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Abstract

This paper describes the design and implementation

of Paradise, a database system designed for handling

GIS type of applications. The current version of Par-

adise, uses a client{server architecture and provides an

extended{relational data model for modeling GIS ap-

plications. Paradise supports an extended version of

SQL and provides a graphical user interface for query-

ing and browsing the database. We also describe the

results of benchmarking Paradise using the Sequoia

2000 storage benchmark.

1 Introduction

Over the last �ve years interest in Geographic Infor-

mation Systems (GIS) has increased signi�cantly. Ex-

isting systems represent an integration of ideas from

many di�erent �elds including remote sensing, pho-

togrammetry, and computer cartography [MGR91]. In

turn, new application domains have placed additional

demands on existing systems. For example, GIS sys-

tems are now being used to store and process vast

amounts of remote{sensed data gathered from sensors

on satellites. These satellites scan the surface of the

earth, measuring certain electromagnetic properties of

the surface. This information is then radioed down

to a receiving station on the surface. Since this pro-

cess is completely automated and continues non-stop,

the data volumes are enormous. In addition to stor-

ing the raw data, the receiving station will also gen-

erally reprocesses the new data into a set of standard

data products that are then made available to scien-

tists around the world.
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In addition to having to store and manage large

volumes of data, GIS systems must also be capable of

handling a variety of di�erent data and query types.

For example, many GIS applications provide support

for at least two forms of spatial data: raster and vector

data. Raster data is usually represented as a two (or

more) dimensional array of integer or oating point

values, corresponding, for example, to readings taken

by a sensor on a satellite. Vector data, on the other

hand, is generally composed of a set of lines, represent-

ing, for example, the outline of a region. The type of

queries posed in such a system will frequently include

predicates involving spatial relationships, such as spa-

tial overlap or containment. In addition to providing

an expressive data model and query language, a GIS

must also provide an e�cient mechanism for perform-

ing operations on spatial data if it is to successfully

process spatial queries on large volumes of data.

Existing GIS systems employ a variety of dif-

ferent architectures [MP94]. Some systems (e.g.

GRASS [Sea92]) store all data in normal operating sys-

tem �les, providing a library of functions for retriev-

ing, manipulating, and displaying data. From a tra-

ditional database perspective these systems are very

limited in terms of functionality especially with respect

to query optimization and processing, transaction sup-

port, concurrency control, and physical data indepen-

dence. Other GIS systems [Mor92, HHK+93], employ

a hybrid approach in which a traditional relational

database manager is used to store non-spatial data

with the spatial data going into either the �le system

(ARC/INFO) or a spatial data manager (Papyrus).

While the hybrid approach has been quite successful,

it complicates query optimization and execution, espe-

cially in a multiuser environment. The third approach,

as exempli�ed by Postgres [SR86], Gral [G�ut89] Mon-

tage [Ube94], GEO [VvO92], and Paradise uses a in-

tegrated approach in which all data is stored in the

database system.

We began the Paradise (Parallel Data Information

System) project in early 1993 [DLPY93] as a re-

sponse to the challenges posed by the Sequoia bench-

mark [SFGM93]. The goal of the Paradise project is to

apply the object{oriented and parallel database tech-

nology developed as part of the EXODUS [CDF+86]
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and Gamma [DGS+90] projects to the task of imple-

menting a parallel GIS system capable of managing ex-

tremely large (multi-terabyte) data sets such as those

that will be produced by the upcoming NASA EOSDIS

project [Car92]. The project is focusing its resources

on algorithms, processing, and storage techniques, and

not on making new contributions to the data modeling,

query language, or user interface domains. Paradise

supports storing, browsing, and querying of geographic

data sets. Its data model is an extended{relational

data model, extended with raster, polygon, and poly-

line ADTs and typed references. An extension of SQL

is provided to support ad{hoc queries over extents of

persistent objects. Paradise uses SHORE [CDF+94]

as its storage manager for persistent objects, and a

graphical user interface that is built using Tk, a pub-

lic domain X11 toolkit.

At the outset, we organized the Paradise project as

two phases. The goal of �rst phase was to produce a

client-server version of Paradise. The second phase of

the project is to parallelize the Paradise server to op-

erate on a shared{nothing [Sto86] multiprocessor (our

target multiprocessor platform is a 64 processor/64

disk Intel Paragon). The �rst phase is now complete

and is described in this paper. In addition to allow-

ing us to \get our feet wet" in the GIS domain, phase

one of the project has produced a usable, client{server

version of the system whose performance and function-

ality is comparable to other integrated systems.

The remainder of the paper is organized as follows.

Section 2 describes Paradise's data model and query

language. The software architecture of the system, in-

cluding several novel techniques for dealing with spa-

tial data, is presented in Section 3. Section 4 contains

a performance evaluation of the system using the Se-

quoia benchmark. Finally section 5 contains our con-

clusions and some future plans.

2 Data Model And Query Language

2.1 Data Model

Paradise provides an extended{relational data model

for modeling GIS applications. Three type construc-

tors are provided: extent, tuple, and reference. An

extent consists of a set of objects of the same type.

