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A troupe is a set of replicas of a module, executing on 

machines that have independent failure modes. Troupes are 

the building blocks of replicated distributed programs and 

the key to achieving high availability. Individual members 

of a troupe do not communicate among themselves, and a x e  

unaware of one another's existence; this property is what 

distinguishes troupes from other software architectures for 

fault tolerance. 

Replicated procedure call is introduced to handle the 

many-to-many pattern of conmmnication between troupes. 

The semantics of replicated procedure call can be summa- 

rized as exactly-once execution at all replicas. 

An implementation of troupes and replicated procedure 

call is described, and its performance is measured. The 

problem of concurrency control for troupes is examined, 

and a commit protocol for replicated atomic transactions 

is presented. Binding and reconfiguration mechanisms for 

replicated distributed programs are described. 

1 Introduction 

This paper addresses the problem of constructing highly 

available distributed programs. (The adjectives highly 
available, fault-tolerant, and nonstop will be used synony- 

mously to describe a system that continues to operate de- 

spite failures of some of its components.) The goal is to 

construct programs that automatically tolerate crashes of 

the underlying hardware. The problems posed by incorrect 

software or by hardware failures other than crashes are only 

addressed briefly. 

The key to tolerating component failures is replication; 
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this approach was proposed by yon Neumann thirty years 

ago [29]. The idea is to replicate each component to such 

a degree that the probability of all replicas failing becomes 

acceptably small. The advent of inexpensive distributed 

computing systems (consisting of computers connected to- 

gether by a network) makes replication an attractive and 

practical means of tolerating hardware crashes. 

The ability to vary replication on a per-module basis is 

desirable because it allows software systems to adapt grace- 

fully to changing characteristics of the underlying hard- 

ware. Even if perfectly reliable hardware were possible, 

there would still be periods during which hardware would 

be unavailable: scheduled down-time for preventive main- 

tenance or reconfiguration, for example. The mechanisms 

described in this paper permit distributed programs to be 

reconfigured, while they axe executing, so that their services 

remain available during such periods. 

Incorporating replication on a per-module basis is more 

flexible than previous approaches, such as providing fault 

tolerance in hardware or writing it into the application 

software. The first method is too expensive because it uses 

reliable hardware everywhere, not just for critical modules. 

The second approach burdens the programmer with the 

complexity of a non-transparent mechanism. 

The fundamental mechanisms presented in this paper 

are: 

• troupes, or replicated modules, and 

• replicated procedure call, a generalization of remote 

procedure call for many-to-many communication be- 

tween troupes. 

The following important property is what distinguishes 

troupes and replicated procedure call from previous soft- 

ware architectures for fault tolerance: individual members 

of a troupe do not communicate among themselves, and axe 

unaware of one another's existence. This property is also 

what gives these mechanisms their flexibility and power: 

since each troupe member behaves as if it had no replicas, 

the degree of replication of a. troupe can be varied dynam- 

ically, with no recompilation or relinking. 
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Previous papers presented the author's initial ideas 

about replicated procedure calls [10] and a description of 

the Circus system [11]. This paper presents a portion of 

the author's Ph.D. dissertation [12]. 

2 B a c k g r o u n d  a n d  R e l a t e d  W o r k  

The idea of achieving fault tolerance by using replica- 

tion to mask the failures of individual components dates 

back to yon Neumann [29]. The two architectures for fault- 

tolerant software are primary-standby systems and modular 
redundancy. In a primary-standby scheme, only a single 

component functions normally; the remaining replicas are 

on standby in case the primary fails. With modular redun- 

dancy, each component performs the same function; there 

is some form of voting on the outputs to mask failures. 

A classic primary-standby architecture is the method of 

process pairs in Tandem's Guardian operating system [1]. 

The processes in a process pair execute on different proces- 

sors. One process is designated as the primary, the other as 

the standby. Before each request is processed, the primary 

sends information about its internal state to the standby, 

in the form of a checkpoint. The checkpoint enables the 

standby to complete the request if the primary fails. 

The Auragen architecture combines a primary-standby 

scheme with automatic logging of messages [6]. If a primary 

crashes, the log is used to replay the appropriate messages 

to a standby. 
The Isis project at Cornell uses a primary-standby 

architecture for replicated objects [3]. In each interaction 
with a replicated object in Isis, one replica plays the role 

of coordinator, and only it performs the operation. The 

coordinator then uses a two-phase commit protocol to 

update the other replicas. 
The mechanisms used in primary-standby schemes to 

allow a standby to take over after the primary crashes are 

isomorphic to crash recovery mechanisms based on stable 
storage. Under this isomorphism, a standby corresponds 
to stable storage while the primary continues to function, 
but assumes the role of the recovering machine when the 

primary fails. 
Triple-modular and N-modular redundancy have long 

been familiar to designers of fault-tolerant computer sys- 
tems [22]. Early applications of modular redundancy to 

software fault tolerance include the SIFT system [30] and 

the PRIME system [14]. 
Replication is also the basis of methods proposed by 

Lamport [21] and Schneider [27] for constructing dis- 

tributed systems that meet given reliability requirements. 

Gifford's weighted voting scheme uses quorums and 

version numbers to provide replication transparency for 

files [15]. Herlihy applied Gifford's quorums to replicated 

abstract data types [19] by taking advantage of the partic- 

ular semantics of the data types. 

Gunningberg's design of a fault-tolerant message proto- 

col based on triple-modular redundancy [17] is similar to, 

but less general than, the replicated mechanisms presented 

in this paper. 

A methodology known as N-version programming uses 

multiple implementations of the same module specification 

to mask software faults [7]. This technique can be used in 

conjunction with the replicated modules proposed in the 

present work by using independently implemented modules 

instead of exact replicas, thereby increasing software as 

well as hardware fault tolerance. The problems posed 

by incorrect software are not otherwise addressed in this 

research. 

The protocols implemented in the course of this re- 

search began as an attempt to transfer the Courier remote 

procedure call protocol [32] and the Xerox PARC RPC 

ideas [5,23] to an environment based on the UNIX* op- 

erating system [20] and DARPA Internet protocols [25,26]. 

Sun Microsystems has proposed a remote procedure call 

protocol that includes a facility for broadcast RPC [28], 

and Cheriton and Zwaenepoel have studied one-to-many 
communication in the context of the V system [8]. These 

types of communication are equivalent to a special case of 

replicated procedure calls: the one-to-many calls discussed 

in Section 8. 

3 A M o d e l  o f  R e p l i c a t e d  D i s t r i b u t e d  P r o -  

g r a m s  

3.1  M o d u l e s  

A module packages together the procedures and state 

information needed to implement a particular abstraction, 

and separates the interface to that abstraction from its 
implementation. Modules are used to express the static 

structure of a program when it is written. 

