
Parallel Network RAM: Effectively Utilizing Global Cluster Memory for Large
Data-Intensive Parallel Programs

John Oleszkiewicz, Li Xiao and Yunhao Liu
Department of Computer Science and Engineering

Michigan State University
East Lansing, MI 48824 USA�

oleszkie, lxiao, liuyunha � @cse.msu.edu

Abstract

Large scientific parallel applications demand large
amounts of memory space. Current parallel comput-
ing platforms schedule jobs without fully knowing their
memory requirements. This leads to uneven memory al-
location in which some nodes are overloaded. This, in
turn, leads to disk paging, which is extremely expen-
sive in the context of scientific parallel computing. To
solve this problem, we propose a new peer-to-peer solu-
tion called Parallel Network RAM. This approach avoids
the use of disk and better utilizes available RAM re-
sources. This approach will allow larger problems to be
solved while reducing the computational, communica-
tion and synchronization overhead typically involved in
parallel applications.

1. Introduction

Many scientific computing applications demand a large
amount of processing power, memory space and I/O ac-
cesses. One standard approach to alleviate processor and
memory load is to parallelize these applications into mul-
tiple parallel processes so that the may be run on multi-
ple nodes in a computing cluster. An advantage of this ap-
proach is CPU and memory resources are evenly distributed
and used. Another advantage is the nature of load balanc-
ing in parallel computing. However, these two advantages
may not serve the best performance interests of these par-
allel processes because the balanced workload distribution
among processes may result in unbalanced resource utiliza-
tion in a cluster. Specifically, there are trade-offs between
the number of parallel jobs and memory usage.

For a given problem size, in order to ensure each node
has enough memory space, the number of parallel processes
in a parallel job may be set very high. This results in less

work and more required synchronization per parallel pro-
cess The CPU on each node may be underutilized. Paral-
lel speedup is very hard to improve as the number of paral-
lel processes increases to a certain value, due to increasing
communication and synchronization overhead. Good per-
formance cannot be guaranteed by using a large number of
nodes.

On the other hand, if the number of parallel processes is
limited, the CPU will be better utilized but nodes may run
out of available memory and may be forced to use the lo-
cal disk as a swapping site. Performance will suffer from
frequent page faults since hard disks are orders of magni-
tude slower than RAM. Research has shown that disk pag-
ing results in unsatisfactory performance on parallel plat-
forms and should be avoided [3, 4, 15].

Network RAM [1,11] has been proposed to schedule se-
quential jobs in clusters to even memory load and reduce
paging overhead. This technique allows applications to al-
locate more memory than is available on the local machine
while avoiding paging to disk by allocating idle memory of
other machines over a fast interconnecting network. The re-
mote RAM is treated as a new layer in the memory hier-
archy between RAM and disk. Resulting page accesses are
slower than RAM, but much faster than disk [11, 23].

Network RAM techniques cannot be directly applied to
parallel jobs to achieve satisfactory performance for several
reasons. One serious issue is that parallel processes from
the same parallel job synchronize regularly. If each node
seeks network RAM independently, it is likely that an un-
even amount of network RAM will be granted to the nodes.
With this uneven allocation, parallel processes will run at
different speeds. However, parallel jobs as a whole will only
run at the speed of the slowest process, due to synchroniza-
tion. The nodes with extra network RAM waste it, since
their hosted processes will spend most of their time wait-
ing for other processes. Therefore, coordination is required
to grant overloaded nodes equal portions of memory to al-
low hosted processes to run at equal speeds.



Another issue is network congestion. If parallel pro-
cesses individually seek out network RAM with no coordi-
nation among themselves, a potentially large amount of net-
work traffic will result. This may induce congestion on the
cluster. Parallel applications require high performance net-
works to run efficiently. Congestion could seriously impact
the performance of jobs on the system.