A Paradise database consists of one or more such ex-

tents. Objects themselves are de�ned using the tuple

type constructor. Each attribute can be an instance of

either a standard base type (i.e. integer, oat, string,

...), one of the prede�ned GIS{speci�c abstract data

types (ADTs) including polygon, polyline, and raster,

or a typed reference to another object. Since extents

themselves are typed objects, the use of references al-

lows the de�nition of a fairly rich set of complex ob-

jects. In addition, one can de�ne functions on the

ADTs which can be used in the predicate of a query.

The ADTs, their functions, and their operators (meth-

ods) are de�ned and coded in C++. The type system

can be extended either through inheritance from exist-

ing ADTs or by de�ning new ones. New ADTs must

�rst be registered with the catalog manager before be-

ing used to de�ne new object types. As an exam-

ple, consider the weather database shown in Figure 1.

In the example, \Text", \Raster", \Date", \Polyline"

and \Polygon" are some of the prede�ned ADTs.

While fairly rich, the Paradise data model is more

restricted than what a full object-oriented database

system would provide [ABD+89]. For example,

Paradise does not directly support set{valued at-

tributes. We made this simplifying decision in or-

der to avoid many of the implementation complexi-

ties associated with a full object{oriented data model.

When the SHORE implementation of the ODMG stan-

dard [Cat93] object{oriented data model ODL is op-

erational, we plan on switching to it.

create extent Instrument(name String,

type Integer, manual Text);

create extent CloudCover(

cloudDensity Raster,

measuringDevice ref Instrument, date Date);

create extent Rivers(name String,

shape Polyline, flood_plain Polygon,

water_level Integer, levee_status Integer);

create extent Cities(boundary Polygon,

name String, population Integer);

Figure 1: Sample Paradise Schema.

2.2 The Query Language

As a query language, Paradise provides an extended

version of SQL. To SQL we have added the ability to

invoke methods de�ned on the ADTs, and the abil-

ity to follow inter-object references using the standard

nested dot notation [Zan83] for accessing components

of complex objects (i.e. x.y.z).

Consider the schema shown in Figure 1. To locate

cities that could be a�ected by oods, one might pose

the query (Note that this query performs a spatial join

between the Cities and Rivers extents):

Select * from Cities, Rivers where

Cities.boundary overlaps Rivers.flood_plain

and Rivers.levee_status = "Weak"

This query might be executed by �rst select-

ing all the Rivers tuples that satisfy the predi-

cate on levee_status. Then, if an index exists
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on the boundary attribute of the Cities extent, a

nested{loops index join might be performed using the

flood_plain attribute of the selected Rivers tuples

to �lter out the \non{matching" Cities tuples.

As another example consider the query for �nding

the current cloud cover over all \large" cities, for which

a \severe thunderstorm" warning needs to be issued:

Select name, cloudDensity.clip(boundary)

from Cities, CloudCover

where boundary.area() > 900 and

date = "9/15/94" and

cloudDensity.clip(boundary).average()>10

Here area is a function that is de�ned on the

polygon ADT, average is a function de�ned on the

raster ADT, and clip is a function on the raster

ADT that takes a polygon as its argument. The

query selects all Cities that have an area greater

than 900 sq miles and \joins" it with the CloudCover

tuple that was scanned on \9/15/94". Further,

only those \join" result tuples that have an aver-

age cloudDensity greater than 10 units are pro-

duced as result tuples. The result tuples have two

attributes|one is the city name, and the other is the

raster image corresponding to the cloud cover over

the city. Note the use of the dot notation in the ex-

pression cloudDensity.clip(boundary).average().

This expression implies that the function clip should

be applied to the CloudCover.cloudDensity at-

tribute. Cities.boundary provides the argument for

this clip function, which returns a value of type

Raster. To this return value, the average function

is applied. The return value of this function is then

used for evaluating the predicate ( ... > 10).

3 Software Architecture

3.1 System Overview

Version 1.0 of Paradise employs a conventional client{

server architecture as shown in Figure 2. The server

includes a tuple manager, an extent manager, a cata-

log manager, a query optimizer, and a scheduler. The

front{end provides a graphical user interface that sup-

ports querying, browsing, and updating of Paradise

objects through either its graphical or textual inter-

faces. In either case, the front{end transforms a query

into our extended SQL syntax and ships it to the

Paradise server for execution. After executing the

query, the server ships the result objects back to the

client process through a Postgres{like portal mecha-

nism [Gro93]. All communication between the front{

end and server processes is in the form of remote pro-

cedure calls running over TCP/IP.

Paradise ADTs Paradise ADTs

Paradise Tuple Cache

Tk/X11

Paradise User Front−end

Meta Data Cache

R
P
C

R
P
C

Catalog Manager

Shore Storage
    Manager

Extent Mgr Tuple Mgr

Scheduler   Query
Optimizer

Paradise SQL
    Queries

Result Paradise
     Tuples

Paradise Client Process Paradise Server

Other Paradise Servers

Figure 2: Paradise Process Architecture

3.2 Paradise User Front-end

Although the user interface is an important compo-

nent of any database system, it is an especially impor-

tant part of a GIS. In particular, a GIS must provide a

convenient graphical interface for the visualization and

manipulation of spatial data. The front{end should be

capable of graphically querying, browsing and updat-

ing spatial objects stored in the database. It should

also be able to address the various complex user re-

quirements for spatial processing and analysis. In this

section, we will describe our approach to developing

such an user front{end for Paradise.

