has opened up a new platform for the
execution of software originally de-

signed for tightly coupled supercomputers. Be-
cause these clusters can be built to include any
number of processors ranging from fewer than 10
to thousands, researchers in high-performance
scientific computation at smaller institutions or in
smaller departments can maintain local parallel
computing resources to support software devel-
opment and testing, then move the software to
larger clusters and supercomputers.

As promising as this ability is, it has also led to
the need for local expertise and resources to set up
and maintain these clusters. The software must ex-
ecute efficiently both on smaller local clusters and
on larger ones. These computing environments
vary in the number of processors, speed of pro-
cessing and communication resources, and size and
speed of memory throughout the memory hierar-

chy as well as in the availability of support tools and
preferred programming paradigms. Software de-
veloped and optimized using a particular comput-
ing environment might not be as efficient when it’s
moved to another one.

In this article, we describe a small cluster along
with two efforts to improve the efficiency of parallel
scientific computation on that cluster. Both ap-
proaches modify the dynamic load-balancing step of
an adaptive solution procedure to tailor the distrib-
ution of data across the cooperating processes. This
modification helps account for the heterogeneity
and hierarchy in various computing environments.

The Cluster Setup
The Bullpen cluster (http://bullpen.cs.williams.
edu/) is located in the Department of Computer
Science at Williams College. The initial cluster,
constructed in 2001, consisted of one Enterprise
220R server with a 450-MHz Sparc UltraII proces-
sor and 512 Mbytes of memory, acting as both a file
server and an interactive login node; two Enter-
prise 420R servers, each with four 450-MHz Sparc
UltraII processors and 4 Gbytes of memory; and
six Enterprise 220R servers, each with two 450-
MHz Sparc UltraII processors and 512 Mbytes or
1 Gbyte of memory. Later, we added four Sun Ul-
tra 10 workstations, each with one 300- or 333-
MHz Sparc UltraII processor, 128 Mbytes of
memory, and 6 Gbytes of local disk space. Figure 1

40 COMPUTING IN SCIENCE & ENGINEERING

RESOURCE-AWARE
SCIENTIFIC COMPUTATION
ON A HETEROGENEOUS CLUSTER

C L U S T E R
C O M P U T I N G

Although researchers can develop software on small, local clusters and move it later to
larger clusters and supercomputers, the software must run efficiently in both environments.
Two efforts aim to improve the efficiency of scientific computation on clusters through
resource-aware dynamic load balancing.

JAMES D. TERESCO

Williams College
JAMAL FAIK AND JOSEPH E. FLAHERTY

Rensselaer Polytechnic Institute

1521-9615/05/$20.00 © 2005 IEEE

Copublished by the IEEE CS and the AIP

MARCH/APRIL 2005 41

shows the cluster in its current configuration.
This heterogeneous mix of nodes, with its varia-

tion in numbers of processors, processor speeds, and
amount of memory per node, was intended to allow
the cluster to be used for studies of scientific com-
putation in different environments. Many clusters
don’t exhibit much heterogeneity when they’re first
built, but as they acquire new nodes—and retain the
old ones for computing power—heterogeneity ap-
pears. For the Bullpen cluster, our expansion in-
volved the addition of slower nodes retired from
public labs; we expect that future additions to this
cluster will introduce further heterogeneity.

Although ours isn’t an especially large cluster,
its power and cooling requirements (not to men-
tion noise concerns) made it necessary to house
it somewhere other than in regular office space
or in a public lab. Accordingly, we upgraded a
small closet in the computer science laboratory
with additional power, air conditioning, and net-
work ports. To fit it into this relatively small
space, we put the server nodes in racks and con-
nected them with a common keyboard-video-
mouse switch to a single keyboard and monitor;
we also stacked the Ultra 10s but ran them with-
out keyboards and monitors.

With this relatively small cluster, we decided to
forego cluster management tools such as the Sun
Grid Engine (http://wwws.sun.com/software/
gridware/) or SCALI Manage (www.scali.com/
index.php?loc=17). The Solaris operating system’s
“jumpstart” system-installation utility used a net-
work boot to automatically install and maintain
consistent system software on all nodes.

We installed several implementations of the mes-
sage-passing interface (MPI),1 but we tend to use
MPICH (http://www-unix.mcs.anl.gov/mpi/mpich/)
most frequently. Processes to be run on the produc-
tion nodes must be executed through an installation
of the OpenPBS queuing system (www.openpbs.org),
which lets the user specify node types (number of
processors per node, processor speed, and memory
requirements). The only tools that aren’t part of the
operating system or aren’t freely available are the So-
laris Forte compiler suite and the Etnus TotalView
debugger (www.etnus.com/TotalView/).

Although the cluster’s setup and maintenance
has taken considerable time and effort, it has
proven to be a useful resource for research on het-
erogeneous and hierarchical computation and for
teaching parallel computing to undergraduates.
Williams undergraduates in parallel processing
and operating systems courses have used it, as have
faculty and students in other courses and depart-
ments on campus.

Parallel Adaptive Software
The cluster’s primary purpose is as a test bed on
which to run parallel adaptive scientific computa-
tion—specifically, solvers for systems of partial dif-
ferential equations using finite-element and related
methods.2–4 These applications typically use
meshes to discretize problem domains. Because a
simulation’s work is usually associated with a mesh’s
entities (elements, surfaces, and nodes), we achieve
parallelism by dividing these entities among several
subdomains and then assigning them to cooperat-
ing processes, a procedure called mesh partitioning.
Figure 2 shows the result of this process for a small
two-dimensional mesh. Adjacent mesh entities pass
messages to exchange information during the so-
lution process, so a mesh partitioner attempts to di-
vide the work evenly among the processes while
minimizing the number of pairs of adjacent entities
assigned to different processes.