We propose a new peer-to-peer solution, called Parallel
Network RAM (PNR), so parallel jobs can utilize idle re-
mote memory. In this scheme, each node requests mem-
ory resources as well as provides memory for others. Re-
quests are indirect in that each node contacts a local man-
ager (super-peer) node and requests that it allocate net-
work RAM on its behalf. Managers coordinate the alloca-
tion of network RAM of several nodes and ensure that load
is distributed evenly to the nodes hosting parallel processes
belonging to the same parallel job. PNR will allow more
jobs to execute concurrently without resorting to disk pag-
ing. This will lead to decreased average response time and
higher system throughput.

We make several contributions in this paper.

� We show that existing techniques cannot maximize the
performance gain of parallel jobs in terms of both par-
allel speedup and execution time given a cluster with
unbalanced resource utilization.

� We propose a novel and effective solution to this prob-
lem called Parallel Network RAM (PNR). PNR coor-
dinates the allocation of network RAM to overcome
limitations of past solutions. This allows CPU cycles
to be provided by a small subset of nodes, while the
global memory space is open to the memory demand
of any parallel job.

� We build a simulator that models a cluster and our pro-
posed PNR algorithms. Conducting trace-driven simu-
lations, we compare the performance of the PNR sys-
tem to a disk paging-only solution (DP) and a network
RAM solution similar to previous work (NR).

The rest of the paper is organized as follows. Section 2
describes background information related to our work. Sec-
tion 3 presents our proposed PNR algorithms. Section 4 de-
scribes our trace-driven simulator and justifies our simula-
tion parameters and metrics. Section 5 presents our perfor-
mance evaluation. Section 6 discusses the implications of
our simulation results and section 7 concludes the paper.

2. Background and Related Work

The majority of work in this area has focused on paral-
lel job scheduling. In this section, we describe various par-
allel job schedulers and previous solutions to the problem
of overloaded memory on cluster systems.

2.1. Parallel Scheduling Algorithms

The primary duty of the scheduler on a cluster system is
to ensure high system throughput and low overall response
times of submitted jobs. One simple scheduling system is
a space sharing system. Space sharing allows more than
one job to be scheduled on the multicomputer at one time.
Each node is devoted to one parallel process, and each job
runs until completion without preemption. The space shar-
ing model is vulnerable to large jobs monopolizing the sys-
tem.

Gang scheduling combines both space sharing and time
sharing. Each job is alloted a time slot and the job may ex-
ecute in its time slot. Nodes within each time slot are space
shared. When a time quantum has expired, all jobs in the
current slot are preempted and replaced with jobs in the
next slot. The preemption process is called a Parallel Con-
text Switch (PCS) and involves a certain amount of over-
head. There is at most one process running on each node
at any given time. The maximum number of time slots al-
lowed is known as the maximum multiprogramming level
(MPL). Setting the MPL to a low level is a convenient way
to reduce PCS overhead and reduce overall memory load
on nodes. A system with an MPL value of one is a sim-
ple space sharing system with no time sharing.

There are a variety of processor allocation strategies and
variations of gang scheduling. These include first fit, best
fit, left-right by size, left-right by slots, load-based alloca-
tion strategies, ”buddy” systems such as distributed hierar-
chical control, and migration-based algorithms [8, 24].

2.2. Previous Solutions to the Memory Problem

Previous studies agree that unmodified disk paging re-
sults in severely reduced performance [4, 18]. Generally
speaking, previous solutions to this problem either attempt
to avoid disk paging entirely or attempt to reduce its effect.

Various ways to avoid paging by altering the scheduler
have been suggested. If no memory information about in-
coming jobs is known, then the simplest solution is to keep
the MPL to a minimum [14]. Another solution attempts
to guess memory usage information based on information
about the job provided by the user and information con-
tained in the program executable. The solution then uses this
information in scheduling decisions [3]. If other informa-
tion on jobs, such as speedup information, is known ahead
of time, then another solution can use that information [15].

One method that is aimed at reducing the disk paging
penalty is called block paging. In this scheme, the system
groups sets of pages together and acts upon these groups
as units. Groups are defined by the system based on mem-
ory reference behavior of jobs [20].