This paper discusses troupes and replicated procedure 

call in the context of modules, but these concepts apply 

equally well to instances of abstract data types. 

"UNIX is a trademark of Bell Laboratories. 
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3.2 Threads  

A thread of control is an abstraction intended to cap- 

ture the notion of an active agent in a computation. A 

program begins execution as a single thread of control; ad- 

ditional threads may be created and destroyed either ex- 

plicitly by means of fork, j o i n ,  and hal t  primitives [9], 

or implicitly during the execution of a cobegin . . .  eoend 

statement [13]. 

Each thread is associated with a unique identifier, called 

a thread ID, that distinguishes it from all other threads. 

A particular thread runs in exactly one module at a 

given time, but any number of threads may be running 

in the same module concurrently. Threads move among 

nmdules by making calls to, and returning from, procedures 

in different modules. The control flow of a thread obeys a 

last-in first-out (or stack) discipline. 

4 I m p l e m e n t i n g  D i s t r i b u t e d  M o d u l e s  a n d  

T h r e a d s  

No mention has been made of machine boundaries as 

part of the semantics of modules and threads. A distributed 

implementation of these abstractions must provide loca- 

tion transparency. A programmer need not know the even- 

tual configuration of a program when it is being written; 

the fact that a program is distributed is invisible at the 

progranaming-in-the-small level. 

A module in a distributed program can be implemented 

by a ~erver whose address space contains the module's pro- 

cedures and data. A distributed thread can be implemented 

by using remote procedure calls to transfer control from 

server to server, and viewing such a sequence of remote 

procedure calls as a single thread of control. 

5 A d d i n g  R e p l i c a t i o n  

The distributed modules and threads of Section 4 pro- 

vide location transparency in the absence of failures. As 

long as the underlying hardware works correctly, the pro- 

grammer need not be aware of machine boundaries. 

Processor and network failures, however, give rise to 

new classes of partial failures of the distributed program 

as a whole. Partial failures violate transparency, since they 

can never occur in a single-machine program. These failures 

must therefore be nlasked if transparency is to be preserved. 

The key to masking failures is replication, but it intro- 

duces another transparency requirement: replication trans- 

parency. 

5.1 Troupes  

The approach taken in this research is to introduce 

replication into distributed programs at the module level. 

A replicated module is called a troupe, and the replicas are 

called troupe members. 

Troupe members are assmned to execute on fail-stop 

processors [27]. if the processors were not fail-stop, troupe 

members would have to reach byzantine agreement about 

the contents of incoming messages, because a malfunction- 

ing processor might send different messages to different 

troupe members. Byzantine agreement could be added to 

the algorithms presented in this paper, but would result in 

a significant loss of performance. There is no evidence that 

failures other than crashes occur often enough to warrant 

this increased expense. 

A deterministic troupe is a set of replicas of a deter- 

ministic module. Section 5.2 shows that the assumption 

that all troupes are deterministic is sufficient to guarantee 

replication transparency. 
In contrast to the work on replicated abstract data types 

by Herlihy [19], troupes are a simple approach to achieving 

high availability: no knowledge of the semantics of a module 

is required, other than the fact that it is deterministic. 

Interactions between troupes occur by means of repli- 

cated procedure calls in which all troupe members play 

identical roles. Furthermore, troupe members do not know 

of one another's existence; there is no communication 
among the members of a troupe. It follows that each troupe 

member behaves exactly as if it had no replicas. In this 

sense, troupes contrast" sharply with the replicated objects 

in Isis [3], although the goal of high availability is the same. 

In replicated distributed programs, crash recovery mech- 

anisms are required only for total failures, in which every 

troupe member crashes. The probability of total failures 

can be made arbitrarily small by choosing an appropriate 

degree of replication. Replication cam therefore be used as 

a43 alternative to crash recovery mechanisms such as stable 

storage. 

5.2 Repl i ca t ion  Transparency  and Troupe  Consis -  

t ency  

A troupe is consistent if all its members are in the same 

state. If a troupe is consistent, then its clients need not 

know that it is replicated. Troupe consistency is therefore 

a sufficient condition for replication transparency. 
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Troupe consistency is a strong requirement, but it can- 

not be weakened without knowledge of the semantics of 

the objects being replicated. In the absence of application- 

specific knowledge, troupe consistency is both necessary and 
sufficient for replication transparency. This is one area in 

which troupes differ from other replication schemes. Gif- 

ford's weighted voting for replicated files, for example, uses 

quorums and version numbers to mask the fact that not all 

replicas are up to date [15], and Herlihy has extended Gif- 

ford's approach to abstract data types [19]. Troupe consis- 

tency is not necessary in these schemes, because they take 

advantage of the semantics of the objects being replicated. 

In a program constructed from troupes, an inter-module 

procedure call results in a replicated procedure call from a 

client troupe to a server troupe. One of the distinguishing 

characteristics of troupes is that their members do not 

communicate among themselves, and do not even know 

of one another's existence. Consequently, when a client 

troupe makes a replicated call to a server troupe, each 

server troupe member must perform the procedure, just 

as if the server had no replicas. 

The execution of a procedure can be viewed as a tree of 

procedure invocations. When a deterministic server troupe 

is called upon to execute a procedure, the invocation trees 

rooted at each troupe member are identical: the members 

of the server troupe make the same procedure calls and 

returns, with the same arguments and results, in the same 

order. It follows that if there is only a single thread of 

control in a globally deterministic replicated distributed 

program, and if all troupes are initially consistent, then 

all troupes remain consistent. 

Additional mechanisms axe required if there is more 

than one thread of control, because concurrent calls to the 

same server troupe may leave the members of the server 

troupe in inconsistent states. The problem of maintaining 

troupe consistency in the presence of concurrently execut- 

ing threads is addressed in Section 11. 

6 R e p l i c a t e d  P r o c e d u r e  C a l l s  

The goal of remote procedure call [23] is to allow dis- 

tributed programs to be written in the same style as con- 

ventional programs for centralized computers. When mod- 

ules are replaced by troupes, the natural generalization 

of remote procedure call is replicated procedure call. The 

troupe consistency requirement identified in Section 5.2 de- 

termines the semantics of replicated procedure call: when a 

client troupe makes a replicated procedure call to a server 

troupe, each member of the server troupe performs the re- 

quested procedure exactly once, and each member of the 

client troupe receives all the results. These semantics can 

be summarized as ezactly-once execution at all troupe mem- 

bers. Figure 1 shows a replicated procedure call from a 

client troupe to a server troupe. A replicated distributed 

program constructed in this way will continue to function 

as long as at least one member of each troupe survives. 

To guarantee replication transparency, troupe members 

are required to behave deterministically: two replicas in 

the same state must execute the same procedure in the 

same way. In particular, they must call the same remote 

procedures in the same order, produce the same side effects, 

and return the same results. 

