
Distributed Operating Systems

ANDREW S. TANENBAUM and ROBBERT VAN RENESSE

Department of Mathematics and Computer Science, Vrije Universiteit, Amsterdam, The Netherlands

Distributed operating systems have many aspects in common with centralized ones, but
they also differ in certain ways. This paper is intended as an introduction to distributed
operating systems, and especially to current university research about them. After a
discussion of what constitutes a distributed operating system and how it is distinguished
from a computer network, various key design issues are discussed. Then several examples
of current research projects are examined in some detail, namely, the Cambridge
Distributed Computing System, Amoeba, V, and Eden.

Categories and Subject Descriptors: C.2.4 [Computer-Communications Networks]:
Distributed Systems-network operating system; D.4.3 [Operating Systems]: File
Systems Management-distributed file systems; D.4.5 [Operating Systems]:
Reliability-fault tolerance; D.4.6 [Operating Systems]: Security and Protection-access
controls; D.4.7 [Operating Systems]: Organization and Design-distributed systems

General Terms: Algorithms, Design, Experimentation, Reliability, Security

Additional Key Words and Phrases: File server

INTRODUCTION

Everyone agrees that distributed systems
are going to be very important in the future.
Unfortunately, not everyone agrees on
what they mean by the term “distributed
system.” In this paper we present a view-
point widely held within academia about
what is and is not a distributed system, we
discuss numerous interesting design issues
concerning them, and finally we conclude
with a fairly close look at some experimen-
tal distributed systems that are the subject
of ongoing research at universities.

To begin with, we use the term “distrib-
uted system” to mean a distributed operat-
ing system as opposed to a database system
or some distributed applications system,
such as a banking system. An operating
system is a program that controls the re-
sources of a computer and provides its users
with an interface or virtual machine that is

more convenient to use than the bare ma-
chine. Examples of well-known centralized
(i.e., not distributed) operating systems are
CP/M,’ MS-DOS,’ and UNIX.3

A distributed operating system is one that
looks to its users like an ordinary central-
ized operating system but runs on multi-
ple, independent central processing units
(CPUs). The key concept here is transpar-
ency. In other words, the use of multiple
processors should be invisible (transparent)
to the user. Another way of expressing the
same idea is to say that the user views
the system as a “virtual uniprocessor,” not
as a collection of distinct machines. This
is easier said than done.

Many multimachine systems that do not
fulfill this requirement have been built. For

’ CP/M is a trademark of Digital Research, Inc.
’ MS-DOS is a trademark of Microsoft.
3 UNIX is a trademark of AT&T Bell Laboratories.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
0 1986 ACM 0360-0300/85/1200-0419 $00.75

Computing Surveys, Vol. 17, No. 4, December 1985

420 l A. S. Tanenbaum and R. van Renesse

CONTENTS

INTRODUCTION
Goals and Problems
System Models

1. NETWORK OPERATING SYSTEMS
1.1 File System
1.2 Protection
1.3 Execution Location
1.4 An Example: The Sun Network

File System
2. DESIGN ISSUES

2.1 Communication Primitives
2.2 Naming and Protection
2.3 Resource Management
2.4 Fault Tolerance
2.5 Services

3. EXAMPLES OF DISTRIBUTED
OPERATING SYSTEMS
3.1 The Cambridge Distributed

Computing System
3.2 Amoeba
3.3 The V Kernel
3.4 The Eden Project
3.5 Comparison of the Cambridge,

Amoeba, V, and Eden Systems
4. SUMMARY
ACKNOWLEDGMENTS
REFERENCES

example, the ARPANET contains a sub-
stantial number of computers, but by this
definition it is not a distributed system.
Neither is a local network consisting of
personal computers with minicomputers
and explicit commands to log in here or
copy a file from there. In both cases we
have a computer network but not a distrib-
uted operating system. Thus it is the soft-
ware, not the hardware, that determines
whether a system is distributed or not.

As a rule of thumb, if you can tell which
computer you are using, you are not using
a distributed system. The users of a true
distributed system should not know (or
care) on which machine (or machines) their
programs are running, where their files
are stored, and so on. It should be clear by
now that very few distributed systems are
currently used in a production environ-
ment. However, several promising research
projects are in progress.