The typical problems of interest also use adap-
tive methods to improve time and space efficiency
by concentrating computational effort in parts of
the domain where it is needed to achieve a solution
to a prescribed accuracy. This can take the form of
h-refinement,5 in which a mesh is refined or coars-
ened in regions of low or high accuracy, respec-
tively, or p-refinement,6 in which the method or-
der is increased or decreased in regions of low or

mendoza

128 Mbytes memory
1 CPU @ 300 MHz

1 CPU @ 300 MHz
128 Mbytes memory

nelson

1 CPU @ 300 MHz
128 Mbytes memory

lloyd

1 CPU @ 333 MHz
128 Mbytes memory

stanton

1 Gbytes memory
1 CPU @ 450 MHz

bullpen

2 CPUs @ 450 MHz

512 Mbytes memory

512 Mbytes memory
2 CPUs @ 450 MHz

arroyo

rivera
4 CPUs @ 450 MHz
4 Gbytes memory

wetteland
4 CPUs @ 450 MHz
 4 Gbytes memory

1 Gbytes memory

righetti
2 CPUs @ 450 MHz

512 Mbytes memory

mcdaniel
2 CPUs @ 450 MHz

gossage

512 Mbytes memory
2 CPUs @ 450 MHz

lyle

2 CPUs @ 450 MHz

1 Gbytes memory

farr

N
et

w
or

k
(1

00
-M

bi
t

Et
he

rn
et

)

Figure 1. The Bullpen cluster at Williams College. Yellow indicates the
server (Bullpen), blue shading indicates fast nodes, and brown indicates
slower ones.

42 COMPUTING IN SCIENCE & ENGINEERING

high accuracy, respectively. In either case, adaptive
refinement introduces an imbalance in the parti-
tioning, necessitating a dynamic load-balancing
step (see Figure 3).

Several dynamic load-balancing procedures exist,
including recursive bisection methods, space-filling
curve (SFC) partitioning, spectral and multilevel
graph partitioning, and various diffusive methods.7

Sandia National Laboratories’ Zoltan Parallel Data
Services Toolkit8 provides a common interface to
high-quality implementations of many of these
procedures. Some are implemented directly within
Zoltan, whereas others are accessible through in-
terfaces to existing implementations in third-party
libraries. Zoltan lets application developers switch
partitioners simply by changing a runtime parame-
ter. Its design is data-structure neutral—that is,
Zoltan doesn’t require applications to construct or
use specific data structures. Rather, it operates on
generic “objects” specified by calls to application-
provided callback functions. These callbacks are
simple functions that return to Zoltan information
such as the lists of objects to be partitioned, the co-
ordinates of these objects, and the objects’ topo-
logical connectivity.

Figure 4 shows the interaction between parallel
adaptive application software and a dynamic load-
balancing suite such as Zoltan. The load balancer
partitions the initial mesh, then the application per-
forms its computation steps, periodically evaluating
error estimates and checking against specified error
tolerances. If the error is within the tolerance, the
computation continues. Otherwise, an adaptive
mesh refinement occurs, and the load balancer is
called to compute a new partitioning before the
computation resumes.

We use three software packages for parallel adap-
tive computation in cluster environments. The first
is LOCO,2 which implements in C a parallel adap-
tive discontinuous Galerkin9 solution of the com-
pressible Euler equations. We consider specifically
the perforated shock-tube problem, which models
the 3D unsteady compressible flow in a cylinder
containing a cylindrical vent.10 The second pack-
age, DG,4 also implements a parallel adaptive dis-
continuous Galerkin method, but in C++. DG also
helps solve a wide range of problems, including
Rayleigh-Taylor flow instabilities.4 The third pack-
age is Mitchell’s Parallel Hierarchical Adaptive
MultiLevel software (PHAML),3 which is written
in Fortran 90 and used to compute an adaptive so-
lution of a Laplace equation on the unit square. Al-
though these three packages all take the same ba-
sic approach to partitioning the computational
mesh and assigning the subdomains to the cooper-
ating processes, each has its own underlying data
structures and is capable of solving different prob-
lems. They also use Zoltan’s partitioning and dy-
namic load-balancing procedures.

The different software programs’ designers de-
veloped their products with certain platform opti-
mizations in mind. Fortunately, the acceptance of
the MPI standard has enhanced this software’s
portability. Much of our software was originally de-
signed and developed at Rensselaer Polytechnic In-
stitute for IBM SP systems, and even though it’s
been used in other environments, the basic design
remains from the initial implementations. Ulti-
mately, we want to improve efficiency in cluster en-
vironments while minimizing the modifications
needed to the existing software base.

Resource-Aware Computation
Moving from a tightly coupled supercomputer to a
cluster, or even from one cluster to another, can re-
duce efficiency and introduce load imbalance be-
cause of heterogeneous or nondedicated proces-
sors. Moreover, the relative costs of computation
and communication can change, suggesting a dif-
ferent partitioning strategy. Varying off-processor
data access costs due to nonuniform memory access
or hierarchical network structures can be thought
of as extensions of the memory hierarchy. The
Bullpen cluster had several complications, includ-
ing nonuniform processor speeds, a mixture of
one-, two-, and four-processor nodes, and a slower
network relative to processing speed than previous
target platforms.

Any resource-aware computation must have
knowledge of the computing environment and the
software’s performance characteristics as well as

Subdomain 4

Subdomain 2

Subdomain 1 Subdomain 3

(b)(a)

Figure 2. Mesh partitioning. To achieve parallelism, a mesh partitioner
divides the mesh’s entities into subdomains: (a) the two-dimensional
mesh here is (b) decomposed into four subdomains, with each mesh
element (face) assigned uniquely to a subdomain.

