
Abstract

Repl i ca ted Di s t r ibuted P r o g r a m s

Eric C. Cooper

Computer Science Division--EECS
University of California

Berkeley, California 94720

A troupe is a set of replicas of a module, executing on

machines that have independent failure modes. Troupes are

the building blocks of replicated distributed programs and

the key to achieving high availability. Individual members

of a troupe do not communicate among themselves, and a x e

unaware of one another's existence; this property is what

distinguishes troupes from other software architectures for

fault tolerance.

Replicated procedure call is introduced to handle the

many-to-many pattern of conmmnication between troupes.

The semantics of replicated procedure call can be summa-

rized as exactly-once execution at all replicas.

An implementation of troupes and replicated procedure

call is described, and its performance is measured. The

problem of concurrency control for troupes is examined,

and a commit protocol for replicated atomic transactions

is presented. Binding and reconfiguration mechanisms for

replicated distributed programs are described.

1 Introduction

This paper addresses the problem of constructing highly

available distributed programs. (The adjectives highly
available, fault-tolerant, and nonstop will be used synony-

mously to describe a system that continues to operate de-

spite failures of some of its components.) The goal is to

construct programs that automatically tolerate crashes of

the underlying hardware. The problems posed by incorrect

software or by hardware failures other than crashes are only

addressed briefly.

The key to tolerating component failures is replication;

Author's present address: Department of Computer Science, Carnegie..
Mellon University, Pittsburgh, Pennsylvania 15213.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1985 ACM-0-89791- 174- 1- 12/85-0063 $00.75

this approach was proposed by yon Neumann thirty years

ago [29]. The idea is to replicate each component to such

a degree that the probability of all replicas failing becomes

acceptably small. The advent of inexpensive distributed

computing systems (consisting of computers connected to-

gether by a network) makes replication an attractive and

practical means of tolerating hardware crashes.

The ability to vary replication on a per-module basis is

desirable because it allows software systems to adapt grace-

fully to changing characteristics of the underlying hard-

ware. Even if perfectly reliable hardware were possible,

there would still be periods during which hardware would

be unavailable: scheduled down-time for preventive main-

tenance or reconfiguration, for example. The mechanisms

described in this paper permit distributed programs to be

reconfigured, while they axe executing, so that their services

remain available during such periods.

Incorporating replication on a per-module basis is more

flexible than previous approaches, such as providing fault

tolerance in hardware or writing it into the application

software. The first method is too expensive because it uses

reliable hardware everywhere, not just for critical modules.

The second approach burdens the programmer with the

complexity of a non-transparent mechanism.

The fundamental mechanisms presented in this paper

are:

• troupes, or replicated modules, and

• replicated procedure call, a generalization of remote

procedure call for many-to-many communication be-

tween troupes.

The following important property is what distinguishes

troupes and replicated procedure call from previous soft-

ware architectures for fault tolerance: individual members

of a troupe do not communicate among themselves, and axe

unaware of one another's existence. This property is also

what gives these mechanisms their flexibility and power:

since each troupe member behaves as if it had no replicas,

the degree of replication of a. troupe can be varied dynam-

ically, with no recompilation or relinking.

63

Previous papers presented the author's initial ideas

about replicated procedure calls [10] and a description of

the Circus system [11]. This paper presents a portion of

the author's Ph.D. dissertation [12].

2 B a c k g r o u n d a n d R e l a t e d W o r k

The idea of achieving fault tolerance by using replica-

tion to mask the failures of individual components dates

back to yon Neumann [29]. The two architectures for fault-

tolerant software are primary-standby systems and modular
redundancy. In a primary-standby scheme, only a single

component functions normally; the remaining replicas are

on standby in case the primary fails. With modular redun-

dancy, each component performs the same function; there

is some form of voting on the outputs to mask failures.

A classic primary-standby architecture is the method of

process pairs in Tandem's Guardian operating system [1].

The processes in a process pair execute on different proces-

sors. One process is designated as the primary, the other as

the standby. Before each request is processed, the primary

sends information about its internal state to the standby,

in the form of a checkpoint. The checkpoint enables the

standby to complete the request if the primary fails.

The Auragen architecture combines a primary-standby

scheme with automatic logging of messages [6]. If a primary

crashes, the log is used to replay the appropriate messages

to a standby.
The Isis project at Cornell uses a primary-standby

architecture for replicated objects [3]. In each interaction
with a replicated object in Isis, one replica plays the role

of coordinator, and only it performs the operation. The

coordinator then uses a two-phase commit protocol to

update the other replicas.
The mechanisms used in primary-standby schemes to

allow a standby to take over after the primary crashes are

isomorphic to crash recovery mechanisms based on stable
storage. Under this isomorphism, a standby corresponds
to stable storage while the primary continues to function,
but assumes the role of the recovering machine when the

primary fails.
Triple-modular and N-modular redundancy have long

been familiar to designers of fault-tolerant computer sys-
tems [22]. Early applications of modular redundancy to

software fault tolerance include the SIFT system [30] and

the PRIME system [14].
Replication is also the basis of methods proposed by

Lamport [21] and Schneider [27] for constructing dis-

tributed systems that meet given reliability requirements.

Gifford's weighted voting scheme uses quorums and

version numbers to provide replication transparency for

files [15]. Herlihy applied Gifford's quorums to replicated

abstract data types [19] by taking advantage of the partic-

ular semantics of the data types.

Gunningberg's design of a fault-tolerant message proto-

col based on triple-modular redundancy [17] is similar to,

but less general than, the replicated mechanisms presented

in this paper.

A methodology known as N-version programming uses

multiple implementations of the same module specification

to mask software faults [7]. This technique can be used in

conjunction with the replicated modules proposed in the

present work by using independently implemented modules

instead of exact replicas, thereby increasing software as

well as hardware fault tolerance. The problems posed

by incorrect software are not otherwise addressed in this

research.

The protocols implemented in the course of this re-

search began as an attempt to transfer the Courier remote

procedure call protocol [32] and the Xerox PARC RPC

ideas [5,23] to an environment based on the UNIX* op-

erating system [20] and DARPA Internet protocols [25,26].

Sun Microsystems has proposed a remote procedure call

protocol that includes a facility for broadcast RPC [28],

and Cheriton and Zwaenepoel have studied one-to-many
communication in the context of the V system [8]. These

types of communication are equivalent to a special case of

replicated procedure calls: the one-to-many calls discussed

in Section 8.

3 A M o d e l o f R e p l i c a t e d D i s t r i b u t e d P r o -

g r a m s

3.1 M o d u l e s

A module packages together the procedures and state

information needed to implement a particular abstraction,

and separates the interface to that abstraction from its
implementation. Modules are used to express the static

structure of a program when it is written.

This paper discusses troupes and replicated procedure

call in the context of modules, but these concepts apply

equally well to instances of abstract data types.

"UNIX is a trademark of Bell Laboratories.

64

3.2 Threads

A thread of control is an abstraction intended to cap-

ture the notion of an active agent in a computation. A

program begins execution as a single thread of control; ad-

ditional threads may be created and destroyed either ex-

plicitly by means of fork, j o i n , and hal t primitives [9],

or implicitly during the execution of a cobegin . . . eoend

statement [13].

Each thread is associated with a unique identifier, called

a thread ID, that distinguishes it from all other threads.