To make the contrast with distributed
operating systems stronger, let us briefly
look at another kind of system, which we
call a “network operating system.” A typical
configuration for a network operating sys-
tem would be a collection of personal com-
puters along with a common printer server
and file server for archival storage, all tied
together by a local network. Generally
speaking, such a system will have most of
the following characteristics that distin-
guish it from a distributed system:

l Each computer has its own private oper-
ating system, instead of running part of
a global, systemwide operating system.

l Each user normally works on his or her
own machine; using a different machine
invariably requires some kind of “remote
login,” instead of having the operating
system dynamically allocate processes to
CPUS.

l Users are typically aware of where each
of their files are kept and must move files
between machines with explicit “file
transfer” commands, instead of having
file placement managed by the operating
system.

l The system has little or no fault toler-
ance; if 1 percent of the personal com-
puters crash, 1 percent of the users are
out of business, instead of everyone sim-
ply being able to continue normal work,
albeit with 1 percent worse performance.

Goals and Problems

The driving force behind the current inter-
est in distributed systems is the enormous
rate of technological change in micropro-
cessor technology. Microprocessors have
become very powerful and cheap, compared
with mainframes and minicomputers, so it
has become attractive to think about de-
signing large systems composed of many
small processors. These distributed sys-
tems clearly have a price/performance ad-
vantage over more traditional systems.
Another advantage often cited is the rela-
tive simplicity of the software-each pro-
cessor has a dedicated function-although
this advantage is more often listed by
people who have never tried to write a

Computing Surveys, Vol. 17, No. 4, December 1985

Distributed Operating Systems l 421

VAXs), each with multiple users. Each user
is logged onto one specific machine, with
remote access to the other machines. This
model is a simple outgrowth of the central
time-sharing machine.

In the workstation model, each user has
a personal workstation, usually equipped
with a powerful processor, memory, a bit-
mapped display, and sometimes a disk.
Nearly all the work is done on the work-
stations. Such a system begins to look dis-
tributed when it supports a single, global
file system, so that data can be accessed
without regard to their location.

The processor pool model is the next
evolutionary step after the workstation
model. In a time-sharing system, whether
with one or more processors, the ratio of
CPUs to logged-in users is normally much
less than 1; with the workstation model it
is approximately 1; with the processor pool
model it is much greater than 1. As CPUs
get cheaper and cheaper, this model will
become more and more widespread. The
idea here is that whenever a user needs
computing power, one or more CPUs are
temporarily allocated to that user; when
the job is completed, the CPUs go back into
the pool to await the next request. As an
example, when ten procedures (each on a
separate file) must be recompiled, ten pro-
cessors could be allocated to run in parallel
for a few seconds and then be returned to
the pool of available processors. At least
one experimental system described below
(Amoeba) attempts to combine two of these
models, providing each user with a work-
station in addition to the processor pool for
general use. No doubt other variations will
be tried in the future.

distributed operating system than by those
who have.

Incremental growth is another plus; if
you need 10 percent more computing
power, you just add 10 percent more pro-
cessors. System architecture is crucial to
this type of system growth, however, since
it is hard to give each user of a personal
computer another 10 percent of a personal
computer. Reliability and availability can
also be a big advantage; a few parts of the
system can be down without disturbing
people using the other parts. On the minus
side, unless one is very careful, it is easy
for the communication protocol overhead
to become a major source of inefficiency.
There has been built more than one system
requiring the full computing power of its
machines just to run the protocols, leaving
nothing over to do the work. The occasional
lack of simplicity cited above is a real prob-
lem, although in all fairness, this problem
comes from inflated goals: With a central-
ized system no one expects the computer to
function almost normally when half the
memory is sick. With a distributed system,
a high degree of fault tolerance is often, at
least, an implicit goal.

A more fundamental problem in distrib-
uted systems is the lack of global state
information. It is generally a bad idea to
even try to collect complete information
about any aspect of the system in one table.
Lack of up-to-date information makes
many things much harder. It is hard to
schedule the processors optimally if you are
not sure how many are up at the moment.

Many people, however, think that these
obstacles can be overcome in time, so there
is great interest in doing research on the
subject.