MARCH/APRIL 2005 43

tools to exploit this knowledge. Our approach re-
lies on a combination of a manual specification
and automatic discovery of a computing environ-
ment’s characteristics. To start, we evaluate the
environment’s performance using both a priori
benchmark data and dynamic performance mon-
itoring. We can choose to use such knowledge at
any of several common levels of abstraction. Ap-
plication programmers can make high-level deci-
sions in a resource-aware manner—for example,
with their choice of programming languages, a
parallel programming paradigm, or by adjusting
memory management techniques. One of the
most fundamental choices is the parallelization
paradigm. The single-program multiple-data
(SPMD) with message-passing approach (as op-
posed to, say, threads or a hybrid approach) is of-
ten used because MPI is widely available and
highly portable. However, this choice must be
made early in the development process, and any
change will likely involve significant modification
to application software and support libraries. We
developed our software with the SPMD model us-
ing MPI, so any optimizations must be done
within this model.

Compiler and low-level tool developers (such
as MPI implementers) can make resource-aware
optimizations that benefit a wide range of appli-
cations. This might include support for overlap-
ping between computation and communication,
reordering computation or communication to
take advantage of the target environment’s capa-
bilities,11 or managing communication so that,
given a particular interconnect’s buffer sizes and
other characteristics, we can concatenate small
messages and split larger ones to achieve an opti-
mal message size.12 Happily, these approaches of-
ten don’t require a significant modification to the
applications themselves.

Other tool developers, such as those who design

and implement numerical libraries or partition-
ers/dynamic load balancers, can make their soft-
ware resource-aware and benefit all tool users
without requiring significant modification to the
existing code base. For our cluster, we can make
trade-offs for imbalance versus communication
minimization, adjust optimal partition sizes, or
partition to avoid communication across the slow-
est interfaces.13–16

Dynamic Resource Utilization Model
Our desire to support resource-aware load balanc-
ing led to the development of the Dynamic Re-
source Utilization Model (Drum).13,15,17 Drum
helps determine the computing environment’s char-
acteristics and distills this information into a single
“power” value, readily used by the load-balancing
procedures to produce appropriate partitions.

Application software

!done

!OK

done

OK

Setup/initial
partitioning

Evaluate
error

Rebalance
load

Compute

Refine
mesh

Load-balancing suite

Partitioning and dynamic load balancing
Implementations/support tool

Figure 4. Program flow of a typical parallel adaptive computation. A
load-balancing suite such as Zoltan partitions the initial mesh, and the
application software periodically evaluates error and determines if
adaptive refinement is needed. If so, refinement occurs, and the load-
balancing suite is called to rebalance.

(b)(a) (c)(c)

Figure 3. Mesh adaptivity and dynamic load balancing. The (a) initial balanced mesh partitioning is (b) disturbed by mesh
adaptivity until (c) mesh migration (d) restores balance.

44 COMPUTING IN SCIENCE & ENGINEERING

The most straightforward way to account for
heterogeneous processor speeds is to assign more
of the work to the faster processors because they
would otherwise be idle while the slower ones
complete their work. We can do this with many
existing load-balancing procedures, including
Zoltan’s, by requesting that different portions of
the work be assigned to the partitions. (Zoltan’s
load-balancing procedures take an optional para-
meter that is an array of partition sizes.) On the
Bullpen cluster, for example, we can specify an al-
location of 50 percent more work to the fast (450-
MHz) processors than to slower (300- or 333-
MHz) ones. An application can construct the array
of partition sizes if it can determine these relative
processor speeds.

Drum maintains the information about relative
processor speeds, but processor speed (MHz or
GHz) ratings aren’t sufficient for determining rel-
ative processing powers. Other factors such as
cache, memory, and I/O subsystem performance
play important roles in determining how quickly
a processor can perform a computation. Instead,
we can measure processing power by running
benchmarks; by default, we use Linpack (www.
netlib.org/linpack), but we can use any program,
including the target application itself, to obtain
benchmark ratings. Benchmarks are run a priori
either manually or from within Drum’s graphical
configuration tool; they’re stored in a model of
the computing environment that encapsulates in-

formation about hardware resources, their capa-
bilities, and their interconnection topology in a
tree structure (see Figure 5). The root of the tree
represents the total execution environment, and
the children of the root node are high-level divi-
sions of different networks connected to form
the total execution environment. Subenviron-
ments are recursively divided, according to the
network hierarchy, with the tree leaves being in-
dividual single-processor (SP) nodes or symmet-
ric multiprocessing (SMP) nodes. Computation
nodes at the tree’s leaves have data representing
their relative computing and communication
power. Network nodes, representing routers or
switches, have an aggregate power calculated as
a function of the powers of their children and
network characteristics. Figure 6 shows the ma-
chine model constructed by Drum to represent
the Bullpen cluster.

During runtime initialization, Drum constructs
its model of the computing environment using in-
formation stored in an XML-format configuration
file that describes system properties (such as
benchmark results and the network’s topology).
Drum includes a graphical configuration program
in Java called DrumHead that aids in the con-
struction of these configuration files. We can use
DrumHead to draw a description of a cluster, au-
tomatically run the benchmarks on the cluster
nodes, and then create the configuration file for
Drum to read in when constructing its model. Fig-
ure 7 shows an excerpt from an XML configura-
tion file generated by DrumHead for the Bullpen
cluster configuration; Figure 8 shows a screenshot
of DrumHead.

Drum also provides a mechanism for dynamic
monitoring and performance analysis. Monitoring
agents in Drum are threads that run concurrently
with the user application to collect memory, net-
work, and CPU utilization and availability statis-
tics. Figure 9 shows the interaction among an ap-
plication code, a load-balancing suite (such as
Zoltan), and a resource-monitoring system (such
as Drum) for a typical adaptive computation. The
monitoring system gathers performance statistics
during the application’s execution, and when load
balancing is requested, the load balancer queries
the monitoring system’s performance analysis com-
ponent to determine appropriate parameters and
partition sizes for the rebalancing step.