Our �rst attempt at a front{end used GEO, a

C++ based, graphical user interface for geographical

database systems [vOV91]. GEO uses the ET++ class

libraries [FW91] (based on X11) as its display vehicle

and Postgres [SR86] as its underlying spatial database

management system. GEO provides both a graphi-

cal browser for viewing spatial data and a graphical

interface for composing ad{hoc queries.

We converted GEO to use Paradise instead of Post-

gres as its database server. While this approach en-

abled us to rapidly produce a working graphical user

interface for Paradise, we encontered a number of sig-

ni�cant problems. First, since GEO was designed

speci�cally to run on top of Postgres, each object re-

turned from the Paradise server to the GEO front{end

had to be converted from its Paradise representation to

the corresponding Postgres representation.1 Needless

to say, the performance of this approach was not very

good. A more serious problem was that Version 1.33

of GEO cannot display multiple spatial attributes; for

example, an object with both polygon and point at-

tributes. Third, GEO requires that the result of a join

contain attributes from only one of its input relations.

Finally, the modi�ed ET++ library that GEO uses

as its display library is extremely complex, not in the

public{domain, and not available for a wide variety of

1The obvious solution, converting GEO to understand the

Paradise object format, was determined to be far too di�cult.
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platforms.

Given these limitations we reluctantly decided that

the best solution was to write our own interface. The

approach was simple: \clone" GEO's \look and feel"

while avoiding the limitations of the current GEO im-

plementation. The new Paradise front{end is imple-

mented using Tk [Ous91], a publicly available X11

toolkit based on a lightweight interpretive command

language Tcl [Ous90]. Using Tk, instead of ET++ or

Interviews [LCV88], resulted in a dramatic reduction2

in the size and complexity of the front{end, without

apparently sacri�cing performance. The key features

of the Paradise front{end include:

�Display of objects with spatial attributes on a 2{D

map. For objects with multiple spatial attributes,

one of the spatial attributes can be used to specify

the position of the object on the screen. The spa-

tial ADTs currently supported include points, closed

polygons, polylines, and raster images.

� Layered display of overlapping spatial attributes

from di�erent queries or extents. For example, one

can display city objects that satisfy a certain predi-

cate (e.g. population > 300K) in one layer on top of

a second layer of country objects.

�Querying through a graphical interface: implicitly is-

suing spatial queries by zooming, clicking, or sketch-

ing a rubber{banded box on the 2{D map.

�Querying by explicitly composing ad-hoc queries in

Paradise's extended SQL syntax.

�Browsing the objects from an extent. In this mode

attributes are displayed as ASCII strings.

�Updating Paradise objects. The object(s) to be up-

dated can be selected either by pointing{and{clicking

on the 2{D map or by selecting via the textual

browser.

�General catalog operations including browsing, cre-

ating new databases, de�ning new extents, creating

indices on attributes, and bulk loading data into ex-

tents from the Unix �le system.

The structure of the Paradise user front{end is

shown in Figure 3. It consists of the following com-

ponents:

�The Map View is responsible for displaying and

manipulating objects contained in one or more lay-

ers. The current position of the cursor is continu-

ously displayed in a sub{window in units of the map

projection system. Users can point and click on dis-

played objects to view their non-spatial attributes.

2Approximately 75% reduction in the number of lines of code

User

Paradise Server

Map View Layer Manager Browser Composer

Meta Cache
       &
Object Cache

Query Executor
         &
Tuple Manager

TuplesQuery

Paradise
Front−end

Figure 3: Architecture of the Paradise Front-end

In addition, users can also zoom into a selected re-

gion by sketching a rubber{banded box.

�The Layer Manager is responsible for adding,

deleting, hiding, and reordering layers displayed by

the Map View. Each layer corresponds to an extent

of objects produced by executing some query.

�The Extent browser allows a user to view any Par-

adise extent and adjust the way it should be dis-

played by the Map View. The selected extent be-

comes a new layer with its spatial attributes dis-

playable via the Map View.

�The Query composer allows a user to compose a

SQL query using a simple text editor.

�The Query executor is the interface to the Par-

adise server. It ships SQL queries to Paradise server

for execution and retrieves result tuples into its own

object cache.

�The Object cache caches the result of a query in

formats understood by Tcl/Tk.

�The Meta cache stores the catalog information of

the currently open database.

A screen dump from the Paradise front{end is shown

in Figure 4.

3.3 The Paradise Server

The Paradise server uses SHORE [CDF+94] as its

underlying persistent object manager. The Paradise

server is implemented as a SHORE Value Added

Server (VAS) directly on top of the SHORE Storage

Manager. To the basic SHORE server, Paradise adds

a catalog manager, an extent manager, a tuple man-

ager, a query optimizer and execution engine, and sup-

port for point, polyline, polygon, and raster ADTs.

Since the SHORE server has been designed to run on

shared{nothing multiprocessors, the task of extending
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Figure 4: Map View of Paradise Front-end

Paradise to such an environment will be signi�cantly

simpli�ed.