System Models

Various models have been suggested for
building a distributed system. Most of them
fall into one of three broad categories,
which we call the “minicomputer” model,
the “workstation” model, and the “proces-
sor pool” model. In the minicomputer
model, the system consists of a few (per-
haps even a dozen) minicomputers (e.g.,

1. NETWORK OPERATING SYSTEMS

Before starting our discussion of distrib-
uted operating systems, it is worth first
taking a brief look at some of the ideas
involved in network operating systems,
since they can be regarded as primitive
forerunners. Although attempts to connect
computers together have been around for
decades, networking really came into the
limelight with the ARPANET in the early

Computing Surveys, Vol. 17, No. 4, December 1985

422 . A. S. Tanenbaum and R. van Renesse

1970s. The original design did not provide
for much in the way of a network operating
system. Instead, the emphasis was on using
the network as a glorified telephone line to
allow remote login and file transfer. Later,
several attempts were made to create net-
work operating systems, but they never
were widely used [Millstein 19771.

In more recent years, several research
organizations have connected collections of
minicomputers running the UNIX operat-
ing system [Ritchie and Thompson 19741
into a network operating system, usually
via a local network [Birman and Rowe
1982; Brownbridge et al. 1982; Chesson
1975; Hwang et al. 1982; Luderer et al. 1981;
Wambecq 19831. Wupit [1983] gives a good
survey of these systems, which we shall
draw upon for the remainder of this section.

As we said earlier, the key issue that
distinguishes a network operating system
from a distributed one is how aware the
users are of the fact that multiple machines
are being used. This visibility occurs in
three primary areas: the file system, pro-
tection, and program execution. Of course,
it is possible to have systems that are highly
transparent in one area and not at all in
the other, which leads to a hybrid form.

1.1 File System

When connecting two or more distinct sys-
tems together, the first issue that must be
faced is how to merge the file systems.
Three approaches have been tried. The first
approach is not to merge them at all. Going
this route means that a program on ma-
chine A cannot access files on machine B
by making system calls. Instead, the user
must run a special file transfer program
that copies the needed remote files to the
local machine, where they can then be ac-
cessed normally. Sometimes remote print-
ing and mail is also handled this way.
One of the best-known examples of net-
works that primarily support file transfer
and mail via special programs, and not
system call access to remote files, is the
UNIX “uucp” program, and its network,
USENET.

The next step upward in the direction of
a distributed file system is to have adjoining

Computing Surveys, Vol. 17, No. 4, December 1985

file systems. In this approach, programs on
one machine can open files on another ma-
chine by providing a path name telling
where the file is located. For example, one
could say

open(’ ‘/machinel/pathname’ ‘, READ);
open(“machinel!pathname”, READ);

open(‘f/. ./machinel/pathname”, READ);

The latter naming scheme is used in the
Newcastle Connection [Brownbridge et al.
19821 and Netix [Wambecq 19831 and is
derived from the creation of a virtual
“superdirectory” above the root directories
of all the connected machines. Thus “/. .”
means start at the local root directory and
go upward one level (to the superdirectory),
and then down to the root directory of
“machine.” In Figure 1, the root directory
of three machines, A, B, and C are shown,
with a superdirectory above them. To ac-
cess file x from machine C, one could say

open(’ ‘/. ./C/x’ ‘, READ-ONLY)

In the Newcastle system, the naming tree
is actually more general, since “machine 1”
may really be any directory, so one can
attach a machine as a leaf anywhere in the
hierarchy, not just at the top.

The third approach is the way it is done
in distributed operating systems, namely,
to have a single global file system visible
from all machines. When this method is
used, there is one “bin” directory for binary
programs, one password file, and so on.
When a program wants to read the pass-
word file it does something like

open(’ ‘/etc/passwd’ ‘, READ-ONLY)

without reference to where the file is. It is
up to the operating system to locate the file
and arrange for transport of data as they
are needed. LOCUS is an example of a
system using this approach [Popek et al.
1981; Walker et al. 1983; Weinstein et al.
19851.

The convenience of having a single global
name space is obvious. In addition, this
approach means that the operating system
is free to move files around among ma-
chines to keep all the disks equally full and
busy, and that the system can maintain

Distributed Operating Systems l 423

way, the network is just being used as a
fancy switch to allow users at any terminal
to log onto any computer, just as a tele-
phone company switching center allows
any subscriber to call any other subscriber.