A computation node’s processing power is based
on its static capabilities (as determined by bench-
marks) and monitored performance. We can eval-
uate the processing power for each process on a
given node based on CPU utilization by the appli-

Router

Router SMP

Router
Communication node

Processing node

SMPSMPSwitch

SP

SP

SP SP SP

SP

SP SP

Router

Figure 5. An example computing environment. The tree constructed by
Drum to represent a heterogeneous cluster has “leaves” of individual single-
processor (SP) nodes or shared-memory multiprocessing (SMP) nodes.

MARCH/APRIL 2005 45

cation process, the fraction of time that CPUs are
idle, and the node’s static benchmark rating. We as-
sume that the application process can potentially
use idle time in the node if it’s assigned more work.
This formulation lets Drum adjust the computa-

tion appropriately while other processes that aren’t
part of the computation use the nodes.

We also want to be able to account for heteroge-
neous, hierarchical, and nondedicated network re-
sources. To do this, agents estimate a node’s com-

benchmark=82.21,ncpu=2

type=MULTIPLE_COMPUTING

type=MULTIPLE_COMPUTING
name=mcdaniel

IP=137.165.8.135
benchmark=82.19,ncpu=2

memory=1024memory=4096

type=MULTIPLE_COMPUTING
name=farr

IP=137.165.8.134
benchmark=82.21,ncpu=2

memory=1024

benchmark=82.55,ncpu=4

type=MULTIPLE_COMPUTING
name=righetti

IP=137.165.8.137
benchmark=82.22,ncpu=2

memory=512

IP=137.165.8.130
name=rivera

type=SINGLE_COMPUTING
name=nelson

IP=137.165.8.139
benchmark=52.12

memory=128

type=MULTIPLE_COMPUTING

type=SINGLE_COMPUTING
name=lloyd

IP=137.165.8.141
benchmark=52.12

memory=128

type=SINGLE_COMPUTING
name=mendoza

IP=137.165.8.140
benchmark=52.43

memory=128

type=SINGLE_COMPUTING
name=stanton

IP=137.165.8.138
benchmark=57.24

memory=128

type=MULTIPLE_COMPUTING
name=wetteland
IP=137.165.8.131

benchmark=82.35,ncpu=4
memory=4096

memory=512
benchmark=82.44,ncpu=2

IP=137.165.8.132

type=MULTIPLE_COMPUTING
name=lyle

IP=137.165.8.133
benchmark=82.21,ncpu=2

memory=512

name=gossage

type=MULTIPLE_COMPUTING
name=arroyo

IP=137.165.8.136

memory=512

IP=127.0.0.1
name=localhost

type=SINGLE_COMPUTING
name=bullpen

IP=137.165.8.129
benchmark=82.2
memory=1024

type=NETWORK

Figure 6. The Bullpen cluster. The tree constructed by Drum to represent the Bullpen cluster includes benchmark ratings that
quantify relative processor speeds, the number of processors in each node, and the amount of physical memory in Mbytes.

<machinemodel>

<node type=“NETWORK” nodenum=“0” name=““ IP=““ isMonitorable=“false”

parent=“-1” imgx=“361.0” imgy=“52.0”>

<lbmethod lbm=“HSFC” KEEP_CUTS=“1”></lbmethod></node>

<node type=“SINGLE_COMPUTING” nodenum=“2” name=“mendoza.cs.williams.edu”

IP=“137.165.8.140” isMonitorable=“true” parent=“0”

benchmark=”52.43” imgx=“50.0” imgy=“138.0”></node>

<node type=“MULTIPLE_COMPUTING” nodenum=“3” name=“rivera.cs.williams.edu”

IP=“137.165.8.130” isMonitorable=“false” parent=“0”

imgx=“74.64 “imgy=“263.0” benchmark=”82.55” numprocs=“4”

<lbmethod lbm=“HSFC” KEEP_CUTS=“1”>

</lbmethod></node>

...

</machinemodel>

Figure 7. An XML configuration file. This excerpt generated by DrumHead for the Bullpen cluster shows the network node, one
single-processor node (mendoza), and one multiprocessing node (rivera).

46 COMPUTING IN SCIENCE & ENGINEERING

munication power based on the communication
traffic at the node—essentially, the average rate of
incoming and outgoing network on each relevant
communication interface. We view a node’s com-
munication power as inversely proportional to this
communication activity factor at that node. Giving
more work to a node with a larger communication
power can exploit the fact that it’s currently less
busy with communication, so it should be able to
perform some extra computation while the other

nodes are in their communication phase. Alter-
nately, if Drum can get a measure of available band-
width (such as when the Network Weather Ser-
vice18 is monitoring the cluster), it can use this data
to determine network powers in place of the com-
munication activity factor.

Drum combines the processing and communi-
cation powers as a weighted sum to get the single
value for each process to request appropriately
sized partitions from the load balancer. Currently,
the weights are chosen manually to reflect an esti-
mate of the relative costs of computation and com-
munication for the application in a particular envi-
ronment, but work is underway to automate this
selection. We’re also investigating other ways to
combine the powers more effectively.

We’ve used Drum in several studies, many of
which are presented elsewhere.13 These studies
have confirmed that Drum’s dynamic monitoring
agents introduce a very small overhead cost and
that Drum-guided partitioning shows significant
benefits over uniformly sized partitions, ap-
proaching, in many instances, the optimal relative
change in execution times. The PHAML studies
compute an adaptive solution of a Laplace equa-
tion on the unit square. We let the solution
progress through 17 adaptive refinement steps, us-
ing Zoltan’s Hilbert SFC procedure to rebalance
after each refinement. After the last refinement,
the mesh has 524,500 nodes, enough to justify the
parallel computation.