7 T h e  C i r c u s  P a i r e d  M e s s a g e  P r o t o c o l  

A paired message protocol is a distillation of the com- 

munication requirements of conventional remote procedure 

call protocols [5,23,32]. It provides 

• reliably delivered, variable-length, paired messages 

(e.g. call and re tu rn ) ,  and 

• call sequence numbers that uniquely identify each 

pair of messages among all those exchanged by a 

given pair of processes. 

The paired message protocol is responsible for segment- 

ing messages that are larger than a single datagram (in 

Client Server 

Figure 1: Replicated procedure call 
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order to permit variable-length messages), and for retrans- 

mission and acknowledgment of message segments to en- 

sure reliable delivery. The Circus paired message protocol 

is based on the RPC protocol of Birrell and Nelson [5]. Cir- 

cus uses UDP, the DARPA User Datagram Protocol [25]. 

The Circus protocol is connect~onless and geared towards 

the fast exchange of short messages. 

The difference between Birrell and Nelson's RPC proto- 

col and the Circus protocol lies in the treatment of multiple- 

segment call and return messages. The Xerox PARC pro- 

tocol requires an explicit acknowledgment of every segment 

but the last. This doubles the number of segments sent, but 

since there is never more than one unacknowledged segment 

in transit, only One segment's worth of buffer space is re- 

quired per connection. 

The Circus protocol allowsmultiple segments to be sent 

before one is acknowledged, which reduces the number of 

segments sent to the minimum, but requires an unbounded 

amount of buffering. An alternate implementation of the 

Circus protocol could easily bound the amount of buffer 

space required for a connection by dropping all segments 

outside a fixed allocation window, and simply requiring the 

sender to retransmit them. These retransmissions could be 

reduced by informing the sender of the size of the allocation 

window; this is precisely what is done in the flow-control 

mechanisms of reliable stream protocols such as TCP [26], 

but since single-segment messages are expected to occur 

most often in remote procedure calls, these optimizations 

are probably not worthwhile. 

The paired message abstraction can be provided on top 

of reliable stream protocols like TCP 126], but implemen- 

tations of these protocols are typically tuned for bulk data 

transfers. The Berkeley 4.2BSD implementation of TCP, 

for example, does not even begin to transfer data until 

the connection has been established by a three-way hand- 

shake, although this restriction is not inherent in the pro- 

tocol specification. Since call and return messages are 

usually short, a specially designed, datagram-based paired 

message protocol like Circus can complete a message ex- 

change using the same number of packets that a stream 

protocol requires merely to establish a connection. Nelson 

makes this same point, with performance measurements to 

support hisclalm, in his dissertation [23]. 

The Circus protocol is currently implemented in user 

code under Berkeley 4.2BSD [20]. Asynchronous events, 

specifically the arrival of datagrams and the expiration of 

timers, must be handled in parallel with the activity of the 

client or server. For instance, a probe may arrive while a 

server is performing a procedure. If multiple processes shar- 

ing the same address space were available under Berkeley 

4.2BSD, a separate process could be devoted to listening 

for incoming segments and handling timers. Since this is 

not possible, these events are modeled as software inter- 

rupts using the signal mechanism, the interrupt-driven I/O 

facility, and the interval timer [20]. Protection of critical 

regions is achieved by using system calls that mask and 

enable interrupts. 

A project is under way at Berkeley to produce an 

hnplementation of a remote procedure call protocol for the 

Berkeley UNIX kernel [31]. The initial specification was an 

unreplicated version of the Circus protocol, but the desire 

to limit the required amount of kernel buffer space led to a 

protocol similar to Birrell and Nelson's. 

The unifying comnmnication abstraction provided by 

the Berkeley 4.2BSD kernel is the socket [20], an endpoint 

for process-to-process communication. Each socket has a 

protocol type that is used:to dispatch generic operations 

like read and write to the appropriate protocol implemen- 

tation. The interface to the kernel RPC protocol is by 

means of a new protocol type (RPC) with two subtypes: 

client and server. The implementation enforces write-read 

alternation for client sockets and read-write alternation for 

server sockets. 

8 Implement ing  Repl icated Procedure  Calls 

Replicated procedure calls are implemented on top of 

the paired message layer. There are two subalgorithms 

involved in a many-to-many call from a client troupe to a 

server troupe: each client troupe member performs a one- 

to-many call to the entire server troupe, and each server 

troupe member handles a many-to-one call from the entire 

client troupe. 

The algorithms for these two cases are described in the 

following sections. In Circus, these algorithms are imple- 

mented as part of the run-time system that is linked with 

each user's program. The run-time system is called by stub 

procedures that axe produced automatically from a module 

interface; the replicated procedure call algorithms them- 

selves are thus hidden from the programmer. When the 

algorithms below refer to various client and server actions, 

the reader should bear in mind that those actions are per- 

formed by the protocol routines in the corresponding run- 

time systems, rather than by the portions of the program 

written by the user. 

8.1 One-To-Many Calls 

The client half of the replicated procedure call algorithm 

performs a o n e - t o - m a n y  call as shown in Figure 2. The pur- 

pose of the one-to-many call algorithm is to guarantee that 

the procedure is executed at each server troupe member. 

The same call message is sent to each server troupe 

member, with the same call number at the paired message 
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Figure 2: A one-to-many call Figure 3: A many-to-one call 

level. The client then awaits the arrival of the r e t u r n  

messages from the members of the server troupe. 

In the Circus replicated procedure call implementation, 

the client will normally wait for ai] the r e t u r n  messages 

from the server troupe before proceeding. The client 

receives notification if any server troupe member crashes, 

so it can proceed with the r e t u r n  messages from those that 

are still available. The return from a replicated procedure 

call is thus a synchronization point, after which each client 

troupe member knows that all server troupe members 

have performed the procedure, and each server troupe 

member knows that all client troupe members have received 

the result. Alternatives to this strategy are discussed in 

Section 8.4 below. 

8.2 M a n y - T o - O n e  Calls  

Now consider what occurs at a single server when a 

client troupe makes a replicated call to it. The server will 

receive call  messages from each client troupe member, as 

shown in Figure 3; this is called a many-to-one call. The 

semantics of replicated procedure call require the server to 

execute the procedure only once and return the results to all 

the client troupe members. The many-to-one call algorithm 

must therefore solve the following two problems: 

1. The server must be able to distinguish unrelated 

call messages from ones that are part of the same 

replicated call. 

2. When one call  message of a replicated call arrives, 

the server must be able to determine how many 

other call  messages to expect as part of the same 

replicated call. 

A complete description of the algorithm may be found in 

the author's dissertation [12]. 