A particular thread runs in exactly one module at a

given time, but any number of threads may be running

in the same module concurrently. Threads move among

nmdules by making calls to, and returning from, procedures

in different modules. The control flow of a thread obeys a

last-in first-out (or stack) discipline.

4 I m p l e m e n t i n g D i s t r i b u t e d M o d u l e s a n d

T h r e a d s

No mention has been made of machine boundaries as

part of the semantics of modules and threads. A distributed

implementation of these abstractions must provide loca-

tion transparency. A programmer need not know the even-

tual configuration of a program when it is being written;

the fact that a program is distributed is invisible at the

progranaming-in-the-small level.

A module in a distributed program can be implemented

by a ~erver whose address space contains the module's pro-

cedures and data. A distributed thread can be implemented

by using remote procedure calls to transfer control from

server to server, and viewing such a sequence of remote

procedure calls as a single thread of control.

5 A d d i n g R e p l i c a t i o n

The distributed modules and threads of Section 4 pro-

vide location transparency in the absence of failures. As

long as the underlying hardware works correctly, the pro-

grammer need not be aware of machine boundaries.

Processor and network failures, however, give rise to

new classes of partial failures of the distributed program

as a whole. Partial failures violate transparency, since they

can never occur in a single-machine program. These failures

must therefore be nlasked if transparency is to be preserved.

The key to masking failures is replication, but it intro-

duces another transparency requirement: replication trans-

parency.

5.1 Troupes

The approach taken in this research is to introduce

replication into distributed programs at the module level.

A replicated module is called a troupe, and the replicas are

called troupe members.

Troupe members are assmned to execute on fail-stop

processors [27]. if the processors were not fail-stop, troupe

members would have to reach byzantine agreement about

the contents of incoming messages, because a malfunction-

ing processor might send different messages to different

troupe members. Byzantine agreement could be added to

the algorithms presented in this paper, but would result in

a significant loss of performance. There is no evidence that

failures other than crashes occur often enough to warrant

this increased expense.

A deterministic troupe is a set of replicas of a deter-

ministic module. Section 5.2 shows that the assumption

that all troupes are deterministic is sufficient to guarantee

replication transparency.
In contrast to the work on replicated abstract data types

by Herlihy [19], troupes are a simple approach to achieving

high availability: no knowledge of the semantics of a module

is required, other than the fact that it is deterministic.

Interactions between troupes occur by means of repli-

cated procedure calls in which all troupe members play

identical roles. Furthermore, troupe members do not know

of one another's existence; there is no communication
among the members of a troupe. It follows that each troupe

member behaves exactly as if it had no replicas. In this

sense, troupes contrast" sharply with the replicated objects

in Isis [3], although the goal of high availability is the same.

In replicated distributed programs, crash recovery mech-

anisms are required only for total failures, in which every

troupe member crashes. The probability of total failures

can be made arbitrarily small by choosing an appropriate

degree of replication. Replication cam therefore be used as

a43 alternative to crash recovery mechanisms such as stable

storage.

5.2 Repl i ca t ion Transparency and Troupe Consis -

t ency

A troupe is consistent if all its members are in the same

state. If a troupe is consistent, then its clients need not

know that it is replicated. Troupe consistency is therefore

a sufficient condition for replication transparency.

65

Troupe consistency is a strong requirement, but it can-

not be weakened without knowledge of the semantics of

the objects being replicated. In the absence of application-

specific knowledge, troupe consistency is both necessary and
sufficient for replication transparency. This is one area in

which troupes differ from other replication schemes. Gif-

ford's weighted voting for replicated files, for example, uses

quorums and version numbers to mask the fact that not all

replicas are up to date [15], and Herlihy has extended Gif-

ford's approach to abstract data types [19]. Troupe consis-

tency is not necessary in these schemes, because they take

advantage of the semantics of the objects being replicated.

In a program constructed from troupes, an inter-module

procedure call results in a replicated procedure call from a

client troupe to a server troupe. One of the distinguishing

characteristics of troupes is that their members do not

communicate among themselves, and do not even know

of one another's existence. Consequently, when a client

troupe makes a replicated call to a server troupe, each

server troupe member must perform the procedure, just

as if the server had no replicas.

The execution of a procedure can be viewed as a tree of

procedure invocations. When a deterministic server troupe

is called upon to execute a procedure, the invocation trees

rooted at each troupe member are identical: the members

of the server troupe make the same procedure calls and

returns, with the same arguments and results, in the same

order. It follows that if there is only a single thread of

control in a globally deterministic replicated distributed

program, and if all troupes are initially consistent, then

all troupes remain consistent.

Additional mechanisms axe required if there is more

than one thread of control, because concurrent calls to the

same server troupe may leave the members of the server

troupe in inconsistent states. The problem of maintaining

troupe consistency in the presence of concurrently execut-

ing threads is addressed in Section 11.

6 R e p l i c a t e d P r o c e d u r e C a l l s

The goal of remote procedure call [23] is to allow dis-

tributed programs to be written in the same style as con-

ventional programs for centralized computers. When mod-

ules are replaced by troupes, the natural generalization

of remote procedure call is replicated procedure call. The

troupe consistency requirement identified in Section 5.2 de-

termines the semantics of replicated procedure call: when a

client troupe makes a replicated procedure call to a server

troupe, each member of the server troupe performs the re-

quested procedure exactly once, and each member of the

client troupe receives all the results. These semantics can

be summarized as ezactly-once execution at all troupe mem-

bers. Figure 1 shows a replicated procedure call from a

client troupe to a server troupe. A replicated distributed

program constructed in this way will continue to function

as long as at least one member of each troupe survives.

To guarantee replication transparency, troupe members

are required to behave deterministically: two replicas in

the same state must execute the same procedure in the

same way. In particular, they must call the same remote

procedures in the same order, produce the same side effects,

and return the same results.

7 T h e C i r c u s P a i r e d M e s s a g e P r o t o c o l

A paired message protocol is a distillation of the com-

munication requirements of conventional remote procedure

call protocols [5,23,32]. It provides

• reliably delivered, variable-length, paired messages

(e.g. call and re tu rn) , and

• call sequence numbers that uniquely identify each

pair of messages among all those exchanged by a

given pair of processes.

The paired message protocol is responsible for segment-

ing messages that are larger than a single datagram (in

Client Server

Figure 1: Replicated procedure call

66

order to permit variable-length messages), and for retrans-

mission and acknowledgment of message segments to en-

sure reliable delivery. The Circus paired message protocol

is based on the RPC protocol of Birrell and Nelson [5]. Cir-

cus uses UDP, the DARPA User Datagram Protocol [25].

The Circus protocol is connect~onless and geared towards

the fast exchange of short messages.

The difference between Birrell and Nelson's RPC proto-

col and the Circus protocol lies in the treatment of multiple-

segment call and return messages. The Xerox PARC pro-

tocol requires an explicit acknowledgment of every segment

but the last. This doubles the number of segments sent, but

since there is never more than one unacknowledged segment

in transit, only One segment's worth of buffer space is re-

quired per connection.