Execution of a query in Paradise proceeds as fol-

lows. After submission, the query is sent by the front{

end to the Paradise server for execution. Here the

query is parsed and optimized and an execution plan

is generated. The Parser and Optimizer consult the

Catalog Manager to obtain the necessary type infor-

mation and statistics. Once a query plan has been

generated, the plan is forwarded to the Query Sched-

uler and Executor for execution. As result tuples are

produced, they are packed into pages and shipped to

the client process for display and subsequent manip-

ulation. Upon arrival at the client process, objects

sometimes undergo further transformations (e.g. co-

ordinate projection conversion) prior to display pro-

cessing.

In designing and implementing the Paradise server,

careful attention was paid to insure that the system

could e�ciently process queries (especially those in-

volving spatial attributes) on large volumes of data. In

the following sections, we describe several of the more

interesting design and implementation issues that we

encountered during the implementation phase.

3.3.1 Spatial Access Through R*{Trees

In order to support the e�cient retrieval of objects

with spatial attributes, R*{trees [BKSS90] (with full

concurrency control and recovery) were added to the

SHORE storage manager. R*{trees were selected be-

cause of their e�cacy and \relative" ease of imple-

mentation, especially since we could reuse a lot of the

existing SHORE B
+{tree code. Grid �les [NHS84]

and KDB{trees [Rob81] were not considered as these

multidimensional access methods do not do a good

job of handling non{point spatial data [Gre89]. R+{

trees [TS87] (another variant of the R{tree [Gut84])

reduce the overlap between nodes by duplicating spa-

tial objects across di�erent nodes. However, when a

full node in an R+{tree is split, the split must be prop-

agated in both a downwards and upwards direction.

This signi�cantly complicates implementing concur-

rency control and recovery. Finally, R*{trees provide

support for \forced reinsert" [BKSS90], which makes

it possible to dynamically re{clustering spatial objects

in the index. We feel that this feature is very impor-

tant in order to avoid performance degradation in a

dynamically changing environment.

3.3.2 Bulk Loading R*{Trees

An important characteristic of any access method is its

ability to perform initial index construction via a bulk

load. This is especially important in a system like Par-

adise that is designed to e�ciently handle very large

volumes of spatial data. With respect to R*{trees, this

requires being able to both load data at a fast rate and

to produce a good clustering of the rectangles in the

resulting index. Many systems, instead of bulk load-

ing the R{tree, use multiple insertions, one per tuple.

This results in very long load times since the R{tree is

split repeatedly during insertions. Bulk loading builds

the index bottom up and guarantees that each index

page is only processed once.

In order to improve the bulk load time while re-

taining the e�ectiveness of the resulting R*{tree, a

tree packing algorithm must be used. Like [FK93],

our bulk load algorithm does spatial sorting using the

Hilbert Curve. The Hilbert Curve was selected as

it has better performance than other spatial ordering

curves (e.g. Z{ordering, Grey code, column{scan) in

a spatial query processing domain [Jag90]. However,

unlike [FK93], our algorithm does not pack the leaves

of the R*{tree to 100% utilization as we discovered

(through simulation) that doing so may not generate

a well structured R*{tree when the input data is not

distributed uniformly. Our algorithm uses two spe-

cial mechanisms to make it more resilient to di�erent

spatial data distributions:

I) A Heuristic Approach to Rectangle Packing

To guide the packing process, a heuristic is used to de-

cide when to stop adding entries to the current node

and to move on to the next node. The heuristic uses

two parameters, a �ll factor for monitoring the utiliza-

tion of the current node and an expansion factor for

measuring the increase in size of the minimum bound-

ing box for the node that would occur if the next rect-

angle were added. When the �ll factor reaches a min-

imum threshold (e.g. 75%) and the expansion factor
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reaches a maximum threshold (e.g. 120%), the packing

process ushes the current node and starts adding en-

tries to the next node. This optimization is designed to

achieve spatial clustering by packing spatially \close"

objects together into the same node to the maximum

extent possible, even if it means incurring some de-

crease in storage utilization. Consequently, spatially

clustered nodes will have less overlap between their

minimum bounding boxes.

II) Caching with Repacking

As each packed node is produced it is added to a small

(e.g. size 3) cache of recently packed nodes that have

not yet been written to disk. Since the nodes in the

cache were packed independently of one another, their

minimum bounding boxes may overlap with one an-

other. The rectangles from each of the nodes in the

cache are then inserted into a single large node. This

node is then resplit into smaller nodes using the stan-

dard R*{tree splitting algorithm. This process of com-

bining and then splitting improves the spatial cluster-

ing and minimizes the overlap between the nodes in

the cache. Finally, the cached node with the smallest

value on the Hilbert Curve is ushed to disk, leaving

room for the next node to be produced.

3.3.3 Implementation of Paradise ADTs

Each Paradise ADT has three di�erent representa-

tions: an in{memory format, a database format, and

an external format. The in{memory representation

is the format in which the ADTs are stored in user

space; The database representation is the format in

which they are stored on disk/tape in the database;

and the external representation is an ASCII represen-

tation of the data used for either input (e.g. during

initial loading) or output (e.g. as the output of a query

being viewed through the query browser in the front{

end). All ADTs have conversion methods to switch be-

tween the di�erent representations. A base ADT type

is used as the super class of all Paradise ADTs. This

super class provides a set of low{level memory man-

agement routines for memory{resident ADT instances

plus a standard interface for the common conversion

modules.