This solution is usually inconvenient for
people and impractical for programs, so
something better is needed. The next step
up is to allow any user to access files on
any machine without having to log in, but
to have the remote user appear to have
the UID corresponding to “GUEST” or
“DEMO” or some other publicly known
login name. Generally such names have
little authority and can only access files
that have been designated as readable or
writable by all users.

A better approach is to have the operat-
ing system provide a mapping between
UIDs, so that when a user with UID 12 on
his or her home machine accesses a remote
machine on which his or her UID is 15, the
remote machine treats all accesses as
though they were done by user 15. This
approach implies that sufficient tables are
provided to map each user from his or her
home (machine, UID) pair to the appropri-
ate UID for any other machine (and that
messages cannot be tampered with).

In a true distributed system there should
be a unique UID for every user, and that
UID should be valid on all machines with-
out any mapping. In this way no protection
problems arise on remote accesses to files;
as far as protection goes, a remote access
can be treated like a local access with the
same UID. The protection issue makes the
difference between a network operating
system and a distributed one clear: In one
case there are various machines, each with
its own user-to-UID mapping, and in the
other there is a single, systemwide mapping
that is valid everywhere.

r 9 t u v w x Y 2

Figure 1. A (virtual) superdirectory above the root
directory provides access to remote files.

replicated copies of files if it so chooses.
When the user or program must specify the
machine name, the system cannot decide
on its own to move a file to a new machine
because that would change the (user visi-
ble) name used to access the file. Thus in a
network operating system, control over file
placement must be done manually by the
users, whereas in a distributed operating
system it can be done automatically by the
system itself.

1.2 Protection

Closely related to the transparency of the
file system is the issue of protection. UNIX
and many other operating systems assign a
unique internal identifier to each user.
Each file in the file system has a little table
associated with it (called an i-node in
UNIX) telling who the owner is, where the
disk blocks are located, etc. If two previ-
ously independent machines are now con-
nected, it may turn out that some internal
User IDentifier (UID), for example, num-
ber 12, has been assigned to a different user
on each machine. Consequently, when user
12 tries to access a remote file, the remote
file system cannot see whether the access
is permitted since two different users have
the same UID.

One solution to this problem is to require
all remote users wanting to access files on
machine X to first log onto X using a user
name that is local to X. When used this

1.3 Execution Location

Program execution is the third area in
which machine boundaries are visible in
network operating systems. When a user or
a running program wants to create a new
process, where is the process created? At
least four schemes have been used thus far.
The first of these is that the user simply

Computing Surveys, Vol. 17, No. 4, December 1985

424 l A. S. Tanenbaum and R. van Renesse

says “CREATE PROCESS” in one way or
another, and specifies nothing about where.
Depending on the implementation, this can
be the best or the worst way to do it. In the
most distributed case, the system chooses
a CPU by looking at the load, location of
files to be used, etc. In the least distributed
case, the system always runs the process on
one specific machine (usually the machine
on which the user is logged in).

The second approach to process location
is to allow users to run jobs on any machine
by first logging in there. In this model,
processes on different machines cannot
communicate or exchange data, but a sim-
ple manual load balancing is possible.

The third approach is a special command
that the user types at a terminal to cause a
program to be executed on a specific ma-
chine. A typical command might be

remote vax4 who

to run the who program on machine vax4.
In this arrangement, the environment of
the new process is the remote machine. In
other words, if that process tries to read or
write files from its current working direc-
tory, it will discover that its working direc-
tory is on the remote machine, and that
files that were in the parent process’s di-
rectory are no longer present. Similarly,
files written in the working directory will
appear on the remote machine, not the local
one.

The fourth approach is to provide the
“CREATE PROCESS” system call with a
parameter specifying where to run the new
process, possibly with a new system call for
specifying the default site. As with the pre-
vious method, the environment will gener-
ally be the remote machine. In many cases,
signals and other forms of interprocess
communication between processes do not
work properly among processes on different
machines.

A final point about the difference be-
tween network and distributed operating
systems is how they are implemented. A
common way to realize a network operating
system is to put a layer of software on top
of the native operating systems of the in-
dividual machines (e.g., Mamrak et al.
[1982]). For example, one could write a
special library package that would intercept

Computing Surveys, Vol. 17, No. 4, December 1985

all the system calls and decide whether each
one was local or remote [Brownbridge et al.
19821. Although most system calls can be
handled this way without modifying the
kernel, invariably there are a few things,
such as interprocess signals, interrupt char-
acters (e.g., BREAK) from the keyboard,
etc., that are hard to get right. In a true
distributed operating system one would
normally write the kernel from scratch.