The Circus protocol allowsmultiple segments to be sent

before one is acknowledged, which reduces the number of

segments sent to the minimum, but requires an unbounded

amount of buffering. An alternate implementation of the

Circus protocol could easily bound the amount of buffer

space required for a connection by dropping all segments

outside a fixed allocation window, and simply requiring the

sender to retransmit them. These retransmissions could be

reduced by informing the sender of the size of the allocation

window; this is precisely what is done in the flow-control

mechanisms of reliable stream protocols such as TCP [26],

but since single-segment messages are expected to occur

most often in remote procedure calls, these optimizations

are probably not worthwhile.

The paired message abstraction can be provided on top

of reliable stream protocols like TCP 126], but implemen-

tations of these protocols are typically tuned for bulk data

transfers. The Berkeley 4.2BSD implementation of TCP,

for example, does not even begin to transfer data until

the connection has been established by a three-way hand-

shake, although this restriction is not inherent in the pro-

tocol specification. Since call and return messages are

usually short, a specially designed, datagram-based paired

message protocol like Circus can complete a message ex-

change using the same number of packets that a stream

protocol requires merely to establish a connection. Nelson

makes this same point, with performance measurements to

support hisclalm, in his dissertation [23].

The Circus protocol is currently implemented in user

code under Berkeley 4.2BSD [20]. Asynchronous events,

specifically the arrival of datagrams and the expiration of

timers, must be handled in parallel with the activity of the

client or server. For instance, a probe may arrive while a

server is performing a procedure. If multiple processes shar-

ing the same address space were available under Berkeley

4.2BSD, a separate process could be devoted to listening

for incoming segments and handling timers. Since this is

not possible, these events are modeled as software inter-

rupts using the signal mechanism, the interrupt-driven I/O

facility, and the interval timer [20]. Protection of critical

regions is achieved by using system calls that mask and

enable interrupts.

A project is under way at Berkeley to produce an

hnplementation of a remote procedure call protocol for the

Berkeley UNIX kernel [31]. The initial specification was an

unreplicated version of the Circus protocol, but the desire

to limit the required amount of kernel buffer space led to a

protocol similar to Birrell and Nelson's.

The unifying comnmnication abstraction provided by

the Berkeley 4.2BSD kernel is the socket [20], an endpoint

for process-to-process communication. Each socket has a

protocol type that is used:to dispatch generic operations

like read and write to the appropriate protocol implemen-

tation. The interface to the kernel RPC protocol is by

means of a new protocol type (RPC) with two subtypes:

client and server. The implementation enforces write-read

alternation for client sockets and read-write alternation for

server sockets.

8 Implement ing Repl icated Procedure Calls

Replicated procedure calls are implemented on top of

the paired message layer. There are two subalgorithms

involved in a many-to-many call from a client troupe to a

server troupe: each client troupe member performs a one-

to-many call to the entire server troupe, and each server

troupe member handles a many-to-one call from the entire

client troupe.

The algorithms for these two cases are described in the

following sections. In Circus, these algorithms are imple-

mented as part of the run-time system that is linked with

each user's program. The run-time system is called by stub

procedures that axe produced automatically from a module

interface; the replicated procedure call algorithms them-

selves are thus hidden from the programmer. When the

algorithms below refer to various client and server actions,

the reader should bear in mind that those actions are per-

formed by the protocol routines in the corresponding run-

time systems, rather than by the portions of the program

written by the user.

8.1 One-To-Many Calls

The client half of the replicated procedure call algorithm

performs a o n e - t o - m a n y call as shown in Figure 2. The pur-

pose of the one-to-many call algorithm is to guarantee that

the procedure is executed at each server troupe member.

The same call message is sent to each server troupe

member, with the same call number at the paired message

6'7

Clieat Server

@

Client

G

J

Serwr

Figure 2: A one-to-many call Figure 3: A many-to-one call

level. The client then awaits the arrival of the r e t u r n

messages from the members of the server troupe.

In the Circus replicated procedure call implementation,

the client will normally wait for ai] the r e t u r n messages

from the server troupe before proceeding. The client

receives notification if any server troupe member crashes,

so it can proceed with the r e t u r n messages from those that

are still available. The return from a replicated procedure

call is thus a synchronization point, after which each client

troupe member knows that all server troupe members

have performed the procedure, and each server troupe

member knows that all client troupe members have received

the result. Alternatives to this strategy are discussed in

Section 8.4 below.

8.2 M a n y - T o - O n e Calls

Now consider what occurs at a single server when a

client troupe makes a replicated call to it. The server will

receive call messages from each client troupe member, as

shown in Figure 3; this is called a many-to-one call. The

semantics of replicated procedure call require the server to

execute the procedure only once and return the results to all

the client troupe members. The many-to-one call algorithm

must therefore solve the following two problems:

1. The server must be able to distinguish unrelated

call messages from ones that are part of the same

replicated call.

2. When one call message of a replicated call arrives,

the server must be able to determine how many

other call messages to expect as part of the same

replicated call.

A complete description of the algorithm may be found in

the author's dissertation [12].

In Circus, the server waits for call messages from all

available client troupe "members before proceeding. Alter-

natives to this strategy are discussed in Section 8.4 below.

8.3 M a n y - T o - M a n y Cal ls

In general, a replicated procedure call is a many-to-
many call from a client troupe to a server troupe, as shown

in Figure 1. A many-to-many call involves the following

Steps:

1. Each client troupe member sends a call message to

each server troupe member.

2. Each server troupe member receives a call message

from each client troupe member.

3. Each server troupe member performs the requested

procedure.

68

4. Each server troupe member sends a r e t u r n message

to each client troupe member.

5. Each client troupe member receives a r e t u r n mes-

sage from each server troupe member.

The key to the many-to-many case is the observation

that steps 1 and 5 are the same steps that an unreplicated

client performs when making a one-to-many call to a server

troupe, and steps 2, 3, and 4 are the same steps that an

unreplicated server performs when handling a many-to-one

call from a client troupe. The general case therefore factors

into the two special cases already described; no additional

algorithms are required for the general case. Each client

troupe member executes the one-to-many algorithm (as if

it were an unreplicated client calling the server troupe),

and each server troupe member executes the many-to-one

algorithm (as if it were an unreplicated server handling an

incoming call from the client troupe).

Observe also that there is never any communication be-

tween members of the same troupe in the five steps listed

above; communication occurs only between members of dif-

ferent troupes. This means that nowhere in a troupe mem-

ber is there any information about other members of its own

troupe, or whether it is replicated at all. Neither the proto-

col routines in the run-time system nor the stub procedures

produced by the stub compiler use such information.

Finally, notice that messages are sent only in steps

1 and 4, and in both these steps, the message is sent to

an entire troupe. Thus, ca l l messages are sent to the

entire server troupe, and r e t u r n messages are sent to the

entire client troupe. These steps obviously correspond to

multicast operations.

A multicast implementation would make a dramatic dif-

ference in the efficiency of the replicated procedure call pro-

tocol. Suppose that there are rn client t roupe members and

n server troupe members. Point-to-point communication

requires a total of m n messages to be sent. In contrast, a

multicast implementation requires only m % n messages to

be sent. The Berkeley 4.2BSD networking primitives used

by Circus do not currently allow access to the multicast

capabilities of the Ethernet.

8.4 Wait ing for Messages to Arrive

A client making a one-to-many call requires a single

result, but it receives a r e t u r n message from each server

t roupe member. Similarly, a server handling a many-to-

one call must perform the requested procedure once, but it

receives a cal l message from each client t roupe member.