Paradise ADTs can be classi�ed into two broad cat-

egories: spatial and non{spatial. The spatial ADTs

(points, polygons, and polylines) all provide spatial

methods and operators to deal with spatial analysis

such as overlap, containment, and adjacency. In addi-

tion, each of these operators can be applied to di�erent

types of spatial ADTs (e.g. to determine whether a

polygon and polyline overlap). Spatial functions such

as \minimum bounding box" and \geometric size" cal-

culations are also supported. Each spatial ADT in-

stance also stores its coordinate projection system and

the ADT classes provide methods for converting be-

tween di�erent projection systems. The raster ADT

provides several unique operations including polygon

clip and \lower resolution". The raster ADT in de-

scribed in more detail below.

Raster ADT

Raster images tessellate space into regular shaped cells

and assign a value to each cell. The value of each cell

generally corresponds to the readings of some satellite

sensor. Raster images, specially those used for study-

ing large portions of the earth surface, can thus be

very big. For example, the National Oceanographic

and Atmospheric Administration (NOAA) Advanced

Very High Resolution Radiometer (AVHRR) has a

cell size of approximately 1.1km x 1.1km (at the

nadir) [MGR91]. If the size of each cell value is 2

bytes, each raster image for a region corresponding to

the United States (5500km x 3000km) will consume

about 27 MBytes of space. In order to make opera-

tions on such large images as e�cient as possible, the

raster ADT in Paradise employs several techniques to

improve performance. These techniques are described

in the following two sections.

I) Separation of Raster Header and Data

When implementing the raster ADT in Paradise, we

decided to break each raster ADT instance into two

pieces: a raster header and the actual raster image.

The raster header is used to store descriptive data

about the raster image. The actual raster image,

which consists of a two dimensional array of values

(one per cell) is stored as a separate object in the

SHORE storage manager.

The raster header contains the SHORE OID (object

identi�er) of the corresponding raster image, the size

of the raster image, and the bounding box of the raster

image.

As an example, consider Figure 5 which shows how

Paradise stores the objects of the CloudCover ex-

tent of the weather database (see Figure 1 for the

database schema). Each CloudCover instance has

three attributes: date of type Date, measuringDevice

which is a reference to an Instrument object, and

cloudDensitywhich is of type Raster. Physically each

object in the extent consists of three values: a date,

the OID of the instrument used to take this measure-

ment, and the raster header for the cloudDensity at-

tribute. The objects containing the raster images for

the CloudCover extent are themselves stored as large

objects in a separate SHORE �le.

This approach has a number of signi�cant advan-

tages. First, as illustrated by Figure 5, the objects
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Figure 5: Physical Representation of the CloudCover

Extent

containing the actual raster images can transparently

migrate between secondary and tertiary storage. Sec-

ond, by storing the raster images as large objects in a

separate SHORE �le, the tuples in the primary extent

remain physically clustered with one another, signi�-

cantly improving the performance of a sequential scan

over the extent. Finally, even for queries involving the

raster attribute, the raster images need not always be

brought into memory. For example, consider a clip op-

eration between a polygon and a raster attribute. To

determine, whether an object satis�es the predicate

we only need to check the bounding box information

stored in the raster header part of the tuple. Even

if the tuple does satisfy the clip predicate the raster

images are fetched \lazily" { only when the image ac-

tually needs to be manipulated or displayed.

To further enhance performance of operations on

raster images, each raster image is actually decom-

posed into regular rectangular shaped regions called

tiles. The data in each tile is stored as a separate

SHORE object. A map table (one per each raster im-

age) is used for maintaining the correspondence be-

tween the tile objects and the region of the raster im-

age corresponding to that tile object. The raster

header simply stores the OID of the map table object.

Decomposition of the raster image into tiles allows

Paradise to fetch only those portions that are required

to execute an operation. For example, consider Fig-

ure 6, which illustrates the raster image being clipped

by a polygon (as required by query 2 in Section 2.2).

When the raster attribute is �rst needed for perform-

ing the clip operation, only the mapping information

for the raster image is read from the disk. The OID

part of the raster header is \swizzled" to point to the

in{memory mapping information. From the spatial

position of the polygon and the mapping table, we can

precisely calculate the tiles of the raster image that

DISK

TAPE

Tuple 2

Extent: CloudCover

Tuple 1 Tuple  n

Legend

Bounding box 
of the polygon

The polygon used for
clipping the raster image.

Tuple n

Date
ref 
Instrument

Tile
Size

Bounding
Box

MAIN MEMORY

Raster Header for the cloudCover attr.

Raster Image

 Map Table

Raster Image

 Map Table

Raster Image

 Map Table

Map Table

Map Table

D
IS

K
 R

E
A

D
S

Tile Data Cache

Result of the clip

Figure 6: Processing the Clip Function for Attributes

of Type Raster

are needed by the clip operation. Then, each relevant

tile of the input is read from the disk and processed

by the clip operation.