1.4 An Example: The Sun Network
File System

To provide a contrast with the true distrib-
uted systems described later in this paper,
in this section we look briefly at a network
operating system that runs on the Sun
Microsystems’ workstations. These work-
stations are intended for use as personal
computers. Each one has a 68000 series
CPU, local memory, and a large bit-
mapped display. Workstations can be
configured with or without local disk, as
desired. All the workstations run a ver-
sion of 4.2BSD UNIX specially modified
for networking.

This arrangement is a classic example of
a network operating system: Each com-
puter runs a traditional operating system,
UNIX, and each has its own user(s), but
with extra features added to make network-
ing more convenient. During its evolution
the Sun system has gone through three
distinct versions, which we now describe.

In the first version each of the work-
stations was completely independent from
all the others, except that a program rep
was provided to copy files from one work-
station to another. By typing a command
such as

rep Ml:/usr/jim/file.c M2:/usr/ast/f.c

it was possible to transfer whole files from
one machine to another.

In the second version, Network Disk
(ND), a network disk server was provided
to support diskless workstations. Disk
space on the disk server’s machine was
divided into disjoint partitions, with each
partition acting as the virtual disk for some
(diskless) workstation.

Whenever a diskless workstation needed
to read a file, the request was processed

locallv until it not down to the level of the
device driver, it which point the block
needed was retrieved by sending a message
to the remote disk server. In effect, the
network was merely being used to simulate
a disk controller. With this network disk
system, sharing of disk partitions was not
possible.

The third version, the Network File Sys-
tem (NFS), allows remote directories to be
mounted in the local file tree on any work-
station. By mounting, say, a remote direc-
tory “dot” on the empty local directory
“/usr/doc,” all subsequent references to
“/usr/doc” are automatically routed to the
remote system. Sharing is allowed in NFS,
so several users can read files on a remote
machine at the same time.

To prevent users from reading other peo-
ple’s private files, a directory can only be
mounted remotely if it is explicitly exported
by the workstation it is located on. A direc-
tory is exported by entering a line for it in
a file “/etc/exports.” To improve perform-
ance of remote access, both the client ma-
chine and server machine do block caching.
Remote services can be located using a
Yellow Pages server that maps service
names onto their network locations.

The NFS is implemented by splitting the
operating system up into three layers. The
top layer handles directories, and maps
each path name onto a generalized i-node
called a unode consisting of a (machine,
i-node) pair, making each vnode globally
unique.

Vnode numbers are presented to the mid-
dle layer, the virtual file system (VFS).
This layer checks to see if a requested
vnode is local or not. If it is local, it calls
the local disk driver or, in the case of an
ND partition, sends a message to the re-
mote disk server. If it is remote, the VFS
calls the bottom layer with a request to
process it remotely.

The bottom layer accepts requests for
accesses to remote vnodes and sends them
over the network to the bottom layer on
the serving machine. From there they prop-
agate upward through the VFS layer to the
top layer, where they are reinjected into the
VFS layer. The VFS layer sees a request
for a local vnode and processes it normally,
without realizing that the top layer is ac-

Distributed Operating Systems l 425

tually working on behalf of a remote kernel.
The reply retraces the same path in the
other direction.

The protocol between workstations has
been carefully designed to be robust in the
face of network and server crashes. Each
request completely identifies the file (by its
vnode), the position in the file, and the byte
count. Between requests, the server does
not maintain any state information about
which files are open or where the current
file position is. Thus, if a server crashes
and is rebooted, there is no state informa-
tion that will be lost.

The ND and NFS facilities are quite
different and can both be used on the same
workstation without conflict. ND works at
a low level and just handles remote block
I/O without regard to the structure of the
information on the disk. NFS works at a
much higher level and effectively takes re-
quests appearing at the top of the operating
system on the client machine and gets them
over to the top of the operating system on
the server machine, where they are pro-
cessed in the same way as local requests.

2. DESIGN ISSUES

Now we turn from traditional computer
systems with some networking facilities
added on to systems designed with the
intention of being distributed. In this sec-
tion we look at five issues that distributed
systems’ designers are faced with:

l communication primitives,
l naming and protection,
l resource management,
0 fault tolerance,
l services to provide.