Much work has been done for sequential job schedul-
ing with memory considerations. Regarding network RAM
implementations, the Global Memory System (GMS) [7]
and the Remote Memory Pager [13] attempt to reduce the
page fault overhead by using remote paging techniques.
DoDo [1] is designed to improve system throughput by har-
vesting idle memory space in a distributed system. Here,
the owner processes have the highest priority for using
the CPUs and memory on their workstations. This divides
the global memory system into different local regions. A
memory ushering algorithm is used in MOSIX for mem-
ory load sharing [2]. This solution is a job-migration-based
load sharing approach.

Recently, we have developed several load sharing alter-
natives by considering both CPU and memory resources
with known and unknown memory demands [21, 22]. The
objective of our designs is to reduce the number of page
faults caused by unbalanced memory allocations of dis-
tributed jobs so that overall performance can be signifi-
cantly improved.

3. Parallel Network RAM

We propose a novel and effective technique called Par-
allel Network RAM (PNR) to better utilize the resources of
both CPU and memory and minimize communication and
synchronization overhead. Our objective is to fundamen-
tally improve the efficiency of large scale scientific com-
puting. Instead of evenly allocating parallel tasks among the
nodes, we consider CPU and memory resource allocations
separately. Under this non-uniform scheme, the number of
CPUs to be assigned to a parallel job will be optimized in
order to better utilize increasingly powerful CPU cycles and
to minimize the communication and synchronization over-
head among cluster nodes. Each job can utilize both the lo-
cal memory space from the assigned CPUs and the remote
memory space in other nodes. With PNR, speedup can be
scaled very well as the available remote memory increases,
and performance can also be scaled very well as the prob-
lem size increases.

It is assumed that the PNR algorithms are implemented
as a subsystem or module of each node’s kernel. PNR runs
as just another part of the virtual memory system. This min-
imizes disruption to established cluster systems. Parallel ap-
plications will not have to be re-compiled with special PNR
libraries and the execution of remote paging will be trans-
parent to them. The assumed centralized scheduler of the
system will not have to be changed since PNR is not a part
of it and will not coordinate with it in any way.

In brief, all nodes host PNR servents. All servents act as
PNR clients and servers. Some servents may act as man-
agers. When a new process is started, nodes participating
in that job will contact their local PNR client if in need of

additional memory resources. Clients will contact their lo-
cal managers and managers will contact PNR servers on the
behalf of multiple clients. Similarly, when a job is stopped,
nodes will notify their clients if they no longer need the al-
located network RAM. Clients will contact their managers
and the managers will contact servers on the clients’ behalf.

Previous work, such as [1, 7], has introduced centralized
proxies to network RAM allocation and management. How-
ever, to our knowledge, the use of distributed proxies to co-
ordinate network RAM allocation for threads within a par-
allel job is unique.

3.1. Architecture Detail

A PNR client attempts to allocate and deallocate network
RAM on the behalf of its hosting node. The node treats allo-
cated network RAM as additional virtual memory - just as it
would with disk space. When a process starts execution on
a node, it allocates the amount of memory it will use dur-
ing its execution. If the node’s PNR client determines that
this allocation will lead to disk usage, the client contacts a
manager and requests network RAM. Once network RAM
is allocated, the client is informed by the manager what ma-
chines are serving network RAM. The client may then start
sending pages to the server(s) for storage and later retrieval.
A similar process is followed for network RAM dealloca-
tion.

PNR managers do the majority of allocation and deallo-
cation work. Managers take requests from multiple clients
and send requests to PNR servers on the clients’ behalf.
Managers exist to balance memory requests from multiple
parallel processes that belong to one job.

When a new job starts, one of the job’s servents volun-
teers to be a PNR manager. The volunteering is randomized
but all clients affected by the new job must agree on which
servent is the manager. Managers decide which PNR servers
to contact based on local memory load tables. These tables
are maintained via extra information sent in by PNR com-
munications. Specifically, every message sent to a manager
will also include the sending node’s current memory load.
Managers record this information and broadcast their up-
dated load tables to all servents after each job start and stop.
In this way, all managers will have a general idea of mem-
ory allocation on each node. Managers use a randomized
worst-fit algorithm for memory allocation and will pick the
servers they believe have the largest amount of unallocated
memory.