II) Compression as an Optimization Strategy

While compression techniques have been widely used

in many image processing domains, only occasionally

have they been integrated directly into a database sys-

tem [SWKH94, GS91]. Several problems arise when

such an integration is attempted. First, the unit of

compression is generally the entire image. This ap-

proach makes sense if the entire image is always re-

quired. However, if only a piece of the image is

needed, the cost of uncompressing the entire image

may overshadow the improvement in performance re-

sulting from having to read less data from disk. The

situation is even worse if part of the image is updated

as the entire object will have to be read, uncompressed,

updated, recompressed, and written back to disk. A

second problem is the unpredictability of the e�ective-

ness of the compression algorithms in handling vari-

ous kinds of data. If the compression ratio (de�ned as
data size without compression

data size with compression
) is too low, then the added

cost of compression/decompression process could de-

grade overall system performance.

In Paradise, we combine lossless compression tech-

niques with decomposition to solve the �rst problem.

As discussed above, raster images are stored on sec-

ondary (and tertiary) storage as a number of smaller

tiles. Each tile serves as the basic unit of compres-

sion. The raster image now becomes a large object

with compressed tiles as its subcomponents. The map-

ping between a particular position in the image and
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its associated tile is performed via the mapping ta-

ble (which is stored along with the tiles). To handle

the unpredictability of the compression algorithm, we

monitor the e�ectiveness of each compressed tile as it

is created. If compression does not reduce the size of

the tile signi�cantly, we store the tile in its uncom-

pressed form (a ag in the mapping table is used to

indicate whether or not a tile is compressed).

Currently, only the basic LZW algorithm [Wel84]

is used for compression and all raster objects are de-

composed into rectangular shaped tiles. In the future,

we plan on adding fancier, domain speci�c compres-

sion algorithms. We are also considering adopting the

Quadtree [Sam89] approach, which has the additional

advantage of improving the performance for certain

types of spatial analysis on raster objects.

4 Performance Evaluation

To evaluate the performance of Paradise, we used the

Sequoia 2000 Storage Benchmark [SFGM93]. The Se-

quoia benchmark uses real data sets and de�nes a suite

of 11 queries that were chosen to be representative of

the queries that earth scientists frequently pose to such

a system. The benchmark has four di�erent scales

of data. For the purpose of benchmarking Paradise,

we chose the regional benchmark. The data for this

benchmark is fairly big (just over 1GByte) and can �t

on a single disk. At later stages in the project, we

intend to run the national and, perhaps, the earth

benchmark. The national benchmark is around 18

GByte and the earth benchmark is multiple terabytes.

While the national benchmark will �t on a moderate{

size secondary storage system, the earth benchmark

clearly requires the use of a tertiary storage system.

A brief description of the regional benchmark fol-

lows (for more details, readers are referred to the orig-

inal benchmark paper [SFGM93]).

4.1 Description of the Regional Benchmark

The regional benchmark comprises of data correspond-

ing to a 1280km X 800km rectangular region, covering

parts of California and Nevada. The data set for this

benchmark primarily consists of the following di�erent

data sets.

�Raster data. This corresponds to the readings of

the earth surface taken by sensors on a satellite. The

raster image consists of a 16 bit value for each cell

of the area being scanned. The size of each cell is

0.5km X 0.5km and hence each raster image is about

8MBytes. Each image has a time �eld (when the

reading was taken) and a frequency �eld (frequency

of the instrument taking the reading) associated with

it. The raster data set contains a total of 130 such

readings.

�Polygon data. This consists of a set of regions, the

boundaries of which are de�ned using a collection of

lines. Each region has an integer typed landuse value

associated with it.

�Point data. This consists of (location, name) pairs,

which correspond to geographic points that have spe-

ci�c geographic features.

�Directed Graph data. This data set contains in-

formation about drainage networks. Each river is

represented as a collection of line segments.

The Paradise schema for the Sequoia benchmark con-

sists of the following extents

create extent raster (time Integer,

frequency Integer, data Raster);

create extent polygon (landuse Integer,

shape ClosedPolygon);

create extent point (location Point,

name String);

create extent graph (shape PolyLine);

A brief description of the queries 1 : : : 10 follows (for

more details see [SFGM93]). Terms in a query in all

capitals (e.g. FREQ, RECT ...) are constants.

Query 1: Loads all the data �les and builds

a clustered R
�{tree on \point.location" and \poly-

gon.shape". Non{clustered B
+{tree indices are

constructed on \raster.frequency", \raster.time",

\point.name" and \polygon.landuse".

Query 2: This involves clipping a portion of the

raster images taken by a certain sensor.

select raster.data.clip(RECT), raster.time

from raster where frequency = FREQ

Query 3: This computes the average of the clipped

portion of the raster images taken at a certain time.

select average (raster.data.clip(RECT))

from raster where time = TIME

Query 4: This query selects one raster image

(there is only one raster image for a given time and

frequency), which is then clipped to the rectangular

region under study. The result tuple is stored at a

lower resolution.

create extent rasterTemp (time Integer,

frequency Integer, data Raster);

insert into rasterTemp

select time, frequency,

data.clip(RECT_VAL).lower_res(RES_VAL)
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from raster

where time = TIME and frequency = FREQ

Query 5: This query selects a given point.

select * from point where name = POINT-NAME

Query 6: This query select and stores all polygons

that overlap with the speci�ed rectangular region.