Since troupes are assumed to be deterministic, all the

messages in these sets will be identical. When should

computat ion proceed: as soon as the first message arrive~,

or only after the entire set has arrived?

Waiting for all messages to arrive and checking whether

they axe identical is analogous to providing error de tec t ion

as well as transparent error correction. Any inconsistency

among the messages is detected, but the execution t ime

of the replicated program as a whole is determined by the

slowest member of each troupe. This u n a n i m o u s approach

is used by default in the Circus system.

If one is willing ~ to forfeit such error detection, then a

f i r s t - come approach can be used, in which computat ion

proceeds as soon as the first message in each set arrives.

In this case, the execution time of the program as a whole

is determined by the fastest member of each troupe.

The first-come approach requires only a simple change

to the one-to-many call protocol. The client can use the

call sequence number provided by the paired message pro-

tocol to discard r e t u r n messages from slow server troupe

members.

The many-to-one call protocol becomes more compli-

cated; in this respect, the first-come approach destroys the

symmetry between the client and server halves of the proto-

col. The server must be allowed to start performing a pro-

cedure as soon as the first ca l l message from a client t roupe

member arrives. When a cal l message for the same proce-

dure arrives from another member of that client troupe, the

server cannot execute the procedure again, because that

would violate the exactly-once execution property. The
server must therefore retain the r e t u r n message until the

corresponding cal l messages from all other members of the

client t roupe have arrived. Whenever such a ca l l message

arrives, the r e t u r n message is retransmitted. Execution

of the procedure thus appears instantaneous to the slow

client t roupe members, since the r e t u r n message is ready

and waltingl

Note that once a client t roupe member has received the

results of its call, it is free to go ahead and make more

calls. Therefore, as the slower members of the client t roupe

fall further and further behind the faster ones, the server

must buffer more and more r e t u r n messages. When a

cal l message arrives from one of the slower client t roupe

members, the server must be able to find its earlier response

from among the buffered r e t u r n messages, in order to

retransmit it. The call sequence number associated with

each message by the paired message protocol suffices for

this purpose, because of the assumption that troupes are

deterministic.

A bet ter first-come scheme can be implemented by

buffering messages at the client rather than the server. In

this case, the server broadcasts r e t u r n messages to the

entire client t roupe in response to the first ca l l message.

A client t roupe member may receive a r e t u r n message for

a ca l l message that has not yet been sent; this return

69

message must be retained until the client troupe member

is ready to send the corresponding call message.

This approach is preferable to buffering messages at the

server, for the following reasons:

I. the burden of buffering return messages and pairing

them with the corresponding late call messages is

placed on the client, rather than on a shared and

potentially heavily-loaded server;

2. the server can use broadcast rather than point-to-

point communication; and

3. no communication is required by a slow client once

it is ready to send a call message, since the corre-

sponding r e t u r n message has already arrived.

Majority voting schemes require similar buffering of

r e t u r n messages. Simulations and queueing models have

been used to analyze the buffering requirements in this

context as a function of the variation in execution rate [33].

Error detection is desirable in practice, since program-

mers may not be sure that their programs are determinis-

tic. To provide error detection and still allow computation

to proceed early, a watchdog scheme can be used. This

technique requires that the computation be structured as

one or more transactions. Computation proceeds with the

first message, but another thread of control (the watch-

dog) waits for the remaining messages and compares them

with the first. If an inconsistency is detected by the watch-

dog, the main computation is aborted. Note that this

scheme also requires buffering (in the form of transaction

workspaces) to compensate for the skew in execution rates

of different troupe members.

Many other schemes axe possible in addition to the

approaches described here. Discovering and evaluating such

variations is an important area for future research.

8.5 Crashes and P a r t i t i o n s

Whenever a troupe member is waiting for one or more

messages in the one-to-many and many-to-one call algo-

rithms, the underlying message protocol uses probing and

timeouts to detect crashes. This mechanism relies on net-

work connectivity, and therefore cannot distinguish be-

tween crashes and network partitions.

Network partitions raise the possibility of different

troupe members continuing to execute, each believing that

the others have crashed. To prevent troupe members in dif-

ferent partitions from diverging, one can require that each

troupe member receive a majority of the expected set of

messages before computation is allowed to proceed there.

8.6 Collators

One way to relax the determinism requirement (at the

cost of transparency) is to" allow programmers to specify

their own procedures for reducing a set of messages to a

single message. Such procedures are called collators.
A collator is a function that maps a set of messages

into a single result. To improve performance, it is desirable

for computation to proceed as soon as enough messages

have arrived for the collator to make a decision. (This

is equivalent to using lazy evaluation when applying the

collator.)

Three collators are supported at the replicated proce-

dure call protocol level (viewing the contents of call and

r e t u r n messages as uninterpreted bits): unanimous, which

requires all the messages to be identical and raises an excep-

tion otherwise; majority, which performs majority voting on

the messages; and first-come, which accepts the first mes-

sage that arrives. The framework of replicated calls and col-

lators is sufficiently general to express weighted voting [15]

and other replicated or broadcast-based algorithms [24].

9 P e r f o r m a n c e A n a l y s i s

Experiments were conducted to measure the cost of

replicated procedure calls as a function of the degree of

replication. The cost of a simple exchange of datagrams

was also measured in order to establish a lower bound.

The experiments were run on lightly loaded computer

center machines during an inter-semester break at Berke-

ley. The distributed system consisted of six identically

configured VAX*-11/750 systems, connected by a single 10

megabit per second Ethernet cable.

Any implementation of a paired message protocol on top

of an unreliable datagra~n layer must perform at least the

following steps during the course of a message exchange:

1. Send a datagram.

2. Receive a datagram, specifying a timeout to detect

lost datagrams.

The time required to perform these operations therefore

represents a lower bound for any implementation of a

remote procedure call protocol using unreliable datagrams.

A reliable byte-stream protocol, such as TCP, is gener-

ally considered to be inferior to datagrams for the purposes

of a remote procedure call implementation. A TCP-based

client and server are included for the purpose of compari-

son. Unlike the UDP client, the TCP client does not need

any timeouts, because TCP provides reliable delivery.

*VAX is a trademark of Digital Equipment Corporation.

70

degree of real time total cpu time user cpu time kernel cpu time
replication (msecs/rpc) (msecs/rpc) (msecs/rpc) (msecs/rpc)

(UDP) ~ 26.5 13.3 0.8 12.4

(TCP) 23.2 8.3 0.5 7.8

1 48.0 24.1 5.9 18.2

2 58.0 45.2 10.0 35.2

3 69.4 66.8 13.0 53.8

4 90.2 87.2 16.8 70.4

5 109,5 107.2 21.0 86.1

Table 1: Performance of UDP, TCP, and Circus

The first set of experiments measured the time per

procedure call in Circus as a function of the degree of

replication. For comparison, the time for an exchange of

UDP datagrams and the time for an exchange of messages

over a TCP byte-stream were also measured. The time of

day and the total user-mode and kernel-mode CPU time

used by the client process were recorded before and after

each replicated procedure call. The entries in Table 1 were

calculated by averaging the differences between the before

and after values for each component of the execution time.