Figure 10 shows the runtime of a computation
using PHAML on various combinations of the
Bullpen cluster’s fast and slow processors. In this
example, we vary the weight given to communica-
tion in Drum’s power computation. Blue bars show
running times when Drum isn’t used, and the re-
maining bars show runtimes when Drum computes
partition sizes. Yellow bars indicate times when
Drum considers only processing power and ignores
communication power, green bars show times
when the communication weight is 0.1 (meaning
that communication power determines 10 percent
of the overall node power), and the brown bars
show the communication weight as 0.25. When the
computation uses only the fast nodes, times are
nearly the same with or without Drum, suggesting
very low overhead incurred by Drum’s dynamic
monitoring and power computations. On hetero-
geneous configurations, experiments using Drum’s
resource-aware partitions consistently show im-
provement in execution time compared to those
with uniformly sized partitions. In most cases, we
get the fastest runtimes when ignoring communi-
cation power or when using a weight of only 0.1.

Figure 8. DrumHead in action. In this screenshot, the user edits a
description of the Bullpen cluster.

Application software

!done

!OK

done

OK

Resource-
monitoring

system

Setup/initial
partitioning

Performance
analysis

Static
capabilities

Dynamic
monitoringEvaluate

error
Rebalance

load

Compute

Refine
mesh

Load-balancing suite

Partitioning and dynamic load balancing
Implementations/support tool

Figure 9. An adaptive computation. In a typical interaction between an
adaptive application code and a dynamic load-balancing suite, a
resource-monitoring system (such as Drum) monitors application
performance and system utilization during the application’s execution.
The dynamic load balancer queries the monitoring system to determine
optimal partition sizes.

MARCH/APRIL 2005 47

Studies with other applications and on different
combinations of cluster nodes have shown similar
trends.

We designed Drum to be applicable to dynamic
environments in which cluster nodes might not be
dedicated or their loads could vary during the
course of a Drum-guided computation. To demon-
strate this capability, we ran the same PHAML ex-
ample but with two additional compute-bound
processes (which aren’t part of the PHAML com-
putation and aren’t explicitly monitored by Drum)
running on the last node. Figure 11 shows the re-
sulting running times, measured in seconds.

The set of nodes used is indicated along the x-
axis. The first set, labeled 2:ppn=4, indicates that
two 4-way SMPs are used for a total of eight
processors; both extra processes are added to the
second SMP, effectively slowing the processors in
that node, because the operating system would
have six active processes to schedule among the
four processors. For the set labeled 2:ppn=4+2
slow, we add two of the slower SP nodes; now the
extra processes are both added to one of these
slower nodes, resulting in the one already slower
node having to schedule three active processes on
its single processor. The 2:ppn=4+2:ppn=2 uses
two 4-way SMPs and two 2-way SMPs, with both
extra processes on the same node, which ends up
having four active processes to schedule on its two
processors. Finally, the 2:ppn=4+2:ppn=2+2 slow
case adds two slower SP nodes and again places
both extra processes on the same slow node. In the
figure, brown bars show times when we use uni-
form partitions, and green and yellow bars show
times when Drum creates resource-aware parti-
tions with processing power only (drum=0.0) or
with a 10 percent communication weight
(drum=0.1), respectively.

The computations with uniform partitions slow
down significantly because some processors are
overloaded, yet they continue to get an equal
share of the work. In particular, when we use the
slow nodes, this causes a significant imbalance,
with most processors spending time waiting for
the overloaded node to complete its part of the
computation. In all cases, the Drum-guided par-
titions lead to shorter execution times, even in
cases when the processors are all the same and the
only source of heterogeneity is the external load
detected at runtime.

Hierarchical
Partitioning and Load Balancing
Drum’s resource-aware partitioning support
doesn’t directly deal with hierarchical networks.

Each dynamic load-balancing algorithm has char-
acteristics and requirements that make it appro-

2 fast

700

600

500

400

300

200

100

0
2 fast
+ 2
slow

2 fast
+ 4
slow

4 fast

Processor combination

4 fast
+ 4
slow

4 fast
+ 4
slow

6 fast 6 fast
+ 2
slow

6 fast
+ 4
slow

8 fast
+ 2
slow

8 fast 8 fast
+ 4
slow

Ex
ec

ut
io

n
tim

e

Uniform
Wcomm = 0
Wcomm = 0.1
Wcomm = 0.25

Figure 10. Execution times in seconds. When we use Drum on different
combinations of fast and slow processors, with uniform partition sizes
and resource-aware partition sizes, we also use various values for
Wcomm, the communication weight in Drum’s power formula. In this
example, we run just one application process on each node.

600

500

400

300

200

100

0
2:ppn = 4 2:ppn = 4 + 2

slow

Processor combination

2:ppn = 4 +
2:ppn = 2

2:ppn = 4 +
2:ppn = 2 + 2

slow

Ex
ec

ut
io

n
tim

e

Uniform
Wcomm = 0
Wcomm = 0.1

Figure 11. Execution times in seconds. When we use Drum on different
combinations of processors with two compute-bound external processes
also running on the node with the highest rank, Drum redistributes the
work away from the overloaded node, reducing overall execution time.
Times are shown for uniform partitions and Drum-guided resource-
aware partitions (Wcomm = 0 for processing power only; Wcomm = 0.1
with a communication weight of 0.1 applied). In this example, we run
one application process for each CPU in each node.