Servers receive requests from managers for network
RAM. If the server has more unallocated RAM than a cer-
tain threshold, it will grant the network RAM request and
allocate the memory to the manager. Currently the unal-
located memory threshold is set to a low value - a tenth
of a megabyte. This parameter can be changed if mem-



ory appears to be consistently overallocated on PNR
servers. After the memory is allocated, servers receive re-
quests to read and write the allocated network RAM
directly from clients. Servers grant all valid deallocation at-
tempts.

4. Simulation Methodology

We have developed a trace-driven simulator to experi-
ment with clusters and their interaction with the proposed
PNR algorithms. This section describes the simulator and
the experimental environment.

4.1. Workload Model

Many workload traces and synthetic workload genera-
tors exist for use by simulators. However, no standard mem-
ory usage benchmarks currently exist [5]. We decided to use
a large trace with memory allocation information that has
been assembled and discussed by Feitelson [9]. The trace
has been gathered from the CM-5 parallel platform at the
Los Alamos National Lab. It contains 201,387 lines, each of
which represents information of one parallel job (e.g. num-
ber of processors used, CPU seconds, amount of memory
allocated, etc.) This information was recorded through the
majority of 1996.

We will use a subset of jobs from this well-studied trace.
This subset is arbitrarily chosen as the first 5000 jobs of the
workload. Since the workload profile at a given site tends to
be fairly stable over time [12], using a subset of jobs should
be indicative of the load on the system.

4.2. System Model

We model a system architecture similar to the CM-5 but
change some system parameters where possible to model a
more modern cluster architecture. Just as the trace assumes,
each node runs at 33 Mhz and has 32 MB of local mem-
ory. An addition to the modeled system compared to the
CM-5 are hard drives local to each node. It is assumed each
disk has an infinite capacity and runs at 7200 RPM with
a seek time of 9ms and has a transfer rate of 50 MB/s. It
should be noted that these performance figures are repre-
sentative of current commodity hard drives (example: [17])
and are not performance figures from the time period in
which the CM-5 was used. The interconnecting network is
assumed to be a simple Ethernet 100 Mbps star topology.
Each link has a latency of 50ns and the central switch has a
processing delay of 80 microseconds. For the sake of simu-
lator speed, we scale down the trace from its original 1024
nodes to 64 nodes. Job processor usage is scaled down ac-
cordingly. Note that other job characteristics, such as mem-
ory usage and communication frequency, are held constant.

4.3. Scheduler Models

It is assumed there is one centralized scheduler for the
system. In our simulations we experiment with two sched-
ulers: a simple space sharing scheduler and a gang sched-
uler. For both schedulers, we use FCFS as our queuing dis-
cipline and a simple best-fit node packing scheme. It is as-
sumed that the scheduler has no knowledge of the memory
requirements of jobs.

Each time slice in the gang scheduler runs for a 60 sec-
ond quantum as suggested by [16]. The time required to
perform a PCS is fixed at 4ms [4]. The maximum number
of time slices is set to two. This number is conservative and
limits paging activity [14]. Alternative scheduling and slot
unification are provided.

4.4. Job Behavior Model

Each parallel job is composed of multiple parallel pro-
cesses. It is assumed that each process allocates a static
amount of memory at start time. Each process accesses
memory at its node independently. Previous studies have
shown that parallel scientific applications generate memory
references every three to five CPU cycles. They also suggest
that the cache hit ratio for these applications ranges from ap-
proximately 50% to 65% [6,19]. We assume that our paral-
lel applications access memory every four CPU cycles and
have a cache hit ratio of 50%.

All processes in a job synchronize with each other at
regular intervals. The synchronization pattern is a simple
master/worker pattern, where multiple workers send and re-
ceive messages from one master. In our experiments, we set
the time interval between synchronizations to be one CPU
second (once every 32 million cycles). This is not a heavy
synchronization load. Future experiments should use more
complex and more frequent loads.