Note that the TCP echo test is faster than the UDP

echo test. Several factors help explain this somewhat sur-

prising result. First, the cost of TCP connection establish-

ment is effectively ignored, since it is amortized over the

read and wr i t e loop. Second, the UDP-based test makes

two alarm calls, and therefore two s e t i t i m e r system calls,

which take approximately 1.2 milliseconds each (see Ta-

ble 2); the corresponding TCP timers are managed by the

kernel. Finally, the read and wr i t e interface to TCP byte-

streams is more streamlined than the sendmsg and recvmsg

interface to UDP datagranls, which uses scatter-gather I /O.

The scatter-gather interface uses an array of address/length

pairs to specify the location in user space of the datagram

to be received or sent. The array is first copied from user to

kernel space, and then the pieces of the datagram specified

by the array are transferred between user and kernel space.

This additional copying does not occur when the read and

wr i t e system calls are used.

An unreplicated Circus remote procedure call requires

almost twice the time of a simple UDP exchange. This

is largely due to the extra system calls requiredto handle

various aspects of the Circus protocol. The use of interrupt-

driven I /O and timers, for example, requires substantial

trafficking with the software interrupt facilities in order

to protect critical regions. It is worth noting that these

facilities are used by Circus to compensate for the lack

of multiple lightweight processes within the same address

space under Berkeley 4.2BSD.

Another added expense is the presence of fairly elabo-

rate code to handle multi-homed machines (machines with

more than one network address). In the research computer

network at Berkeley, some machines have as many as four

network addresses. The sendrasg system call does not allow

a source address to be specified when the sender is multi-

homed. This means that a nmlti-homed server is unable to

ensure that its reply to a client bears the same network ad-

dress that the client used in reaching the server. The only

way around this problem in the current Berkeley 4.2BSD

system is for a multi-homed server to use an array of sock-

ets, one for each of its addresses, and to use the s e l e c t

system call to multiplex among them. This situation is

a design oversight in Berkeley 4.2BSD, not a fundamental

problem.

The incremental expense of a Circus replicated proce-

dure call as the degree of replication increases is more rea-

sonable. Table 1 shows that each additional server troupe

member adds between 10 and 20 milliseconds to the real

time per call. The fact that this is smaller than the time

for a UDP datagram exchange shows that the replicated

procedure call protocol achieves some parallelism among

the message exchanges with server troupe members, but it

is still the case that each component of the time per call

increases hnearly with the size of the troupe. This linear

increase is shown in Figure 4.

In the second set of tests, an execution profiling tool was

used to analyze the Circus implementation in finer detail.

The profiles showed that six Berkeley 4.2BSD system calls

account for more than half of the total CPU time used

to perform a replicated procedure call. Table 2 shows the
CPU time for each of these primitives. Table 3 shows the

percentage of the total CPU time for a replicated call that

each of these system calls accounts for, as a function of the
degree of replication.

These measurements show that most of the time re-

quired for a Circus replicated procedure call is spent in the
simulation of multicasting by means of successive sendmsg

operations, and tha t sendmsg is the most expensive of the
Berkeley 4.2BSD primitives used by the Circus implemen-
tation.

71

system call msecs/call description

sendmsg 8.1

recvmsg 2.8

select 1.8

setitimer 1.2

gettimeofday 0.7

sigblock 0.4

send datagram

receive datagram

inquire if datagram has arrived

start interval timer for clock interrupt

get time of day
mask software interrupts to begin critical region

Table 2: CPU time for Berkeley 4.2BSD system calls used in Circus

degree of
replication sendmsg s e l e c t

27.2 11.2 9.2

28.8 12.7 10.6

32.5 11.7 11.9

32.9 10.3 10.7

33.0 9.9 11.1

percentage of total CPU time spent in:
recvmsg setitimer gettimeofday sigblock

4.4 2.2 1.7

3.5 2.7 1.2

4.2 2.6 1.0

5.4 2.9 0.8

5.0 3.1 0.9

Table 3: Execution profile for Circus replicated procedure calls

total

55.9

59.5

63.9

63.0

63.0

msecs/call
125 "l

100"

75

real time

total CPU time

CPU time

50

25" user CPU time

1 • • i • •

1 2 3 4 5

degree of replication

Figure 4: Performance of Circus replicated procedure calls

72

10 T h e S y n c h r o n i z a t i o n P r o b l e m f o r T r o u p e s

Multiple threads of control give rise to concurrent calls

from different client troupes to the same server troupe. This

is not the same as a many-to-one call, which is handled by

the algorithms described in Section 8. For a module to

operate correctly in the presence of concurrent calls from

different clients, even without replication, it must appear

to execute those calls in some serial order. Serializability

can be achieved by any of a number of concurrency control

algorithms [2].

When the server module is a troupe, not only must con-

current calls from different client troupes be serialized by

each server troupe ~nember, but they must be serialized in

the same order. Correct semantics require proper coordina-
tion between the replicated procedure call mechanism and

a synchronization mechanism, such as transactions.

11 R e p l i c a t e d T r a n s a c t i o n s
The transaction mechanism for troupes must guarantee

serializability and atomicity, so that when a transaction

aborts, its tentative updates and the committed updates of

its subtransactions can be undone without affecting other

concurrently executing transactions.

Conventional transaction mechanisms not only provide

these two properties, but they also guarantee the perma-

nence of committed updates. Stable storage is used for

intention lists and commit records, and the commit algo-

rithm is coupled with a crash recovery algorithm.

This third property (permanence) is not required in pro-

grams constructed from troupes, because troupes automat-

ically mask partial failures. Consequently, an implementa-

tion of transactions for replicated distributed programs can

dispense with the crash recovery facilities based on stable

storage and operate entirely in volatile memory.
The correctness condition for conventional transactions

is serializability. With troupes, however, independent se-

rialization of transactions at each troupe member is not

enough: troupe consistency must also be preserved.

A sufficient condition for preserving troupe consistency

is to ensure that all troupe members serialize transactions

in the same order. Existing concurrency control algorithms

for replicated databases guarantee identical serialization

orders at all replicas, but many of these algorithms require

communication among replicas [2]. The desire for troupe

members to remain unaware of one another's existence rules

out the use of such algorithms.

One well-known multiple-copy concurrency control algo-

rithm requires no inter-replica communication: two-phase

locking with unanimous update [2]. This algorithm requires

each replica to use two-phase locking for local concurrency

control. The protocol presented in the next section removes

this restriction.

12 A T r o u p e C o m m i t P r o t o c o l

The protocol described in this section is optimistic, be-

cause it assumes that concurrent transactions axe unlikely

to conflict, and it is generic~ because it assumes nothing

about the local concurrency control algorithms used by

the individual troupe members. The protocol detects any

attempt by troupe members to serialize transactions dif-

ferently, and transforms such an attempt into a deadlock.

Deadlock detection is then used to abort and retry one or

more of the offending transactions [16].

When a server troupe member is ready to commit or

abort a transaction, it calls a ready_to_commit procedure.

A t rue argument means that the server troupe member

is ready to commit the transaction; a false argument

means that the server troupe member wishes to abort the

transaction. If the ready_to_commit procedure returns

t rue , the server troupe member goes ahead and commits

the transaction; otherwise, the transaction is aborted. The

server's call is translated into a remote call to the client

troupe. The roles of client and server are thus temporarily

reversed; this is known as a call-back protocol.

The troupe commit protocol has the following essential

property: two troupe members succeed in committing two

transactions if and only if both troupe members attempt to

commit the transactions in the same order.