Although no list could possibly be exhaus-
tive at this early stage of development,
these topics should provide a reasonable
impression of the areas in which current
research is proceeding.

2.1 Communication Primitives

The computers forming a distributed sys-
tem normally do not share primary mem-
ory, and so communication via shared
memory techniques such as semaphores
and monitors is generally not applicable.

Computing Surveys, Vol. 17, No. 4, December 1985

426 . A. S. Tanenbaum and R. van Renesse

Instead, message passing in one form or
another is used. One widely discussed
framework for message-passing systems is
the IS0 OS1 reference model, which has
seven layers, each performing a well-
defined function [Zimmermann 19801. The
seven layers are the physical layer, data-
link layer, network layer, transport layer,
session layer, presentation layer, and ap-
plication layer. By using this model it is
possible to connect computers with widely
different operating systems, character
codes, and ways of viewing the world.

Unfortunately, the overhead created by
all these layers is substantial. In a distrib-
uted system consisting primarily of huge
mainframes from different manufacturers,
connected by slow leased lines (say, 56
kilobytes per second), the overhead might
be tolerable. Plenty of computing capacity
would be available for running complex
protocols, and the narrow bandwidth
means that close coupling between the sys-
tems would be impossible anyway. On the
other hand, in a distributed system consist-
ing of identical microcomputers connected
by a lo-megabyte-per second or faster local
network, the price of the IS0 model is
generally too high. Nearly all the experi-
mental distributed systems discussed in the
literature thus far have opted for a differ-
ent, much simpler model, so we do not
mention the IS0 model further in this
paper.

2.1.1 Message Passing

The model that is favored by researchers
in this area is the client-server model, in
which a client process wanting some service
(e.g., reading some data from a tile) sends
a message to the server and then waits for
a reply message, as shown in Figure 2. In
the most naked form the system just pro-
vides two primitives: SEND and RE-
CEIVE. The SEND primitive specifies the
destination and provides a message; the
RECEIVE primitive tells from whom a
message is desired (including “anyone”)
and provides a buffer where the incoming
message is to be stored. No initial setup is
required, and no connection is established,
hence no tear down is required.

Computing Surveys, Vol. 17, No. 4, December 1985

I+
Client
sends
request
Remage

+-El
Server
rend8
reply
marage

Figure 2. Client-server model of communication.

Precisely what semantics these primi-
tives ought to have has been a subject
of much controversy among researchers.
Two of the fundamental decisions that
must be made are unreliable versus reli-
able and nonblocking versus blocking prim-
itives. At one extreme, SEND can put a
message out onto the network and wish it
good luck. No guarantee of delivery is pro-
vided, and no automatic retransmission
is attempted by the system if the message
is lost. At the other extreme, SEND can
handle lost messages, retransmissions, and
acknowledgments internally, so that when
SEND terminates, the program is sure
that the message has been received and
acknowledged.

Blocking versus Nonblocking Primitives.
The other choice is between nonblocking
and blocking primitives. With nonblocking
primitives, SEND returns control to the
user program as soon as the message has
been queued for subsequent transmission
(or a copy made). If no copy is made, any
changes the program makes to the data
before or (heaven forbid) while they are
being sent are made at the program’s peril.
When the message has been transmitted
(or copied to a safe place for subsequent
transmission), the program is interrupted
to inform it that the buffer may be reused.
The corresponding RECEIVE primitive
signals a willingness to receive a message
and provides a buffer for it to be put into.
When a message has arrived, the program
is informed by interrupt, or it can poll for
status continuously or go to sleep until the
interrupt arrives. The advantage of these
nonblocking primitives is that they provide
the maximum flexibility: Programs can

Distributed Operating Systems l 427

compute and perform message I/O in par-
allel in any way they want.