In Circus, the server waits for call  messages from all 

available client troupe "members before proceeding. Alter- 

natives to this strategy are discussed in Section 8.4 below. 

8.3  M a n y - T o - M a n y  Cal ls  

In general, a replicated procedure call is a many-to- 
many call from a client troupe to a server troupe, as shown 

in Figure 1. A many-to-many call involves the following 

Steps: 

1. Each client troupe member sends a call  message to 

each server troupe member. 

2. Each server troupe member receives a call  message 

from each client troupe member. 

3. Each server troupe member performs the requested 

procedure. 
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4. Each server troupe member  sends a r e t u r n  message 

to each client troupe member.  

5. Each client troupe member  receives a r e t u r n  mes- 

sage from each server troupe member. 

The key to the many-to-many case is the observation 

that  steps 1 and 5 are the same steps that  an unreplicated 

client performs when making a one-to-many call to a server 

troupe, and steps 2, 3, and 4 are the same steps that  an 

unreplicated server performs when handling a many-to-one 

call from a client troupe. The general case therefore factors 

into the two special cases already described; no additional 

algorithms are required for the general case. Each client 

troupe member executes the one-to-many algorithm (as if 

it were an unreplicated client calling the server troupe), 

and each server troupe member executes the many-to-one 

algorithm (as if it were an unreplicated server handling an 

incoming call from the client troupe). 

Observe also that  there is never any communication be- 

tween members of the same troupe in the five steps listed 

above; communication occurs only between members of dif- 

ferent troupes. This means that  nowhere in a troupe mem- 

ber is there any information about  other members of its own 

troupe, or whether it is replicated at all. Neither the proto- 

col routines in the run-time system nor the stub procedures 

produced by the stub compiler use such information. 

Finally, notice that  messages are sent only in steps 

1 and 4, and in both these steps, the message is sent to 

an entire troupe. Thus, ca l l  messages are sent to the 

entire server troupe, and r e t u r n  messages are sent to the 

entire client troupe. These steps obviously correspond to 

multicast operations. 

A multicast implementation would make a dramatic dif- 

ference in the efficiency of the replicated procedure call pro- 

tocol. Suppose that  there are rn client t roupe members and 

n server troupe members. Point-to-point communication 

requires a total  of m n  messages to be sent. In contrast, a 

multicast implementation requires only m % n messages to 

be sent. The Berkeley 4.2BSD networking primitives used 

by Circus do not currently allow access to the multicast 

capabilities of the Ethernet. 

8.4 Wait ing  for Messages  to Arrive  

A client making a one-to-many call requires a single 

result, but it receives a r e t u r n  message from each server 

t roupe member. Similarly, a server handling a many-to- 

one call must perform the requested procedure once, but  it 

receives a cal l  message from each client t roupe member.  

Since troupes are assumed to be deterministic, all the 

messages in these sets will be identical. When should 

computat ion proceed: as soon as the first message arrive~, 

or only after the entire set has arrived? 

Waiting for all messages to arrive and checking whether  

they axe identical is analogous to providing error  de tec t ion  

as well as transparent  error correction.  Any inconsistency 

among the messages is detected, but  the execution t ime 

of the replicated program as a whole is determined by the 

slowest member of each troupe. This u n a n i m o u s  approach 

is used by default in the Circus system. 

If one is willing ~ to forfeit such error detection, then a 

f i r s t - come  approach can be used, in which computat ion 

proceeds as soon as the first message in each set arrives. 

In this case, the execution time of the program as a whole 

is determined by the fastest member  of each troupe. 

The first-come approach requires only a simple change 

to the one-to-many call protocol. The client can use the 

call sequence number provided by the paired message pro- 

tocol to discard r e t u r n  messages from slow server troupe 

members. 

The many-to-one call protocol becomes more compli- 

cated; in this respect, the first-come approach destroys the 

symmetry between the client and server halves of the proto- 

col. The server must be allowed to start  performing a pro- 

cedure as soon as the first ca l l  message from a client t roupe 

member arrives. When a cal l  message for the same proce- 

dure arrives from another  member of that  client troupe, the 

server cannot execute the procedure again, because that  

would violate the exactly-once execution property. The 
server must therefore retain the r e t u r n  message until the 

corresponding cal l  messages from all other members of the 

client t roupe have arrived. Whenever such a ca l l  message 

arrives, the r e t u r n  message is retransmitted.  Execution 

of the procedure thus appears instantaneous to the slow 

client t roupe members, since the r e t u r n  message is ready 

and waltingl 

Note that  once a client t roupe member has received the 

results of its call, it is free to go ahead and make more 

calls. Therefore, as the slower members of the client t roupe 

fall further and further behind the faster ones, the server 

must buffer more and more r e t u r n  messages. When a 

cal l  message arrives from one of the slower client t roupe 

members,  the server must be able to find its earlier response 

from among the buffered r e t u r n  messages, in order to 

retransmit  it. The call sequence number associated with 

each message by the paired message protocol suffices for 

this purpose, because of the assumption that  troupes are 

deterministic. 

A bet ter  first-come scheme can be implemented by 

buffering messages at the client rather than the server. In 

this case, the server broadcasts r e t u r n  messages to the 

entire client t roupe in response to the first ca l l  message. 

A client t roupe member may receive a r e t u r n  message for 

a ca l l  message that  has not  yet been sent; this return 
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message must be retained until the client troupe member 

is ready to send the corresponding call message. 

This approach is preferable to buffering messages at the 

server, for the following reasons: 

I. the burden of buffering return messages and pairing 

them with the corresponding late call messages is 

placed on the client, rather than on a shared and 

potentially heavily-loaded server; 

2. the server can use broadcast rather than point-to- 

point communication; and 

3. no communication is required by a slow client once 

it is ready to send a call message, since the corre- 

sponding r e t u r n  message has already arrived. 

Majority voting schemes require similar buffering of 

r e t u r n  messages. Simulations and queueing models have 

been used to analyze the buffering requirements in this 

context as a function of the variation in execution rate [33]. 

Error detection is desirable in practice, since program- 

mers may not be sure that their programs are determinis- 

tic. To provide error detection and still allow computation 

to proceed early, a watchdog scheme can be used. This 

technique requires that the computation be structured as 

one or more transactions. Computation proceeds with the 

first message, but another thread of control (the watch- 

dog) waits for the remaining messages and compares them 

with the first. If an inconsistency is detected by the watch- 

dog, the main computation is aborted. Note that this 

scheme also requires buffering (in the form of transaction 

workspaces) to compensate for the skew in execution rates 

of different troupe members. 

Many other schemes axe possible in addition to the 

approaches described here. Discovering and evaluating such 

variations is an important area for future research. 