It is assumed no paging activity will result when all jobs
fit into available memory on each node. When more mem-
ory is allocated than is available, there is a chance a non-
cache memory access will result in a page fault. We use
an exponential function that is dependent on both the aver-
age memory access rate and the amount of process mem-
ory currently paged out to determine the time until the next
page fault.

4.5. Metrics

There are no universally valid and accepted metrics. In
fact, different metrics can give contradictory results [10]. In
this section we list and justify the metrics we used.

First is average response time, or total wallclock time
from submit to finish. This metric is used very often but can



overemphasize large jobs. In parallel workloads, small jobs
account for the majority of jobs. [10]

Second, to directly compare DP to PNR, we create an-
other metric: ”optimization rate”. This metric represents the
improvement of PNR over DP.���������	��
������������������������������ !�!"$#&%� ���'�(� )+*-,.,0/

Third, we calculate the average and standard deviation
of node memory allocation by sampling the memory alloca-
tion information of each node every 50,000 simulated time
seconds.

5. Performance Evaluation

We have defined a set of experiments to evaluate PNR.
Specifically, we defined a base experiment and explored
variations on this base experiment to gain insight into PNR
performance characteristics. We will first describe the re-
sults from the base experiment and follow with results from
the variations. We compare a system with PNR to a system
without PNR that we call ”Disk Paging” (DP) since this sys-
tem’s only way of dealing with overallocation is using the
disk. We also compare PNR to a system which uses unco-
ordinated network RAM allocation (NR). In NR, each node
will independently seek network RAM. This system is con-
ceptually identical to the system proposed in [13]. By com-
paring PNR to DP, we demonstrate that PNR has tangible
performance benefits over using disk paging alone. By com-
paring PNR to NR, we demonstrate that the extra coordina-
tion used in PNR is essential to improving the performance
of network RAM on cluster systems.

5.1. Base Experiments

In our base experiment, all parameters are set to the val-
ues described in the methodology section. Figure 1 demon-
strates that PNR performed comparatively well in terms of
response time. DP had an average response time of 60974.8
seconds, NR had an average response time of 65912.1 sec-
onds, and PNR had an average response time of 42226.2
seconds. Optimization rate for PNR is a modest 31% while
it is -8.1% for NR!

PNR also made better use of available RAM resources.
DP used an average of 17.87 MB (55.8%) per node with a
standard deviation of 5.17 MB, NR an average of 16.37 MB
(51%) with a standard deviation of 5.75 MB, and PNR an
average of 14.71 MB (45.9%) with a standard deviation of
4.98 MB. Average disk usage was also down and more uni-
form. DP used, on average, 3.51 MB of disk space per node
with a standard deviation of 1.51 MB, NR an average of
2.97 MB and standard deviation of 1.92 MB, and PNR an
average of 1.91 MB with a standard deviation of 1.13 MB.
These results indicate that the overall system load is lower

Figure 1. Response time of base test with
5000 job workload.

with PNR due to a higher job turnover rate, and that allo-
cation of memory is becoming more uniform - one of the
goals of PNR.

PNR experienced only 65% the number of page faults
that DP experienced. This can be attributed to the fact that,
since PNR jobs will finish faster, they will experience less
PCSs. This in turn leads to less page loading due to mem-
ory contention by multiple processes.

5.2. Network Performance Variations

When we reduce the bandwidth of the links in the stan-
dard star topology to 10 Mbps, we observe a dramatic im-
pact on PNR (not shown in figures). For all workloads
PNR performs significantly worse than DP. Optimization
rate may be anywhere between -10% to -1000%. Response
times for PNR reach as high as three million seconds, while
the highest DP response times are easily within 100,000
seconds. Significantly, this is the only set of experiments
in which PNR is substantially outperformed by DP.