create extent polygonTemp (landuse Integer,

shape ClosedPolygon);

insert into polygonTemp

select * from polygon

where shape overlaps RECT

Query 7: This query �nds all polygons, greater

than a certain area, that are contained in a circle.

select * from polygon

where shape containedIn Circle(LOC, RADIUS)

and shape.area() > AREA;

Query 8: This query selects all polygons that over-

lap a rectangular region around a point. Note this

query involves a spatial join between the point and

the polygon data.

select polygon.location, polygon.landuse

from polygon, point

where point.name = POINT-NAME

and polygon.shape overlaps

point.location.makebox(SIDE_VAL)

Query 9: This query selects all raster images cor-

responding to polygons with a certain landuse. This

query is a spatial join between the polygon and the

raster extents.

select polygon.shape,

raster.data.clip(polygon.shape)

from polygon, raster

where polygon.landuse = LANDUSE

and raster.frequency = FREQ

and raster.time = TIME

Query 10: This query again performs a spatial join

between the point and the polygon data, selecting all

points that overlap polygons with a speci�ed landuse

value. The query is executed as two parts. In the

�rst part we select all the points that overlap with the

selected polygons. In the next part we remove from

the selected points those points that overlap with any

islands.

create extent pointsFoo(location Point,

name String);

create extent pointsResult(location Point,

name String);

insert into pointsFoo

select distinct point.name, point.location

from polygon, point

where polygon.landuse = LANDUSE and

polygon.shape overlaps point.location

insert into pointsResult

select * from pointsFoo minus

select distinct pointsFoo.name,

pointsFoo.location

from islands, pointsFoo

where islands.shape overlaps

pointsFoo.location

4.2 E�ectiveness of Compression in Conjunc-

tion With Tiling

In this section, we evaluate the e�ectiveness of com-

pression and the choice of a tile size for the raster

ADT. The use of compression has the bene�t of reduc-

ing the amount of data that is stored and read from

the disk. On the other hand, using compression incurs

a CPU overhead for compressing and decompressing

the data. Furthermore, compression is more e�ective

(yields larger compression ratios) if the unit of com-

pression is large. Since we use a tile as the basic unit

for compression, this argues for larger tile sizes. How-

ever, using a larger tile size implies that operations like

the clip operation will fetch more redundant data.

To quantify these tradeo�s, we ran the raster

queries (queries 2, 3, 4 and 9) of the Sequoia 2000

benchmark for three con�gurations. The �rst con�g-

uration used a tile size of 8KB, the same as SHORE's

page size. This con�guration represents the best case

for not using compression. The relatively small tile

size minimizes the amount of redundant data that is

read from disk. The second con�guration used a very

large tile size of 512KB in conjunction with compres-

sion. The last con�guration, which lies somewhere in

the middle of the spectrum, used compression with a

tile size of 128KB.

The execution time for running queries 1, 2, 3, 4

and 9 are shown in Table 1. (The system con�gu-

ration used here was the same as that described in

Section 4.4.)

As can be seen from Table 1, using compression in-

creases the database loading time (query 1). For the

512KB tile size, the average compression ratio was ob-

served to be about 1.85, implying a 46% reduction in

the amount of data that was written to the disk. The

128KB tile size con�guration had a similar compres-

sion ratio (of about 1.75, implying a 43% reduction

in the amount of data that was written to the disk).
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Query No Compr. Compr. Compr.

# 8KB 128KB 512KB

tiles tiles tiles

1 3019.9 sec 3613.0 sec 4104.7 sec

2 18.0 sec 13.1 sec 18.3 sec

3 2.3 sec 2.0 sec 3.0 sec

4 0.6 sec 0.6 sec 0.7 sec

9 2.8 sec 2.8 sec 4.7 sec

Table 1: E�ect of Compression and Tile Size

While compression reduced the amount of data that

got written to the disk, the CPU overhead for com-

pression outweighed the savings in disk I/O thereby

increasing the overall load time.

Looking at the query execution times in Table 1, we

observe that as we move from a 8KB tile size to the

con�guration using a 128KB tile size with compres-

sion, the query execution times almost always improve.

However, moving to a 512KB tile size degrades the per-

formance because more redundant data gets fetched,

while the compression ratio increases only slightly.

4.3 E�ectiveness of Building Clustered Spa-

tial Indices

As mentioned in Section 3.3.2, Paradise provides a

mechanism for building spatially{clustered R
�{trees.

Clustered indices have the advantage that fewer data

pages need to be fetched (as objects \close" to each

other are on the same page). On the other hand, build-

ing a clustered spatial index requires that the tuples

be clustered based on their spatial position. A non{

clustered index, however, only requires sorting the

(oid, bounding box) pairs for each tuple. Thus a clus-

tered spatial index speeds the evaluation of queries,

while incurring a load time penalty. To quantify the

tradeo�s, we ran an experiment that had the following

two parts: one in which a clustered index was created

on the shape attribute of the polygon extent, and the

other in which a non{clustered index was created on

the same attribute. The results of this experiment are

shown in Table 2.