To see this, let S~ and $2 be two members of a server

troupe S, and let C and C' be two client troupes. Suppose

C performs transaction T at S, and C' performs transac-

tion T' at S.

If both server troupe members commit T and T' in the

same order, say T followed by T', then both Sl and $2

call ready to commit first at C and then at C'. Client

C tells both server troupe members to go ahead, and C t

does the same, so both $1 and $2 succeed in committing

the transactions.

Now suppose that $1 tries to commit T first, but $2

tries to commit T first. Then Sl calls ready_to commit

at C and $2 calls r e a d y t o c o m m i t at C ~. The result is

deadlock, because the ready_to_commit procedure at each

client waits for all members of the server troupe to become

ready before responding to any of them. Therefore, neither

$1 nor $2 succeeds in committing either transaction. The

troupe commit protocol therefore ensures that all troupe

members commit transactions in the same order.

Note that it is only necessary to transform different se-

rialization orders into deadlocks when the different seri-

alization orders would cause inconsistent states at troupe

members. If the transactions being serialized do not con-

flict with one another, then inconsistency cannot occur, yet

73

the protocol above may still cause deadlock. To remedy

this, the local concurrency control algorithm should commit

non-conflicting transactions in parallel. For example, using

the notation above, suppose that transactions T and T t do

not conflict. Then $1 and $2 commit T and T' in par-
allel, so $1 and $2 call both ready_to_commit at C and

r e a d y t o c o m m i t at C S in parallel. The deadlock described

above does not occur, because the ready_to_commit pro-

cedure at each client receives calls from both $1 and $2.

13 B i n d i n g A g e n t s f o r D i s t r i b u t e d P r o -

g r a m s

A binding agent is a mechanism that enables programs

to import and export modules by interface name. In the

case of distributed programs constructed with remote pro-

cedure calls, the interface name must be associated with the

address of the server that exports it, and must be looked up

by the client that imports it. These functions (registration,

lookup, and perhaps deletion) can be provided by a general-

purpose name server. For example , Grapevine [4] is used

as the binding agent in the Xerox PARC RPC system [5],

and Clearinghouse [24] plays the same role for Courier [32].

A natural means of reducing the cost of name server

lookups is to have clients cache the results of such lookups.

Thus, a client contacts the binding agent only when it

imports an interface, and it uses the same information for

all subsequent remote calls to that module. This raises

the classic cache invalidation problem: what happens when

a client's binding information becomes stale because the

information at the name server has changed?

Suppose a client makes a remote call to a server using

its cached information. In the case of programs constructed

from conventional remote procedure calls, there are three

reasons why the cached information might be stale:

I. There is no longer a server at the specified address.

2. There is a server at that address, but it no longer

exports the specified interface.

3. There is a server at that address and it exports that

interface, but the actual instance of the module in

question is no longer the same as the one originally

imported by the client.

If all three of these cases can be detected at or below

the remote procedure call protocol level, the run-time

system can raise an exception in the client to indicate

that rebinding is required. Therefore, the problem of

masking stale binding information reduces to the problem

of detecting the above three cases.

The first can be detected at the paired message protocol

level, since there will be no response to repeated retransmis-

sions. The second can be detected at the remote procedure

call protocol]eve], because the server's run-time system

will reject the call. The third case requires some help from

the binding agent, in the form of incarnation numbers for

exported interfaces, as in the system described by Birrell

and Nelson [5]. This scheme time-stamps the record cre-

ated when a server registers itself with the binding agent.

The client's run-tinle system receives the time stamp along

with the server address when it imports an interface and

includes it in all subsequent calls to that module. It is thus

a simple matter for the server's run-time system to detect

and reject mismatches.

A related problem is garbage collection, which is re-

quired when some of the binding agent's own registration

information becomes obsolete. This can happen if a server

crashes or otherwise ceases to export an interface without

informing the binding agent. The problem of garbage col-

lection reduces to the cache invalidation problem, since the

information maintained by the binding agent is itself just

a cached version of the truth. Of the above three ways

in which binding information can be out of date, only the

first two apply to the binding agent. The third case is de-

tected by the binding agent itself as part of the process of

assigning incarnation numbers: when a server re-exports an

interface, the binding agent will notice that there is already

an entry for that name and address. In the first two cases,

however, it is the client that ends up detecting the invalid

binding; this fact must somehow reach the binding agent.

One solution is to include a special r eb ind procedure

in the interface to the binding agent. Each client, upon

detecting an invalid binding, calls r eb ind with the invalid

binding as an argument. The binding agent looks up and

returns the current binding for the given name, and deletes

tile old binding if it is still present. (The old binding passed

to the r eb ind procedure is only a hint; it need not be

deleted immediately, nor should it be blindly accepted as

invalid in an insecure environment.)

Another solution is to use a garbage collector: a process

which periodically enumerates all the registered modules,

probes them with a special null procedure call (an "are you

there?" request), and explicitly deletes the bindings for

modules that do not respond. The garbage collector need

not be part of the binding agent if the binding interface

includes enumeration and deletion.

14 B i n d i n g A g e n t s f o r R e p l i c a t e d P r o -

g r a m s

Replicated distributed programs import and export

74

troupes rather than single modules, and therefore require

additional support from the binding mechanism. First of

all, the binding agent must manipulate sets of module ad-

dresses rather than single addresses, and it must manage

the troupe IDs required by the replicated procedure call

algorithms of Section 8. The binding agent must allow a

third party to register an entire troupe. Finally, it must

be possible to add or delete individual troupe members, in

order to handle troupe reconfiguration.

Since binding is such a pivotal mechanism, it is essential

that the binding agent be highly available. An obvious

choice is to make the binding agent a troupe and express

the interactions with it in terms of replicated procedure

calls. The interface to such a binding agent is shown in

Figure 5.

The initial registration of a troupe also requires the abil-

ity to add a member to an existing troupe. A troupe cannot

register itself en masse with a single replicated procedure

call, because it does not have a troupe ID until it is regis-

tered. To avoid this circularity, each troupe member must

add itself individually to an initially empty troupe, using

add_troupe_member. The synchronization requirements of

the add_troupe_member operation axe discussed below.

The cache invalidation problem becomes more compli-

cated when replication is introduced. Let T be the set of

members of a troupe, and let C be the cached set of mem-

binding:
interface

troupe_name: type = string
troupe_member: type = module_address
troupe: type = set of troupe_member
troupe id: type = unique_id

register_troupe:
procedure (troupe_name, troupe)

returns (troupe_id)

add_troupe_member:
procedure (troupe_name, troupe_member)

returns (troupe_id)

lookup_troupeby_id:
procedure (troupe_id)

returns (troupe)

lookup_troupe_by_name:
procedure (troupe_name)

r e t u r n s (t roupe)

end interface

Figure 5: The interface to the binding agent

bers that a client believes constitutes the troupe. Then C

is stale if and only if C ¢ T. The possibilities for stale in-

formation correspond to the possible intersections of these

two nonempty sets:

1. TQC=O

2. T c C

3. T D C

4. TNC#OAT~CAT~C

The semantics of troupes and replicated procedure calls

require every member of a server troupe to execute a

procedure if any member does. This will be the case if

T = C, T n C = 0, or T c C. The first two possibilities

for stale information are therefore harmless; the client will

detect that some or all of the members of C are invalid,

and perform the necessary rebinding. In the last two cases,

however, the client calls some but not all of the troupe

members; these calls cannot be allowed to succeed.