Figure 2 shows that the optimization rate for PNR is
consistently superior to DP and NR at high network band-
widths. Interestingly, however, PNR and NR performance
decreases at some points as bandwidth increases. The cause
of the increased response times is apparently increased
disk usage for both NR and PNR. As network perfor-
mance passes a certain threshold, disk usage goes up. This
phenomena makes sense if we consider that if processes
are becoming backlogged in this large trace, and if in-
creased network performance results in higher turnover,
then longer-running jobs will tend to start running together
in greater frequency than under the lower-performing net-
works. Longer running jobs tend to demand more memory
than shorter jobs and when larger jobs start running together
more frequently, memory load and response times increase.



Figure 2. Optimization rate at varying network
speeds with 5000 jobs

Figure 3. Response time of methods under
different topologies.

5.3. Network Topology Variations

Figure 3 displays the results over various network
topologies. Bus and star behave as expected for both
DP and PNR. Interestingly, NR has a slight advan-
tage over PNR in the bus environment. However, with
the connected topology, PNR response time rises com-
pared with star while DP and NR experience perfor-
mance benefits. We believe that the same phenomena
which caused the performance penalty in high band-
width networks is at work here.

5.4. RAM Variations

We varied the amount of total RAM available at each
node to simulate different memory loads and observe how
DP and PNR react. The RAM ratio of the x-axis in figures
4-6 is a multiplier we apply to the standard amount of RAM

Figure 4. Response time with varying amount
of RAM available with 5000 jobs.

available in the base tests. For instance, RAM ratio 1.5 re-
sults in nodes with 48 MB of RAM (up from the original 32
MB).

Two observations are obvious: as memory load de-
creases, PNR, NR, and DP converge to the same per-
formance metrics and as memory load increases, PNR
and NR/DP metrics diverge. When no paging activity oc-
curs, all of the methods are equivalent in performance. For
instance, we observe in figure 4 that as the RAM ratio is in-
creased from 0.5 to 1.5, response times for each converge to
1960.6 seconds. This is an important result, since it demon-
strates that the extra communication overhead of PNR
adds only a negligible amount to response time in situa-
tions of light load.

In figure 5, we see the optimization rates converging
when the RAM ratio is at 1.35 and higher. PNR does par-
ticularly well as RAM is initially decreased (0.75) and in-
creased (1.15). As the RAM ratio is lowered, however, some
of the initial advantage is lost We believe that PNR and DP
will eventually converge again as RAM becomes so scarce
that it can never be shared via PNR. NR has consistently
lower optimization rates compared to PNR

5.5. Space Sharing Scheduler Experiments

We repeat the base set of experiments and the RAM vari-
ation experiments with a simple space sharing scheduler.
For all inputs and for all variations of memory load tested,
a pattern emerges. NR has a slight advantage under light
memory loads (0.75 RAM ratio) but is consistently and sig-
nificantly outperformed by PNR at heavier memory loads
(see figure 6).



Figure 5. Optimization rate with varying
amounts of RAM with 5000 jobs.

Figure 6. Optimization rate under sim-
ple space sharing scheduler with varying
amounts of RAM available.

6. Discussion

Given our observations, it is clear that all designs fol-
low an exponential curve as memory load is changed. As
memory load increases, they tend towards infinite response
times. As memory load decreases, they will converge on a
constant number. PNR’s curve is lower than NR/DP’s by a
constant factor.

This model implies that adding PNR to lightly loaded
systems (with high performance networks) will not harm
performance and under moderate memory loads PNR can
lead to large improvements over disk paging. However, as
memory becomes too scarce to share, PNR performance
will tend to converge to DP performance.

PNR is very sensitive to network performance. The gen-
eral shape of results is another exponential curve, where
PNR response time tends toward infinity as network ser-

vice time is increased and converges to some constant num-
ber as service time decreases.

Since low network performance results in low PNR per-
formance, PNR should not be considered on systems with
low bandwidth or high message RTT times. A standard 100
Mbps network or higher should be regarded as the mini-
mum for satisfactory performance.

Network bandwidth and latency appear to be much more
important to the performance of PNR than does the topol-
ogy of the underlying network. Congestion did not appear
to play a large role in our experiments. This situation may
be different in a larger network. Topology changes should
be studied again on a larger scale.