48 COMPUTING IN SCIENCE & ENGINEERING

priate for certain applications.7,19,20 For hierar-
chical and heterogeneous systems, different
choices might be more appropriate in different
parts of the parallel environment. Trade-offs in
execution time and partition quality (partition
boundary sizes, interprocess connectivity, strict-
ness of load balance, and so on),20 for example,
could be more important than others in some cir-
cumstances. Consider a cluster of SMP nodes
connected via Ethernet. We could perform a
more costly graph partitioning to partition
among the nodes to minimize communication
across the slow network interface, possibly at the
expense of some computational imbalance, then
a fast geometric algorithm could partition inde-
pendently within each node (see Figure 12).

We developed a hierarchical partitioning and dy-
namic load-balancing system (called HIER)15

within Zoltan to automate the creation of these hi-
erarchical partitions. Although HIER is imple-
mented entirely within Zoltan, Drum’s machine
model can guide it. The DrumHead configuration
program includes the ability to specify load-
balancing procedures and parameters at each net-
work or SMP node. This information is stored in
the computing environment’s configuration file,
and Drum can use it to specify appropriate meth-
ods and parameters for HIER.

The HIER implementation uses a lightweight
intermediate hierarchical balancing structure
(IHBS) and a set of callback functions, which lets
us compute hierarchical partitions automatically
and efficiently with any of the procedures available
in Zoltan without modification. HIER is easy to in-
tegrate into an application because it’s invoked in
the same way as other Zoltan procedures. A hier-
archical balancing step begins by building an IHBS
by using the same callbacks as those used for all
Zoltan procedures. (The IHBS is an augmented

version of the distributed graph structure that
Zoltan builds to use the ParMetis21 and Jostle22

libraries.) HIER then provides its own callback
functions, essentially “tricking” existing Zoltan
procedures into operating on the IHBS at each
level of a hierarchical balancing. After all levels of
the hierarchical balancing have been completed,
Zoltan’s usual migration arrays are constructed and
returned to the application. This lets HIER mi-
grate lightweight objects internally between levels,
not the (larger and more costly) application data.

Our preliminary studies with HIER appear
elsewhere.14 We tested it by using the LOCO
solver on the Bullpen cluster. As we mentioned
earlier, LOCO helps solve the perforated shock-
tube problem, which models the 3D unsteady
compressible flow in a cylinder containing a cylin-
drical vent.10 The initial mesh contains 69,572
tetrahedral elements, so for our experiments, we
stopped the computation after four adaptive steps,
when the mesh contains 254,510 elements.

On Bullpen, the hierarchy we wish to account for
comes from two- and four-processor nodes con-
nected by fast Ethernet. We compared computa-
tion times for the perforated shock-tube computa-
tion in two subsets of the cluster: two 4-processor
nodes and four 2-processor nodes. Recall that all
SMP nodes contain the same-speed processors, so
we use HIER without Drum in this case. We tried
each combination of traditional and hierarchical
procedures and found that although ParMetis
multilevel graph partitioning alone often achieves
the fastest computation times, there’s a benefit to
using hierarchical load balancing when ParMetis is
used for internode partitioning or when inertial re-
cursive bisection (IRB) is used within each node.
For the environment shown in Figure 12, the com-
putation time following the fourth adaptive step
(the computation on the largest mesh) is 571.7 sec-

Each SMP independently
computes 4-way inertial recursive
bisection (IRB) partitioning

CPU0 CPU2CPU1 CPU3CPU0CPU2CPU1 CPU3

Node 0 Node 1

MemoryMemory

Eight processes compute one
2-way ParMetis partitioningNetwork

Figure 12. Hierarchical partitioning. A hierarchical balancing algorithm selection for two 4-way shared-memory multiprocessing
(SMP) nodes connected by a network uses a graph partitioner to minimize the number of elements on the slow network
interface, possibly at the expense of load balance, then a recursive bisection procedure to balance load strictly within each node.

MARCH/APRIL 2005 49

onds for the hierarchical procedure with ParMetis
and IRB, compared with 574.9 seconds for
ParMetis alone, 702.7 seconds for Hilbert SFC
partitioning alone, 1,508.2 seconds for recursive
coordinate bisection alone, and 822.9 seconds for
IRB alone. It’s higher for other hierarchical
combinations of methods. In cases in which the
multilevel graph partitioning can find a good de-
composition without introducing load imbalance,
it provides the fastest time to solution in our stud-
ies to this point. When straightforward multilevel
graph partitioning introduces a significant load im-
balance, hierarchical partitioning can produce a
better decomposition. Here, any imbalance is in-
troduced only when partitioning among nodes
(with ParMetis) but the load within each node is
strictly balanced (by IRB). These are the cases
where we’ve observed the greatest benefit to hier-
archical partitioning. We expect that hierarchical
balancing will be most beneficial when the extreme
hierarchies found in larger clusters and in Grid en-
vironments are considered.

We’re enhancing the Drum li-
brary to run on a variety of
computing environments. Be-
cause some of the monitoring

uses fairly low-level operating system calls, some
work is needed when the library is first installed
on a new type of system. We’re working to pro-
vide interfaces to other tools such as the Net-
work Weather Service18 that might be available
on a particular system, but we don’t intend to re-
quire such packages. We’re also enhancing
Drum to include better ways to combine the
processing and communication performance in-
formation into the single power value, and to in-
clude other information such as memory and
cache availability and performance in the per-
formance analysis. More information about
Drum is available at www.cs.williams.edu/drum,
and the software itself will be available for down-
load at that location after we more thoroughly
test recent extensions.

HIER is part of the Zoltan Toolkit (www.cs.
sandia.gov/Zoltan) and is expected to be available in
a future public release, hopefully later this year.