8.5 Crashes  and  P a r t i t i o n s  

Whenever a troupe member is waiting for one or more 

messages in the one-to-many and many-to-one call algo- 

rithms, the underlying message protocol uses probing and 

timeouts to detect crashes. This mechanism relies on net- 

work connectivity, and therefore cannot distinguish be- 

tween crashes and network partitions. 

Network partitions raise the possibility of different 

troupe members continuing to  execute, each believing that 

the others have crashed. To prevent troupe members in dif- 

ferent partitions from diverging, one can require that each 

troupe member receive a majority of the expected set of 

messages before computation is allowed to proceed there. 

8.6 Collators 

One way to relax the determinism requirement (at the 

cost of transparency) is to" allow programmers to specify 

their own procedures for reducing a set of messages to a 

single message. Such procedures are called collators. 
A collator is a function that maps a set of messages 

into a single result. To improve performance, it is desirable 

for computation to proceed as soon as enough messages 

have arrived for the collator to make a decision. (This 

is equivalent to using lazy evaluation when applying the 

collator.) 

Three collators are supported at the replicated proce- 

dure call protocol level (viewing the contents of call and 

r e t u r n  messages as uninterpreted bits): unanimous, which 

requires all the messages to be identical and raises an excep- 

tion otherwise; majority, which performs majority voting on 

the messages; and first-come, which accepts the first mes- 

sage that arrives. The framework of replicated calls and col- 

lators is sufficiently general to express weighted voting [15] 

and other replicated or broadcast-based algorithms [24]. 

9 P e r f o r m a n c e  A n a l y s i s  

Experiments were conducted to measure the cost of 

replicated procedure calls as a function of the degree of 

replication. The cost of a simple exchange of datagrams 

was also measured in order to establish a lower bound. 

The experiments were run on lightly loaded computer 

center machines during an inter-semester break at Berke- 

ley. The distributed system consisted of six identically 

configured VAX*-11/750 systems, connected by a single 10 

megabit per second Ethernet cable. 

Any implementation of a paired message protocol on top 

of an unreliable datagra~n layer must perform at least the 

following steps during the course of a message exchange: 

1. Send a datagram. 

2. Receive a datagram, specifying a timeout to detect 

lost datagrams. 

The time required to perform these operations therefore 

represents a lower bound for any implementation of a 

remote procedure call protocol using unreliable datagrams. 

A reliable byte-stream protocol, such as TCP, is gener- 

ally considered to be inferior to  datagrams for the purposes 

of a remote procedure call implementation. A TCP-based 

client and server are included for the purpose of compari- 

son. Unlike the UDP client, the TCP client does not need 

any timeouts, because TCP provides reliable delivery. 

*VAX is a trademark of Digital Equipment Corporation. 
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degree of real time total cpu time user cpu time kernel cpu time 
replication (msecs/rpc) (msecs/rpc) (msecs/rpc) (msecs/rpc) 

(UDP) ~ 26.5 13.3 0.8 12.4 

(TCP) 23.2 8.3 0.5 7.8 

1 48.0 24.1 5.9 18.2 

2 58.0 45.2 10.0 35.2 

3 69.4 66.8 13.0 53.8 

4 90.2 87.2 16.8 70.4 

5 109,5 107.2 21.0 86.1 

Table 1: Performance of UDP, TCP, and Circus 

The first set of experiments measured the time per 

procedure call in Circus as a function of the degree of 

replication. For comparison, the time for an exchange of 

UDP datagrams and the time for an exchange of messages 

over a TCP byte-stream were also measured. The time of 

day and the total user-mode and kernel-mode CPU time 

used by the client process were recorded before and after 

each replicated procedure call. The entries in Table 1 were 

calculated by averaging the differences between the before 

and after values for each component of the execution time. 

Note that the TCP echo test is faster than the UDP 

echo test. Several factors help explain this somewhat sur- 

prising result. First, the cost of TCP connection establish- 

ment is effectively ignored, since it is amortized over the 

read and wr i t e  loop. Second, the UDP-based test makes 

two alarm calls, and therefore two s e t i t i m e r  system calls, 

which take approximately 1.2 milliseconds each (see Ta- 

ble 2); the corresponding TCP timers are managed by the 

kernel. Finally, the read and wr i t e  interface to TCP byte- 

streams is more streamlined than the sendmsg and recvmsg 

interface to UDP datagranls, which uses scatter-gather I /O. 

The scatter-gather interface uses an array of address/length 

pairs to specify the location in user space of the datagram 

to be received or sent. The array is first copied from user to 

kernel space, and then the pieces of the datagram specified 

by the array are transferred between user and kernel space. 

This additional copying does not occur when the read and 

wr i t e  system calls are used. 

An unreplicated Circus remote procedure call requires 

almost twice the time of a simple UDP exchange. This 

is largely due to the extra system calls requiredto handle 

various aspects of the Circus protocol. The use of interrupt- 

driven I /O and timers, for example, requires substantial 

trafficking with the software interrupt facilities in order 

to protect critical regions. It is worth noting that these 

facilities are used by Circus to compensate for the lack 

of multiple lightweight processes within the same address 

space under Berkeley 4.2BSD. 

Another added expense is the presence of fairly elabo- 

rate code to handle multi-homed machines (machines with 

more than one network address). In the research computer 

network at Berkeley, some machines have as many as four 

network addresses. The sendrasg system call does not allow 

a source address to be specified when the sender is multi- 

homed. This means that a nmlti-homed server is unable to 

ensure that its reply to a client bears the same network ad- 

dress that the client used in reaching the server. The only 

way around this problem in the current Berkeley 4.2BSD 

system is for a multi-homed server to use an array of sock- 

ets, one for each of its addresses, and to use the s e l e c t  

system call to multiplex among them. This situation is 

a design oversight in Berkeley 4.2BSD, not a fundamental 

problem. 

The incremental expense of a Circus replicated proce- 

dure call as the degree of replication increases is more rea- 

sonable. Table 1 shows that each additional server troupe 

member adds between 10 and 20 milliseconds to the real 

time per call. The fact that this is smaller than the time 

for a UDP datagram exchange shows that the replicated 

procedure call protocol achieves some parallelism among 

the message exchanges with server troupe members, but it 

is still the case that each component of the time per call 

increases hnearly with the size of the troupe. This linear 

increase is shown in Figure 4. 

In the second set of tests, an execution profiling tool was 

used to analyze the Circus implementation in finer detail. 

The profiles showed that six Berkeley 4.2BSD system calls 

account for more than half of the total CPU time used 

to perform a replicated procedure call. Table 2 shows the 
CPU time for each of these primitives. Table 3 shows the 

percentage of the total CPU time for a replicated call that 

each of these system calls accounts for, as a function of the 
degree of replication. 