PNR is clearly the superior method under heavy mem-
ory loads when using the space sharing scheduler. But, in-
terestingly, NR consistently beats PNR under light memory
loads. Apparently, the added communication and coordina-
tion overhead of PNR is useful when RAM is very scarce,
but the lightweight NR may be sufficient under light load
conditions. This may be due to the fact that PCSs are elimi-
nated on this system. This eliminates a large portion of net-
work activity (i.e. the large amount of page faults after a
PCS) and lessens the impact of a bad network RAM allo-
cation decision. These results are interesting and should be
studied further.

7. Conclusion and Future Work

In this paper we identified a novel way of reducing page
fault service time and better utilizing memory resources.
This method, which we call Parallel Network RAM, uses
remote idle RAM as another tier in the memory hierarchy
for parallel jobs in clusters. We implement this idea as a
set of scalable peer-to-peer algorithms which can be imple-
mented on a variety of multicomputer systems. We discov-
ered that adding PNR to systems with high performance net-
works will not hurt overall system performance, and will
help speed up memory accesses and more evenly spread
load.

While average response time figures are favorable for
PNR, this paper did not explore the degree to which PNR
penalizes processes running on PNR servers. Performance
may be compromised on these nodes in favor overall mem-
ory balance. Future work should examine the severity of this
problem and propose solutions if necessary.

While we believe our PNR algorithm is scalable, this pa-
per does not explore this aspect of PNR. Future work should
concentrate on examining the scalability of our PNR al-
gorithm, both in terms of additional CPUs and additional
memory. We must study how additional CPUs increase
communication overhead of our PNR strategy and at what
scale the fundamental limit of virtual memory address space
becomes a concern.



Ultimately, PNR should be compared to compet-
ing paging avoidance strategies. These include scheduling
strategies that attempt to avoid paging, hardware solu-
tions, and others. It is important to know if one strategy is
superior, or if several strategies are best used in conjunc-
tion.

Acknowledgments
This research was made possible by a grant from the

Michigan Space Grant Consortium and National Science
Foundation grant ACI-0129883.

References

[1] A. Acharya and S. Setia. The utility of exploiting idle
memory for data-intensive computations. Technical Report
TRCS98-02, 1998.

[2] A. Barak and A. Braverman. Memory ushering in a scal-
able computing cluster. Journal of Microprocessors and Mi-
crosystems, 22(3-4):175–182, August 1998.

[3] A. Batat and D. G. Feitelson. Gang scheduling with memory
considerations. In 14th Intl. Parallel Distributed Processing
Symp., pages 109–114, 2000.

[4] D. C. Burger, R. S. Hyder, B. P. Miller, and D. A. Wood. Pag-
ing tradeoffs in distributed-shared-memory multiprocessors.
The Journal of Supercomputing, 10(1):87–104, 1996.

[5] S. J. Chapin, W. Cirne, D. G. Feitelson, J. P. Jones, S. T.
Leutenegger, U. Schwiegelshohn, W. Smith, and D. Talby.
Benchmarks and standards for the evaluation of parallel job
schedulers. In D. G. Feitelson and L. Rudolph, editors, Job
Scheduling Strategies for Parallel Processing, pages 67–90.
Springer-Verlag, 1999. Lect. Notes Comput. Sci. vol. 1659.

[6] G. F. P. F. Darema-Rogers and K. So. Memory access pat-
terns of parallel scientific programs. Performance Evalua-
tion Review, 15(1):46–57, 1987.

[7] M. J. Feeley, W. E. Morgan, F. H. Pighin, A. R. Karlin, H. M.
Levy, and C. A. Thekkath. Implementing global memory
management in a workstation cluster. In Symposium on Op-
erating Systems Principles, pages 201–212, 1995.

[8] D. G. Feitelson. Packing schemes for gang scheduling. In
D. G. Feitelson and L. Rudolph, editors, Job Scheduling
Strategies for Parallel Processing, pages 89–110. Springer-
Verlag, 1996. Lect. Notes Comput. Sci. vol. 1162.