The solution is to use troupe IDs as a form of incarna-

tion number. Each call message carries the troupe ID of

its destination as well as its source, and each server troupe

member rejects any call message whose destination troupe

ID is incorrect. If it can be guaranteed that a troupe al-

ways changes both its membership and its troupe ID in

an atomic operation, then the problem is solved: a server

troupe member accepts a call from a client only if it bears

the correct server troupe ID, which is the case only if the

client knows the correct membership of that server troupe.

The add_troupe_member procedure must therefore be

an atomic transaction that also changes the troupe ID. This

requires informing the existing members of the troupe that

their troupe ID has changed, which can be accomplished by

running a special se t_ t roupe_id procedure at each mem-

ber. The se t_ t roupe_id procedure for each troupe can

be generated automatitally I{ se t_ t roupe id is executed

as a subtransaction of add_troupe member,~the change in

troupe ID and troupe membership will happen atomically

and will be correctly serialized with any other calls to the
server troupe.

15 Reconfiguration and Recovery from
Partial Failures

A troupe is resilient to partial failures, in which at least

one of its members continues to function. Machine crashes

are detected (using a timeout) by the paired message pro-

tocol, which raises an exception that can be used by higher

level software. At some point it becomes desirable to re-

place troupe members that have crashed, because a diml.-

75

ished troupe is more vulnerable to future crashes.

Replacing a crashed troupe member or adding a new

troupe member to an existing troupe requires the following

two steps:

1. the new member must be brought into a state con-

sistent with that of the other members, and

2. the new member must be registered with the binding

agent.

This section describes how to perform the first step; the

add troupe_member procedure (described in Section 14) is

used to accomplish the second step.

The solution is to use a mechanism similar to check-

pointing. In this scheme, the state information of an exist-

ing troupe member is externalized (converted to a standard

external representation), then transmitted to the newly cre-

ated troupe member, where it is internalized. The trans-

mission method for abstract data types proposed by Herlihy

and Liskov is similar [18].

A special g e t s t a t e procedure can be produced au-

tomatically for this purpose. The g e t _ s t a t e procedure

copies the module state from the callee to the caller and

handles the details of externalization and internalization.

This procedure executes as a read-only atomic transac-

tion, so that the state cannot be affected while a new

troupe member is being initialized. A new server process

wishing to join a troupe initializes its state by making a

replicated call to the ge t_ s t a t e procedure at the existing

members of the troupe, and then calls the binding agent's

add t roupemember procedure to register itself. Since the

states of the existing troupe members are consistent, and

since g e t s t a t e is free of side effects at the callee, the

replicated call to ge t_ s t a t e is not strictly necessary; an

uureplicated call to any of the existing troupe members

would suffice.

Finally, the call to add troupe_member and the call to

ge t_ s t a t e must be bracketed together in a single atomic

transaction, to guarantee that the new member joins the

troupe and acquires the correct state as an indivisible

operation.

16 S u m m a r y

The mechanisms described in this paper allow a pro-

grammer to add replication transparently and flexibly .to

existing programs. The resulting replicated distributed

programs automatically tolerate partial failures of the un-

derlying fail-stop hardware.

The architecture combines remote procedure calls with

replication of program modules for fault tolerance. The

replicated modules, called troupes, are the basis for con-

strueting replicated distributed progrILms.

Previous fault-tolerant architectures were either too ex-

pensive or too inflexible. Simple replication of hardware

components, for example, requires all software to be exe-

cuted redundantly, rather than just critical modules, and

permits only a single degree of replication. In contrast,

the present approach introduces replication at the program

module level, and allows the degree of replication of each

moduh to vary independently and dynamically.

The replication mechanisms introduced in this paper

can be used transparently, So that the details of replication

are invisible to the programmer. Transparent distributed

and replicated mechanisms are an important means of

coping with the complexity of fault-tolerant distributed

programs. A model of program semantics was used to

characterize deterministic programs, a class of programs

that can be transparently replicated.

The model is based on program modules and threads

of control. In a distributed system, threads must be able

to cross machine boundaries to move between modules

on different machines. An algorithm to simulate such

distributed threads in terms of conventional processes and

remote procedure calls was presented.

Transfer of control between troupes requires generaliz-

ing remote procedure calls to replicated procedure calls.

The semantics of replicated procedure calls can be summa-

rized as exactly-once execution at all replicas.

The Circus replicated procedure call implementation

was described. Message transport is provided by a datagram-

based paired message layer. The general replicated pro-

cedure call protocol, requiring many-to-many communica-

tion, is expressed in terms of two sub-protocols, for the

one-to-many and many-to-one cases.

In the Circus system, each troupe member waits for

all incoming messages before proceeding. Troupe members

are thus synchronized at each replicated procedure call and

return. Alternative schemes that allow computation to

proceed before all messages have arrived were discussed.

Experiments were conducted to measure the perfor-

mance of the Circus replicated procedure call imphmen-

tation. The results of the measurements show that six

Berkeley 4.2BSD system calls account for more than half

of the CPU time of a Circus replicated procedure call. The

two most expensive of these system calls use a particularly

inefficient interface to copy data between user and kernel

address spaces. The other four system calls are used to

compensate for the lack of lightweight processes in Berke-

ley 4.2BSD.

The use of transactions for synchronizing concurrent

threads of control within replicated distributed programs

was discussed. Serializability, the property guaranteed by

concurrency control algorithms for conventional transac-

76

tions, was shown to be insufficient for the purposes of

replicated transactions, because it does not guarantee that

transactions commit in the same order at all troupe mem-

bers. A troupe commit protocol that guarantees a con-

sistent commit order for replicated transactions was pre-

sented.
Mechanisms for binding and reconfiguring replicated

distributed programs were described. The problem of de-

tecting obsolete binding information was identified; this

problem is both more complicated and more critical than

the corresponding problem in the nureplicated case. A so-

lution using troupe IDs as incarnation numbers was pre-

sented.

17 D i r e c t i o n s for F u t u r e R e s e a r c h

Replicated procedure calls are useful for more than just

fully replicated distributed programs. The troupe commit

protocol (presented in Section 12) and other protocols

in the author's Ph.D. dissertation [12] are examples of

how the use of replicated procedure calls leads to elegant

formulations of algorithms traditionally described in terms

of asynchronous messages.

An important area for further research is to express

more algorithms of this type in terms of replicated proce-

dure calls. For example, the algorithms used in distributed

database systems for concurrency control, replicated data,

atomic commit and recovery, and deadlock detection would

lend themselves to such treatment.

Further research is needed to evaluate the alternative

replicated procedure call protocols described in Section 8.4

and to discover new ones. An approach that allowed the

choice between such schemes to be made on a per-module

basis, as a programming-in-the-large activity, would be

attractive.

The troupe commit protocol presented in Section 12

must be implemented ~xnd its performance evaluated. Al-

lowing application-specific concurrency control within the

context of troupes is another area for further work.

A c k n o w l e d g m e n t s

I would like to thank Robert Fahry, Domenico Ferrari,

Susan Graham, Leo Harrington, Andrew Birrell, Earl Co-

hen, Daniel Halbert, and Naomi Siegel for their support,

encouragement, and advice.