Acknowledgments
The development of Drum and the hierarchical
partitioning implementation in Zoltan was supported in
part by contract number 15162 with Sandia National
Laboratories, a multiprogram laboratory operation by
Sandia Corporation, a Lockheed Martin Company, for

the US Department of Energy under contract DE-AC04-
94AL85000. The authors thank William Mitchell for his
help with the PHAML software. Karen Devine, Erik
Boman, and Bruce Hendrickson of Sandia National
Laboratories and Luis Gervasio of Rensselaer Polytechnic
Institute contributed to Drum’s design. Williams
undergraduates Laura Effinger-Dean and Arjun Sharma
contributed to Drum as part of the Williams College
Summer Science Research program.

References
1. W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel

Programming with the Message-Passing Interface, MIT Press, 1999.

2. J.E. Flaherty et al., “Software for the Parallel Adaptive Solution of
Conservation Laws by Discontinuous Galerkin Methods,” Dis-
continous Galerkin Methods Theory, Computation and Applications,
B. Cockburn, G. Karniadakis, and S.-W. Shu, eds., Springer, pp.
113–124.

3. W.F. Mitchell, “The Design of a Parallel Adaptive Multilevel Code
in Fortran 90,” Proc. Int’l Conf. Computational Science, LNCS
2331, Springer, 2002, pp. 672–680.

4. J.-F. Remacle, J. Flaherty, and M. Shephard, “An Adaptive Dis-
continuous Galerkin Technique with an Orthogonal Basis Applied
to Compressible Flow Problems,” SIAM Rev., vol. 45, no. 1, 2003,
pp. 53–72.

5. M.S. Shephard et al., “Parallel Automated Adaptive Procedures
for Unstructured Meshes,” Parallel Computation in CFD, no. R-
807, 1995, pp. 6.1–6.49.

6. S. Adjerid et al., “High-Order Adaptive Methods or Parabolic Sys-
tems,” Physica-D, vol. 60, 1992, pp. 94–111.

7. J.D. Teresco, K.D. Devine, and J.E. Flaherty, “Partitioning and Dy-
namic Load Balancing for the Numerical Solution of Partial Dif-
ferential Equations,” Numerical Solution of Partial Differential Equa-
tions on Parallel Computers, A.M. Bruaset, P. Bjørstad, and A.
Tveito, eds., Springer-Verlag, 2005.

8. K. Devine et al., “Zoltan Data Management Services for Parallel
Dynamic Applications,” Computing in Science & Eng., vol. 4, no.
2, 2002, pp. 90–97.

9. R. Biswas, K.D. Devine, and J.E. Flaherty, “Parallel, Adaptive Fi-
nite Element Methods for Conservation Laws,” Applied Numeri-
cal Mathematics, vol. 14, Apr. 1994, pp. 255–283.

10. J.E. Flaherty et al., “Distributed Octree Data Structures and Local
Refinement Method for the Parallel Solution of Three-Dimen-
sional Conservation Laws,” IMA Volumes in Mathematics and Its
Applications, M. Bern, J. Flaherty, and M. Luskin, eds., Springer,
1999, pp. 113–134.

11. N.T. Karonis, B. Toonen, and I. Foster, “MPICH-G2: A Grid-En-
abled Implementation of the Message Passing Interface,” J. Par-
allel and Distributed Computing, vol. 63, no. 5, 2003, pp.
551–563.

12. R.M. Loy, AUTOPACK version 1.2, tech. memorandum ANL/MCS-
TM-241, Mathemetics and Computer Science Division, Argonne
National Lab., 2000.

13. J. Faik et al., A Model for Resource-Aware Load Balancing on Het-
erogeneous Clusters, tech. report CS-04-03, Williams College,
Dept. of Computer Science, 2004.

14. S. Sinha and M. Parashar, “Adaptive System Partitioning of AMR
Applications on Heterogeneous Clusters,” Cluster Computing, vol.
5, no. 4, 2002, pp. 343–352.

15. J.D. Teresco, J. Faik, and J.E. Flaherty, Hierarchical Partitioning and
Dynamic Load Balancing for Scientific Computation, tech. report
CS-04-04, Williams College, Dept. of Computer Science, 2004.

16. C. Walshaw and M. Cross, “Multilevel Mesh Partitioning for Het-
erogeneous Communication Networks,” Future Generation Com-

putational Systems, vol. 17, no. 5, 2001, pp. 601–623.

17. K.D. Devine et al., “New Challenges in Dynamic Load Balanc-
ing,” Applied Numerical Mathematics, vol. 52, nos. 2 and 3, 2005,
pp. 133–152.

18. R. Wolski, N.T. Spring, and J. Hayes, “The Network Weather Ser-
vice: A Distributed Resource Performance Forecasting Service for
Metacomputing,” Future Generation Computational Systems, vol.
15, no. 6, 1999, pp. 757–768.

19. E. Boman et al., Parallel Repartitioning for Optimal Solver Perfor-
mance, tech. report SAND2004-0365, Sandia Nat’l Labs, Feb.
2004.

20. J.D. Teresco and L.P. Ungar, A Comparison of Zoltan Dynamic Load
Balancers for Adaptive Computation, tech. report CS-03-02,
Williams College, Dept. of Computer Science, 2003.

21. G. Karypis and V. Kumar, “Parallel Multilevel k-Way Partitioning
Scheme for Irregular Graphs,” SIAM Rev., vol. 41, no. 2, 1999,
pp. 278–300.

22. C. Walshaw and M. Cross, “Parallel Optimisation Algorithms for
Multilevel Mesh Partitioning,” Parallel Computing, vol. 26, no. 12,
2000, pp. 1635–1660.

James D. Teresco is an assistant professor in the De-
partment of Computer Science at Williams College. His
technical interests include parallel scientific computa-
tion and dynamic load balancing for adaptive compu-
tation in heterogeneous, hierarchical, and Grid com-
putational environments. Teresco has a PhD in

computer science from Rensselaer Polytechnic Institute.
He is a member of the ACM, SIAM, and the IEEE Com-
puter Society. Contact him at terescoj@cs.williams.edu.