These measurements show that most of the time re- 

quired for a Circus replicated procedure call is spent in the 
simulation of multicasting by means of successive sendmsg 

operations, and tha t  sendmsg is the most expensive of the 
Berkeley 4.2BSD primitives used by the Circus implemen- 
tation. 
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system call msecs/call description 

sendmsg 8.1 

recvmsg 2.8 

select 1.8 

setitimer 1.2 

gettimeofday 0.7 

sigblock 0.4 

send datagram 

receive datagram 

inquire if datagram has arrived 

start interval timer for clock interrupt 

get time of day 
mask software interrupts to begin critical region 

Table 2: CPU time for Berkeley 4.2BSD system calls used in Circus 

degree of 
replication sendmsg s e l e c t  

27.2 11.2 9.2 

28.8 12.7 10.6 

32.5 11.7 11.9 

32.9 10.3 10.7 

33.0 9.9 11.1 

percentage of total CPU time spent in: 
recvmsg setitimer gettimeofday sigblock 

4.4 2.2 1.7 

3.5 2.7 1.2 

4.2 2.6 1.0 

5.4 2.9 0.8 

5.0 3.1 0.9 

Table 3: Execution profile for Circus replicated procedure calls 

total 

55.9 

59.5 

63.9 

63.0 

63.0 

msecs/call 
125 "l 

100" 

75 

real time 

total CPU time 

CPU time 

50 

25" user CPU time 

1 • • i •  • 

1 2 3 4 5 

degree of replication 

Figure 4: Performance of Circus replicated procedure calls 
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10 T h e  S y n c h r o n i z a t i o n  P r o b l e m  f o r  T r o u p e s  

Multiple threads of control give rise to concurrent calls 

from different client troupes to the same server troupe. This 

is not the same as a many-to-one call, which is handled by 

the algorithms described in Section 8. For a module to 

operate correctly in the presence of concurrent calls from 

different clients, even without replication, it must appear 

to execute those calls in some serial order. Serializability 

can be achieved by any of a number of concurrency control 

algorithms [2]. 

When the server module is a troupe, not only must con- 

current calls from different client troupes be serialized by 

each server troupe ~nember, but they must be serialized in 

the same order. Correct semantics require proper coordina- 
tion between the replicated procedure call mechanism and 

a synchronization mechanism, such as transactions. 

11 R e p l i c a t e d  T r a n s a c t i o n s  
The transaction mechanism for troupes must guarantee 

serializability and atomicity, so that when a transaction 

aborts, its tentative updates and the committed updates of 

its subtransactions can be undone without affecting other 

concurrently executing transactions. 

Conventional transaction mechanisms not only provide 

these two properties, but they also guarantee the perma- 

nence of committed updates. Stable storage is used for 

intention lists and commit records, and the commit algo- 

rithm is coupled with a crash recovery algorithm. 

This third property (permanence) is not required in pro- 

grams constructed from troupes, because troupes automat- 

ically mask partial failures. Consequently, an implementa- 

tion of transactions for replicated distributed programs can 

dispense with the crash recovery facilities based on stable 

storage and operate entirely in volatile memory. 
The correctness condition for conventional transactions 

is serializability. With troupes, however, independent se- 

rialization of transactions at each troupe member is not 

enough: troupe consistency must also be preserved. 

A sufficient condition for preserving troupe consistency 

is to ensure that all troupe members serialize transactions 

in the same order. Existing concurrency control algorithms 

for replicated databases guarantee identical serialization 

orders at all replicas, but many of these algorithms require 

communication among replicas [2]. The desire for troupe 

members to remain unaware of one another's existence rules 

out the use of such algorithms. 

One well-known multiple-copy concurrency control algo- 

rithm requires no inter-replica communication: two-phase 

locking with unanimous update [2]. This algorithm requires 

each replica to use two-phase locking for local concurrency 

control. The protocol presented in the next section removes 

this restriction. 

12 A T r o u p e  C o m m i t  P r o t o c o l  

The protocol described in this section is optimistic, be- 

cause it assumes that concurrent transactions axe unlikely 

to conflict, and it is generic~ because it assumes nothing 

about the local concurrency control algorithms used by 

the individual troupe members. The protocol detects any 

attempt by troupe members to serialize transactions dif- 

ferently, and transforms such an attempt into a deadlock. 

Deadlock detection is then used to abort and retry one or 

more of the offending transactions [16]. 

When a server troupe member is ready to commit or 

abort a transaction, it calls a ready_to_commit procedure. 

A t rue  argument means that the server troupe member 

is ready to commit the transaction; a false argument 

means that the server troupe member wishes to abort the 

transaction. If the ready_to_commit procedure returns 

t rue ,  the server troupe member goes ahead and commits 

the transaction; otherwise, the transaction is aborted. The 

server's call is translated into a remote call to the client 

troupe. The roles of client and server are thus temporarily 

reversed; this is known as a call-back protocol. 

The troupe commit protocol has the following essential 

property: two troupe members succeed in committing two 

transactions if and only if both troupe members attempt to 

commit the transactions in the same order. 

To see this, let S~ and $2 be two members of a server 

troupe S, and let C and C' be two client troupes. Suppose 

C performs transaction T at S, and C' performs transac- 

tion T' at S. 

If both server troupe members commit T and T' in the 

same order, say T followed by T', then both Sl and $2 

call ready to  commit first at C and then at C'. Client 

C tells both server troupe members to go ahead, and C t 

does the same, so both $1 and $2 succeed in committing 

the transactions. 

Now suppose that $1 tries to commit T first, but $2 

tries to commit T first. Then Sl calls ready_to commit 

at C and $2 calls r e a d y t o c o m m i t  at C ~. The result is 

deadlock, because the ready_to_commit procedure at each 

client waits for all members of the server troupe to become 

ready before responding to any of them. Therefore, neither 

$1 nor $2 succeeds in committing either transaction. The 

troupe commit protocol therefore ensures that all troupe 

members commit transactions in the same order. 

Note that it is only necessary to transform different se- 

rialization orders into deadlocks when the different seri- 

alization orders would cause inconsistent states at troupe 

members. If the transactions being serialized do not con- 

flict with one another, then inconsistency cannot occur, yet 
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the protocol above may still cause deadlock. To remedy 

this, the local concurrency control algorithm should commit 

non-conflicting transactions in parallel. For example, using 

the notation above, suppose that transactions T and T t do 

not conflict. Then $1 and $2 commit T and T' in par- 
allel, so $1 and $2 call both ready_to_commit at C and 

r e a d y t o c o m m i t  at C S in parallel. The deadlock described 

above does not occur, because the ready_to_commit pro- 

cedure at each client receives calls from both $1 and $2. 