This work was sponsored by a National Science Founda-

tion Graduate Fellowship, the Xerox Corporation, the Dig-

ital Equipment Corporation, and by the Defense Advanced

Research Projects Agency (DoD), ARPA order number
4031, monitored by the Naval Electronics Systems Com-

mand under contract number N00039-C-0235. The views

and conclusions contained in this document are those of

the author and should not be interpreted as representing

official policies, either expressed or implied, of the Defense

Advanced Research Projects Agency or of the U.S. Govern-

ment.

R e f e r e n c e s

[1] Joel F. Bartlett.
A NonStop kernel.
Proceedings of the 8th Symposium on Operating Systems Princi-

ples.
Operating Systerr~ Review 15(5), December 1981, pages 22-29.

[21 Philip A. Bernsteln and Nathan Goodman.
Concurrency control in distributed database systems.
Computing Surveys 13(2), June 1981, pages 185-221.

[3] Kenneth P. Birman, Thomas A. Joseph, Thomas Rguchle, and
Amr E1 Abbadi.

Implementing fault-tolerant distributed objects.
Proceedings of the ~th Symposium on Reliability in Distributed

Software and Database Systems, October 1984, pages 124-133.

[4] Andrew D. Birrell, Roy Levin, Roger M. Need.hum, and Michael
D. Schroeder.

Grapevine: An exercise in distributed computing.
Communications of the A CM 25(4), April 1982, pages 260-274.

[5] Andrew D. Birrell and Bruce Jay Nelson.
Implementing remote procedure calls.
A CM Transactions on Computer Systems 2(1), February 1984,

pages 39-59.

[6] Anita Borg, Jim Baumbach, and Sara Glazer.
A message system supporting fault tolerance.
Proceedings of the 9th A CM Symposium on Operating Systems

Principles.
Operating Systems Revlew 17(5), October 1983, pages 90-99.

[7] Liming Chen and Algirdas Avizienis.
N-version programming: A fault-tolerance approach to reliabil-

ity of software operation.
Digest of Papers, FTCS-8: 8th Annual International Conference

on Fault-Tolerant Computing, June 1978, pages 3-9.

[8]

f9]

Ii0]

David R. Cheriton and Willy Zwaenepoel..
One-to-Many Interprocess Communication.in the V-System.
Report STAN-CS-84*I011, Department of Computer Science,

Stanford University, August 1984.

Melvin E. Conway.
A mu]tiprocessor system design.
Proceedings of the AFIPS 1963 Fall Joint Computer Conference,

volume 24, pages 139-146.

Eric C. Cooper.
Replicated procedure call.
Proceedings of the 3rd Annual A CM Symposium on Principles o/

Distributed Computing, August 1984, pages 220-232.

[111 Eric C. Cooper.
Circus: A replicated procedure call facility.
Proceedings of the ~th Symposium on Reliability in Distributed

Software and Database Systcr~, October 1984, pages 11-24.

[12] Eric C. Cooper.
Replicated Distributed Programs.
Ph.D. dissertation, Computer Science Division, University of

Oalifornia, Berkeley, April 1985.
Report UCB/CSD/85/231.

77

[131

[14]

[15]

[16]

[17]

E. W. Dijkstra.
Cooperating sequential processes,
In Programming Languages, edited by F. Genuys.

Press, 1968, pages 43-112.
Academic

R. S. Fabry.
Dynamic verification of operating system decisions.
Communications of the ACM 16(11), November 1973, pages

659--668.

David K. Gifford.
Weighted voting for replicated data.
Proceedings of the 7th Symposium on Operating Systems Princi-

ples.
Operating Systems Review 13(5), December 1979, pages 150-

162.

J. N. Gray.
Notes on data base operating systems.
In Operating Systems: An.Advanced Course, edited by R. Bayer,

R. M. Graham, and G. Seegmfiller. Lecture Notes in Com-
pute r Science, volume 60, Springer-Verlag, 1078, pages 303-
481.

Per Gurmingberg.
Voting and redundancy management implemented by protocols

in distributed systems.
Digest of Papers, FTCS-13: 13th International Symposium on

Fault-Tolerant Computing, June 1983, pages 182-185.

[18] M. Herlihy and B. Liskov.
A value transmission method for abstract data types.
ACM Transactions on Programming Languages and Systems

4(4), October 1982, pages 527-551.

[19] Maurice Peter Herlihy.
Replication Methods for Abstract Data Types.
Ph.D. dissertation, Department of Electrical Engineering and

Cmnputer Science, MIT, May 1984.
Report MIT/LCS/TR-319.

[20]

[21]

[22]

[23]

[24]

William Joy, Eric Cooper, Robert Fahry, Samuel Leflter, Kirk
McKusick, and David Mosher.

4.2BSD System Manual.
Computer Systems Research Group, Computer Science Division,

University of California, Berkeley, July 1983,

Leslie Lamport.
The implementation of reliable distributed multiprocees systems.
Computer Networks 2(2), May 1978, pages 95-114.

R. E. Lyons and W. Vanderkulk.
The use of triple-modular redundancy to improve computer

reliability.
IBM Journal of Research and Development 6(2), April 1962,

pages 200-209.

Bruce Jay Nelson.
Remote Procedure Call.
Ph.D. dissertation, Computer Science Department, Carnegie-

Mellon University, May 1981.
CMU report CMU-CS-81-119 and Xerox PARC report CSL-81-

9.

Derek C. Oppen and Yogen K. Dalai.
The Clearinghouse: A Decentralized Agent for Locating Named

Objects in a Distributed Environment.
Report OPD-T8103, Xerox Office Products Division, October

1981.

[25]

[26]

[271

[281

[29]

Jen Poetel.
User Datagram Protocol.
RFC 768, Information Sciences Institute, University of Southern

California, August 1980.

Jon PoeteL
Transmission Control Protocol.
RFC 793, Information Sciences Institute, University of Southern

California, September 1981.

Richard D. Schlichting and Fred B. Schneider.
Fail-stop processors: An approach to designing fault-tolerant

computing systems.
ACM Transactions on Computer Systerr~ 1(3), August 1983,

pages 222-238.

Sun Micresystems.
Remote Procedure Call Reference Manual.
Mountain View, California, October 1984.

J. yon Nenmann.
Probabilistic logics and the synthesis of reliable organisms from

unreliable components.
In Automata Studies, edited by C. E. Shannon and J. McCarthy.

Princeton University Press, 1956, pages 43-98.

[30] John H. Wensley, Leslie Lamport, Jack Goldberg, Milton W.
Green, Karl N. Levitt, P. M. Melliar-Smith, Robert E.
Shostak, and Charles B. Weinstock.

SIFT: Design and analysis of a fault-tolerant computer for
aircraft control.

Proceedings of the IEEE 66(10), October 1078, pages 1240-1255.

[31] Karen White.
An Implementation of a Remote Procedure Call Protocol in the

Berkeley UNIX Kernel.
M.S. report, Computer Science Division, University of Califor-

nia, Berkeley, June 1985.
Report UCB/CSD/85/248.

[32] Xerox Corporation.
Courier: Tile Remote Procedure Call Protocol.
Xerox System Integration Standard 038112, December 1981.

[33] Gary York, Daniel Siewiorek, and Zary SegM1.
Asynchronous software voting in NMR computer structures.
Proceedings of the 3rd Symposium on Reliability in Distributed

Software and Database Systems, October 1983, pages 28-37.

78