Jamal Faik is a PhD candidate in the Department of
Computer Science at Rensselaer Polytechnic Institute.
His technical interests include parallel and distributed
processing, load balancing, interconnection networks,
and workload management. Faik has an MS in com-
puter science from Al-Akhawayn University. He is a
member of SIAM and the IEEE. Contact him at
faikj@cs.rpi.edu.

Joseph E. Flaherty is Dean of Science and the Amos
Eaton Professor of Computer Science at Rensselaer
Polytechnic Institute. His technical interests include nu-
merical analysis and the solution of ordinary and par-
tial differential equations with special emphasis on sin-
gularly perturbed systems and problems in solid and
fluid mechanics. Flaherty has a PhD in applied me-
chanics from the Polytechnic Institute of Brooklyn. He
is a member of the ACM, the AMS, the IEEE Computer
Society, IMACS, the Mathematical Association of Amer-
ica, and SIAM. Contact him at flaherje@cs.rpi.edu.

EXECUTIVE COMMITTEE
President:
GERALD L. ENGEL*
Computer Science & Engineering
Univ. of Connecticut, Stamford
1 University Place
Stamford, CT 06901-2315
Phone: +1 203 251 8431
Fax: +1 203 251 8592
g.engel@computer.org
President-Elect: DEBORAH M. COOPER*
Past President: CARL K. CHANG*
VP, Educational Activities: MURALI VARANASI†
VP, Electronic Products and Services:
JAMES W. MOORE (2ND VP)*
VP, Conferences and Tutorials:
YERVANT ZORIAN†
VP, Chapters Activities:
CHRISTINA M. SCHOBER*
VP, Publications: MICHAEL R. WILLIAMS (1ST VP)*
VP, Standards Activities: SUSAN K. (KATHY) LAND*
VP, Technical Activities: STEPHANIE M. WHITE†
Secretary: STEPHEN B. SEIDMAN*
Treasurer: RANGACHAR KASTURI†
2004–2005 IEEE Division V Director:
GENE F. HOFFNAGLE†
2005–2006 IEEE Division VIII Director:
STEPHEN L. DIAMOND†
2005 IEEE Division V Director-Elect:
OSCAR N. GARCIA*
Computer Editor in Chief: DORIS L. CARVER†
Executive Director: DAVID W. HENNAGE†
* voting member of the Board of Governors
† nonvoting member of the Board of Governors

E X E C U T I V E S T A F F
Executive Director: DAVID W. HENNAGE
Assoc. Executive Director: ANNE MARIE KELLY
Publisher: ANGELA BURGESS
Assistant Publisher: DICK PRICE
Director, Administration: VIOLET S. DOAN
Director, Information Technology & Services:
ROBERT CARE
Director, Business & Product Development:
PETER TURNER

PURPOSE The IEEE Computer Society is the
world’s largest association of computing pro-
fessionals, and is the leading provider of tech-
nical information in the field.

MEMBERSHIP Members receive the month-
ly magazine Computer, discounts, and opportu-
nities to serve (all activities are led by volunteer
members). Membership is open to all IEEE
members, affiliate society members, and others
interested in the computer field.

COMPUTER SOCIETY WEB SITE
The IEEE Computer Society’s Web site, at
www.computer.org, offers information and
samples from the society’s publications and con-
ferences, as well as a broad range of information
about technical committees, standards, student
activities, and more.

BOARD OF GOVERNORS
Term Expiring 2005: Oscar N. Garcia,
Mark A. Grant, Michel Israel, Rohit Kapur,
Stephen B. Seidman, Kathleen M. Swigger, Makoto
Takizawa
Term Expiring 2006: Mark Christensen,
Alan Clements, Annie Combelles, Ann Q. Gates,
James D. Isaak, Susan A. Mengel, Bill N. Schilit
Term Expiring 2007: Jean M. Bacon, George V.
Cybenko, Richard A. Kemmerer, Susan K. (Kathy)
Land, Itaru Mimura, Brian M. O’Connell, Christina
M. Schober
Next Board Meeting: 11 Mar. 2005, Portland, OR

IEEE OFFICERS
President: W. CLEON ANDERSON
President-Elect: MICHAEL R. LIGHTNER
Past President: ARTHUR W. WINSTON
Executive Director: TBD
Secretary: MOHAMED EL-HAWARY
Treasurer: JOSEPH V. LILLIE
VP, Educational Activities: MOSHE KAM
VP, Pub. Services & Products: LEAH H. JAMIESON
VP, Regional Activities: MARC T. APTER
VP, Standards Association: JAMES T. CARLO
VP, Technical Activities: RALPH W. WYNDRUM JR.
IEEE Division V Director: GENE F. HOFFNAGLE
IEEE Division VIII Director: STEPHEN L. DIAMOND
President, IEEE-USA: GERARD A. ALPHONSE

COMPUTER SOCIETY OFFICES
Headquarters Office

1730 Massachusetts Ave. NW

Washington, DC 20036-1992

Phone: +1 202 371 0101

Fax: +1 202 728 9614

E-mail: hq.ofc@computer.org

Publications Office
10662 Los Vaqueros Cir., PO Box 3014
Los Alamitos, CA 90720-1314
Phone:+1 714 8218380
E-mail: help@computer.org
Membership and Publication Orders:
Phone: +1 800 272 6657
Fax: +1 714 821 4641
E-mail: help@computer.org

Asia/Pacific Office
Watanabe Building
1-4-2 Minami-Aoyama,Minato-ku
Tokyo107-0062, Japan
Phone: +81 3 3408 3118
Fax: +81 3 3408 3553
E-mail: tokyo.ofc@computer.org