13 B i n d i n g  A g e n t s  f o r  D i s t r i b u t e d  P r o -  

g r a m s  

A binding agent is a mechanism that enables programs 

to import and export modules by interface name. In the 

case of distributed programs constructed with remote pro- 

cedure calls, the interface name must be associated with the 

address of the server that exports it, and must be looked up 

by the client that imports it. These functions (registration, 

lookup, and perhaps deletion) can be provided by a general- 

purpose name server. For example , Grapevine [4] is used 

as the binding agent in the Xerox PARC RPC system [5], 

and Clearinghouse [24] plays the same role for Courier [32]. 

A natural means of reducing the cost of name server 

lookups is to have clients cache the results of such lookups. 

Thus, a client contacts the binding agent only when it 

imports an interface, and it uses the same information for 

all subsequent remote calls to that module. This raises 

the classic cache invalidation problem: what happens when 

a client's binding information becomes stale because the 

information at the name server has changed? 

Suppose a client makes a remote call to a server using 

its cached information. In the case of programs constructed 

from conventional remote procedure calls, there are three 

reasons why the cached information might be stale: 

I. There is no longer a server at the specified address. 

2. There is a server at that address, but it no longer 

exports the specified interface. 

3. There is a server at that address and it exports that 

interface, but the actual instance of the module in 

question is no longer the same as the one originally 

imported by the client. 

If all three of these cases can be detected at or below 

the remote procedure call protocol level, the run-time 

system can raise an exception in the client to indicate 

that rebinding is required. Therefore, the problem of 

masking stale binding information reduces to the problem 

of detecting the above three cases. 

The first can be detected at the paired message protocol 

level, since there will be no response to repeated retransmis- 

sions. The second can be detected at the remote procedure 

call protocol ]eve], because the server's run-time system 

will reject the call. The third case requires some help from 

the binding agent, in the form of incarnation numbers for 

exported interfaces, as in the system described by Birrell 

and Nelson [5]. This scheme time-stamps the record cre- 

ated when a server registers itself with the binding agent. 

The client's run-tinle system receives the time stamp along 

with the server address when it imports an interface and 

includes it in all subsequent calls to that module. It is thus 

a simple matter for the server's run-time system to detect 

and reject mismatches. 

A related problem is garbage collection, which is re- 

quired when some of the binding agent's own registration 

information becomes obsolete. This can happen if a server 

crashes or otherwise ceases to export an interface without 

informing the binding agent. The problem of garbage col- 

lection reduces to the cache invalidation problem, since the 

information maintained by the binding agent is itself just 

a cached version of the truth. Of the above three ways 

in which binding information can be out of date, only the 

first two apply to the binding agent. The third case is de- 

tected by the binding agent itself as part of the process of 

assigning incarnation numbers: when a server re-exports an 

interface, the binding agent will notice that there is already 

an entry for that name and address. In the first two cases, 

however, it is the client that ends up detecting the invalid 

binding; this fact must somehow reach the binding agent. 

One solution is to include a special r eb ind  procedure 

in the interface to the binding agent. Each client, upon 

detecting an invalid binding, calls r eb ind  with the invalid 

binding as an argument. The binding agent looks up and 

returns the current binding for the given name, and deletes 

tile old binding if it is still present. (The old binding passed 

to the r eb ind  procedure is only a hint; it need not be 

deleted immediately, nor should it be blindly accepted as 

invalid in an insecure environment.) 

Another solution is to use a garbage collector: a process 

which periodically enumerates all the registered modules, 

probes them with a special null procedure call (an "are you 

there?" request), and explicitly deletes the bindings for 

modules that do not respond. The garbage collector need 

not be part of the binding agent if the binding interface 

includes enumeration and deletion. 

14 B i n d i n g  A g e n t s  f o r  R e p l i c a t e d  P r o -  

g r a m s  

Replicated distributed programs import and export 
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troupes rather than single modules, and therefore require 

additional support from the binding mechanism. First of 

all, the binding agent must manipulate sets of module ad- 

dresses rather than single addresses, and it must manage 

the troupe IDs required by the replicated procedure call 

algorithms of Section 8. The binding agent must allow a 

third party to register an entire troupe. Finally, it must 

be possible to add or delete individual troupe members, in 

order to handle troupe reconfiguration. 

Since binding is such a pivotal mechanism, it is essential 

that the binding agent be highly available. An obvious 

choice is to make the binding agent a troupe and express 

the interactions with it in terms of replicated procedure 

calls. The interface to such a binding agent is shown in 

Figure 5. 

The initial registration of a troupe also requires the abil- 

ity to add a member to an existing troupe. A troupe cannot 

register itself en masse with a single replicated procedure 

call, because it does not have a troupe ID until it is regis- 

tered. To avoid this circularity, each troupe member must 

add itself individually to an initially empty troupe, using 

add_troupe_member. The synchronization requirements of 

the add_troupe_member operation axe discussed below. 

The cache invalidation problem becomes more compli- 

cated when replication is introduced. Let T be the set of 

members of a troupe, and let C be the cached set of mem- 

binding: 
interface 

troupe_name: type = string 
troupe_member: type = module_address 
troupe: type = set of troupe_member 
troupe id: type = unique_id 

register_troupe: 
procedure (troupe_name, troupe) 

returns (troupe_id) 

add_troupe_member: 
procedure (troupe_name, troupe_member) 

returns (troupe_id) 

lookup_troupeby_id: 
procedure (troupe_id) 

returns (troupe) 

lookup_troupe_by_name: 
procedure (troupe_name) 

r e t u r n s  ( t roupe)  

end interface 

Figure 5: The interface to the binding agent 

bers that a client believes constitutes the troupe. Then C 

is stale if and only if C ¢ T. The possibilities for stale in- 

formation correspond to the possible intersections of these 

two nonempty sets: 

1. TQC=O 

2. T c C  

3. T D C  

4. TNC#OAT~CAT~C 

The semantics of troupes and replicated procedure calls 

require every member of a server troupe to execute a 

procedure if any member does. This will be the case if 

T = C, T n C = 0, or T c C. The first two possibilities 

for stale information are therefore harmless; the client will 

detect that some or all of the members of C are invalid, 

and perform the necessary rebinding. In the last two cases, 

however, the client calls some but not all of the troupe 

members; these calls cannot be allowed to succeed. 

The solution is to use troupe IDs as a form of incarna- 

tion number. Each call message carries the troupe ID of 

its destination as well as its source, and each server troupe 

member rejects any call message whose destination troupe 

ID is incorrect. If it can be guaranteed that a troupe al- 

ways changes both its membership and its troupe ID in 

an atomic operation, then the problem is solved: a server 

troupe member accepts a call from a client only if it bears 

the correct server troupe ID, which is the case only if the 

client knows the correct membership of that server troupe. 