Query Non-Clust. Clust. Speedup

# R*{tree R*{tree

Load 318.2 sec 559.0 sec { 43.1 %

6 8.2 sec 7.4 sec 10.8 %

7 0.2 sec 0.2 sec 0.0 %

8 8.7 sec 7.2 sec 20.8 %

Table 2: E�ect of clustering

The load time shown above includes the time to

load the polygon data and the time to build the R*-

tree. We observe that for a 43% penalty in loading

the data (which has to be done only once), we obtain

a 21% performance improvement for Query 8. Query 7

retrieves only one polygon, and as a result there is no

di�erence between the two cases. All of these queries

have a low selectivity (less than 1%) and hence retrieve

very few tuples. With a larger selectivity, we would

have observed a bigger di�erence in the performance

of the two cases.

4.4 Comparison with Other Systems

In this section, we compare Paradise with two other

systems, namely POSTGRES [SR86] and Illustra (for-

merly called Montage [Ube94]). In [Sto94] it was

shown that these systems outperformed GRASS and

IPW, two popular GIS systems. The machine used

for the benchmark was a Sun SPARC{10/40 with 32

MBytes of memory, running SunOS Release 4.1.3. One

Seagate 2GByte disk (3.5" SCSI, model # ST 12400N)

was used to hold the database. (Both Illustra and

POSTGRES used a UNIX �le, while Paradise used

a raw disk for its data volume. Neither Illustra nor

POSTGRES supports the use of a raw disk for the data

volume). A second Seagate 2GByte disk was used to

hold the raw input data and the log for each system.

The binaries of each system were stored on a third

1GB disk (3.5" SCSI, model # ST 11200N), which

also served as the system swap disk. About 200MB

of free disk space was left on this disk to ensure that

none of the systems paid an unrealistically high cost

due to swapping.

We used version 4.2 of POSTGRES and version 1.3

of Illustra. For Paradise, the use of compression was

turned on and a tile size of 128KB was used for the

raster ADT. Both Paradise and Illustra were run with

a 16 MB bu�er pool. The performance of POSTGRES

was better with 0.5 MB bu�er pool than with a 16MB

bu�er pool. Hence, a 0.5MB bu�er pool was used for

POSTGRES.

The polygon data was pre{processed, so that very

large polygons (> 500 points) were broken up into

smaller polygons. This was done because the current

version of Paradise3 and the version of POSTGRES

that we were using could not handle these very large

polygons. Although Illustra could handle them, to en-

sure a fair comparison, we used the same pre{processed

data for all the systems.

For all the systems, we ran all the benchmark

queries �ve times and took the average of the mid-

dle three numbers. Each run was taken by starting up

a client that sequentially issued all the queries in the

benchmark. Further, each query was run as a separate

transaction. Thus for the �ve runs, we ran the client

3Paradise can handle large objects, but currently has some

problems with the spatial sorting of large objects.
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executable �ve times in a row.

All the scripts that were used for running the bench-

mark are available via anonymous ftp from the Par-

adise directory of ftp.cs.wisc.edu. The scripts for

POSTGRES and Illustra are modi�ed versions of the

scripts that we had received from the developers.

A few modi�cation were made to the scripts pro-

vided by POSTGRES and Illustra in order to ex-

actly match the the benchmark originally speci�ed in

[SFGM93]. For example, the scripts that we received

used a value of 50 meters for the constant SIDE_VAL

in query 8 (refer to section 4.1 for the query). How-

ever, the value speci�ed for this in the original bench-

mark [SFGM93] is 50,000 meters.

Paradise cannot run query 10 because the minus

operator is not currently implemented.

The numbers for the three systems are shown in

Table 3.

Query Paradise Illustra POST{

# GRES

1 3613.0 sec 5748.0 sec 8687.0 sec

2 13.1 sec 14.6 sec 13.4 sec

3 2.0 sec 4.8 sec 5.4 sec

4 0.6 sec 2.4 sec 1.3 sec

5 0.2 sec 1.0 sec 0.9 sec

6 7.0 sec 20.5 sec 36.0 sec

7 0.6 sec 1.2 sec 30.5 sec

8 9.4 sec 23.7 sec 62.2 sec

9 2.8 sec 1.1 sec 2.8 sec

10 | 0.6 sec 327.2 sec

Table 3: Sequoia Benchmark numbers.

As can be seen, except for query 9, Paradise gen-

erally has the best performance. The raster queries

(2, 3, and 4) bene�t from the use of performance en-

hancing techniques like tiling and compression, while

the polygon and the point queries (6, 7 and 8) bene�t

from the use of clustered indices on spatial attributes.

5 Conclusions and Future Directions

This paper describes the client-server version of Par-

adise, a new GIS under development at the Univer-

sity of Wisconsin. Paradise provides an extended-

relational data model with support for point, raster,

polygon, and polyline ADTs, and an extended version

of SQL for formulating ad{hoc queries. A graphical

user interface based on the Tk toolkit allows the user

to query and browse graphically.

To facilitate handling large collections of large

raster, satellite images, Paradise incorporates several

performance optimizations including the transparent

separation of raster images from their associated meta-

data, division of raster images into tiles to minimize

unnecessary I/O, and the automatic application of

lossless compression/decompression on a tile{by{tile

basis. Paradise's performance is competitive with

other systems when executing queries from the Sequoia

benchmark.

During the next phase of the project we will add

support for tertiary storage and extend the software

to run on \shared nothing" multiprocessors [Sto86].
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