[9] D. G. Feitelson. Memory usage in the LANL CM-5 work-
load. In D. G. Feitelson and L. Rudolph, editors, Job
Scheduling Strategies for Parallel Processing, pages 78–94.
Springer Verlag, 1997. Lect. Notes Comput. Sci. vol. 1291.

[10] D. G. Feitelson. Metrics for parallel job scheduling and
their convergence. In D. G. Feitelson and L. Rudolph,
editors, Job Scheduling Strategies for Parallel Processing,
pages 188–205. Springer Verlag, 2001. Lect. Notes Com-
put. Sci. vol. 2221.

[11] M. D. Flouris and E. P. Markatos. High Performance Cluster
Computing, chapter 16, pages 383–408. Prentice Hall, 1999.

[12] V. Lo, J. Mache, and K. Windisch. A comparative study of
real workload traces and synthetic workload models for par-
allel job scheduling. In D. G. Feitelson and L. Rudolph,
editors, Job Scheduling Strategies for Parallel Processing,
pages 25–46. Springer Verlag, 1998. Lect. Notes Comput.
Sci. vol. 1459.

[13] E. P. Markatos and G. Dramitinos. Implementation of a re-
liable remote memory pager. In USENIX Annual Technical
Conference, pages 177–190, 1996.

[14] Y. Z. A. S. H. F. J. E. Moreira. Improving parallel job
scheduling by combining gang scheduling and backfilling
techniques. IPDPS, pages 133–142, 2000.

[15] E. W. Parsons and K. C. Sevcik. Benefits of speedup
knowledge in memory-constrained multiprocessor schedul-
ing. Performance Evaluation, 27/28(4):253–272, 1996.

[16] U. Schwiegelshohn and R. Yahyapour. Improving first-
come-first-serve job scheduling by gang scheduling. In D. G.
Feitelson and L. Rudolph, editors, Job Scheduling Strate-
gies for Parallel Processing, pages 180–198. Springer Ver-
lag, 1998. Lect. Notes Comput. Sci. vol. 1459.

[17] Seagate. Barracuda ata v and barracuda ata v plus techni-
cal specifications. http://www.seagate.com/docs/
pdf/datasheet/disc/ds_barracudaata5.pdf.

[18] S. K. Setia. The interaction between memory allocation and
adaptive partitioning in message-passing multicomputers. In
D. G. Feitelson and L. Rudolph, editors, Job Scheduling
Strategies for Parallel Processing, pages 146–164. Springer-
Verlag, 1995. Lect. Notes Comput. Sci. vol. 949.

[19] K. C. Sevcik and S. Zhou. Performance Benefits and Lim-
itations of Large NUMA Multiprocessors. In Proceedings
of Performance ’93, pages 183–204. Elsevier Science Publ,
Sept 93.

[20] F. Wang, M. Papaefthymiou, and M. Squillante. Performance
evaluation of gang scheduling for parallel and distributed
multiprogramming. In D. G. Feitelson and L. Rudolph,
editors, Job Scheduling Strategies for Parallel Processing,
pages 277–298. Springer Verlag, 1997. Lect. Notes Com-
put. Sci. vol. 1291.

[21] L. Xiao, S. Chen, and X. Zhang. Dynamic cluster resource
allocations for jobs with known and unknown memory de-
mands. IEEE Transactions on Parallel and Distributed Sys-
tems, 13(3):223–240, March 2002.

[22] L. Xiao, S. Chen, and X. Zhang. Adaptive memory alloca-
tions in clusters to handle unexpectedly large data-intensive
jobs. IEEE Transactions on Parallel and Distributed Sys-
tems, 15(6), June 2004.

[23] L. Xiao, X. Zhang, and S. A. Kubricht. Incorporating job
migration and network RAM to share cluster memory re-
sources. In HPDC, pages 71–78, 2000.

[24] B. B. Zhou, D. Welsh, and R. P. Brent. Resource alloca-
tion schemes for gang scheduling. In D. G. Feitelson and
L. Rudolph, editors, Job Scheduling Strategies for Parallel
Processing, pages 74–86. Springer Verlag, 2000. Lect. Notes
Comput. Sci. vol. 1911.