The add_troupe_member procedure must therefore be 

an atomic transaction that also changes the troupe ID. This 

requires informing the existing members of the troupe that 

their troupe ID has changed, which can be accomplished by 

running a special se t_ t roupe_id  procedure at each mem- 

ber. The se t_ t roupe_id  procedure for each troupe can 

be generated automatitally I{ se t_ t roupe  id  is executed 

as a subtransaction of add_troupe member,~the change in 

troupe ID and troupe membership will happen atomically 

and will be correctly serialized with any other calls to the 
server troupe. 

15 Reconfiguration and Recovery from 
Partial Failures 

A troupe is resilient to partial failures, in which at least 

one of its members continues to function. Machine crashes 

are detected (using a timeout) by the paired message pro- 

tocol, which raises an exception that can be used by higher 

level software. At some point it becomes desirable to re- 

place troupe members that have crashed, because a diml.-  

75 



ished troupe is more vulnerable to future crashes. 

Replacing a crashed troupe member or adding a new 

troupe member to an existing troupe requires the following 

two steps: 

1. the new member must be brought into a state con- 

sistent with that of the other members, and 

2. the new member must be registered with the binding 

agent. 

This section describes how to perform the first step; the 

add troupe_member procedure (described in Section 14) is 

used to accomplish the second step. 

The solution is to use a mechanism similar to check- 

pointing. In this scheme, the state information of an exist- 

ing troupe member is externalized (converted to a standard 

external representation), then transmitted to the newly cre- 

ated troupe member, where it is internalized. The trans- 

mission method for abstract data types proposed by Herlihy 

and Liskov is similar [18]. 

A special g e t s t a t e  procedure can be produced au- 

tomatically for this purpose. The g e t _ s t a t e  procedure 

copies the module state from the callee to the caller and 

handles the details of externalization and internalization. 

This procedure executes as a read-only atomic transac- 

tion, so that the state cannot be affected while a new 

troupe member is being initialized. A new server process 

wishing to join a troupe initializes its state by making a 

replicated call to the ge t_ s t a t e  procedure at the existing 

members of the troupe, and then calls the binding agent's 

add t roupemember  procedure to register itself. Since the 

states of the existing troupe members are consistent, and 

since g e t s t a t e  is free of side effects at the callee, the 

replicated call to ge t_ s t a t e  is not strictly necessary; an 

uureplicated call to any of the existing troupe members 

would suffice. 

Finally, the call to add troupe_member and the call to 

ge t_ s t a t e  must be bracketed together in a single atomic 

transaction, to guarantee that the new member joins the 

troupe and acquires the correct state as an indivisible 

operation. 

16 S u m m a r y  

The mechanisms described in this paper allow a pro- 

grammer to add replication transparently and flexibly .to 

existing programs. The resulting replicated distributed 

programs automatically tolerate partial failures of the un- 

derlying fail-stop hardware. 

The architecture combines remote procedure calls with 

replication of program modules for fault tolerance. The 

replicated modules, called troupes, are the basis for con- 

strueting replicated distributed progrILms. 

Previous fault-tolerant architectures were either too ex- 

pensive or too inflexible. Simple replication of hardware 

components, for example, requires all software to be exe- 

cuted redundantly, rather than just critical modules, and 

permits only a single degree of replication. In contrast, 

the present approach introduces replication at the program 

module level, and allows the degree of replication of each 

moduh to vary independently and dynamically. 

The replication mechanisms introduced in this paper 

can be used transparently, So that the details of replication 

are invisible to the programmer. Transparent distributed 

and replicated mechanisms are an important means of 

coping with the complexity of fault-tolerant distributed 

programs. A model of program semantics was used to 

characterize deterministic programs, a class of programs 

that can be transparently replicated. 

The model is based on program modules and threads 

of control. In a distributed system, threads must be able 

to cross machine boundaries to move between modules 

on different machines. An algorithm to simulate such 

distributed threads in terms of conventional processes and 

remote procedure calls was presented. 

Transfer of control between troupes requires generaliz- 

ing remote procedure calls to replicated procedure calls. 

The semantics of replicated procedure calls can be summa- 

rized as exactly-once execution at all replicas. 

The Circus replicated procedure call implementation 

was described. Message transport is provided by a datagram- 

based paired message layer. The general replicated pro- 

cedure call protocol, requiring many-to-many communica- 

tion, is expressed in terms of two sub-protocols, for the 

one-to-many and many-to-one cases. 

In the Circus system, each troupe member waits for 

all incoming messages before proceeding. Troupe members 

are thus synchronized at each replicated procedure call and 

return. Alternative schemes that allow computation to 

proceed before all messages have arrived were discussed. 

Experiments were conducted to measure the perfor- 

mance of the Circus replicated procedure call imphmen- 

tation. The results of the measurements show that six 

Berkeley 4.2BSD system calls account for more than half 

of the CPU time of a Circus replicated procedure call. The 

two most expensive of these system calls use a particularly 

inefficient interface to copy data between user and kernel 

address spaces. The other four system calls are used to 

compensate for the lack of lightweight processes in Berke- 

ley 4.2BSD. 

The use of transactions for synchronizing concurrent 

threads of control within replicated distributed programs 

was discussed. Serializability, the property guaranteed by 

concurrency control algorithms for conventional transac- 
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tions, was shown to be insufficient for the purposes of 

replicated transactions, because it does not guarantee that 

transactions commit in the same order at all troupe mem- 

bers. A troupe commit protocol that guarantees a con- 

sistent commit order for replicated transactions was pre- 

sented. 
Mechanisms for binding and reconfiguring replicated 

distributed programs were described. The problem of de- 

tecting obsolete binding information was identified; this 

problem is both more complicated and more critical than 

the corresponding problem in the nureplicated case. A so- 

lution using troupe IDs as  incarnation numbers was pre- 

sented. 

17 D i r e c t i o n s  for  F u t u r e  R e s e a r c h  

Replicated procedure calls are useful for more than just 

fully replicated distributed programs. The troupe commit 

protocol (presented in Section 12) and other protocols 

in the author's Ph.D. dissertation [12] are examples of 

how the use of replicated procedure calls leads to elegant 

formulations of algorithms traditionally described in terms 

of asynchronous messages. 

An important area for further research is to express 

more algorithms of this type in terms of replicated proce- 

dure calls. For example, the algorithms used in distributed 

database systems for concurrency control, replicated data, 

atomic commit and recovery, and deadlock detection would 

lend themselves to such treatment. 

Further research is needed to evaluate the alternative 

replicated procedure call protocols described in Section 8.4 

and to discover new ones. An approach that allowed the 

choice between such schemes to be made on a per-module 

basis, as a programming-in-the-large activity, would be 

attractive. 

The troupe commit protocol presented in Section 12 

must be implemented ~xnd its performance evaluated. Al- 

lowing application-specific concurrency control within the 

context of troupes is another area for further work. 
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