Nonblocking primitives also have a dis-
advantage: They make programming tricky
and difficult. Irreproducible, timing-
dependent programs are painful to write
and awful to debug. Consequently, many
people advocate sacrificing some flexibility
and efficiency by using blocking primitives.
A.blocking SEND does not return control
to the user until the message has been sent
(unreliable blocking primitive) or until the
message has been sent and an acknowledg-
ment received (reliable blocking primitive).
Either way, the program may immediately
modify the buffer without danger. A block-
ing RECEIVE does not return control until
a message has been placed in the buffer.
Reliable and unreliable RECEIVES differ
in that the former automatically acknowl-
edges receipt of a message, whereas the
latter does not. It is not reasonable to com-
bine a reliable SEND with an unreliable
RECEIVE, or vice versa; so the system
designers must make a choice and provide
one set or the other. Blocking and non-
blocking primitives do not conflict, so there
is no harm done if the sender uses one and
the receiver the other.

receiver. Although buffered message pass-
ing can be implemented in many ways, a
typical approach is to provide users with a
system call CREATEBUF, which creates a
kernel buffer, sometimes called a mailbox,
of a user-specified size. To communicate,
a sender can now send messages to the
receiver’s mailbox, where they will be
buffered until requested by the receiver.
Buffering is not only more complex (creat-
ing, destroying, and generally managing
the mailboxes), but also raises issues of pro-
tection, the need for special high-priority
interrupt messages, what to do with mail-
boxes owned by processes that have been
killed or died of natural causes, and more.

Buffered versus Unbuffered Primitives.
Another design decision that must be made
is whether or not to buffer messages. The
simplest strategy is not to buffer. When a
sender has a message for a receiver that has
not (yet) executed a RECEIVE primitive,
the sender is blocked until a RECEIVE
has been done, at which time the mes-
sage is copied from sender to receiver. This
strategy is sometimes referred to as a
rendezvous.

A more structured form of communica-
tion is achieved by distinguishing requests
from replies. With this approach, one typ-
ically has three primitives: SEND-GET,
GET-REQUEST, and SEND-REPLY.
SEND-GET is used by clients to send re-
quests and get replies. It combines a SEND
to a server with a RECEIVE to get the
server’s reply. GET-REQUEST is done by
servers to acquire messages containing
work for them to do. When a server has
carried the work out, it sends a reply with
SEND-REPLY. By thus restricting the
message traffic and using reliable, blocking
primitives, one can create some order in the
chaos.

2.1.2 Remote Procedure Call (RPC)

A slight variation on this theme is to
copy the message to an internal buffer on
the sender’s machine, thus providing for a
nonblocking version of the same scheme.
As long as the sender does not do any more
SENDS before the RECEIVE occurs, no
problem occurs.

A more general solution is to have a
buffering mechanism, usually in the oper-
ating system kernel, which allows senders
to have multiple SENDS outstanding, even
without any interest on the part of the

The next step forward in message-passing
systems is the realization that the model of
“client sends request and blocks until ser-
ver sends reply” looks very similar to a
traditional procedure call from the client to
the server. This model has become known
in the literature as “remote procedure call”
and has been widely discussed [Birrell and
Nelson 1984; Nelson 1981; Spector 19821.
The idea is to make the semantics of inter-
machine communication as similar as pos-
sible to normal procedure calls because the
latter is familiar and well understood, and
has proved its worth over the years as a
tool for dealing with abstraction. It can be
viewed as a refinement of the reliable,
blocking SEND-GET, GET-REQUEST,

Computing Surveys, Vol. 17, No. 4, December 1985

428 . A. S. Tanenbaum and R. van Renesse

SENDREP primitives, with a more user-
friendly syntax.

The remote procedure call can be organ-
ized as follows. The client (calling program)
makes a normal procedure call, say, p(x, y)
on its machine, with the intention of invok-
ing the remote procedure p on some other
machine. A dummy or stub procedure p
must be included in the caller’s address
space, or at least be dynamically linked to
it upon call. This procedure, which may be
automatically generated by the compiler,
collects the parameters and packs them
into a message in a standard format. It then
sends the message to the remote machine
(using SEND-GET) and blocks, waiting
for an answer (see Figure 3).

At the remote machine, another stub pro-
cedure should be waiting for a message
using GET-REQUEST. When a message
comes in, the parameters are unpacked by
an input-handling procedure, which then
makes the local call p(x, y). The remote
procedure p is thus called locally, and so its
normal assumptions about where to find
parameters, the state of the stack, etc., are
identical to the case of a purely local call.
The only procedures that know that the
call is remote are the stubs, which build
and send the message on the client side and
disassemble and make the call on the server
side. The result of the procedure call follows
an analogous path in the reverse direction.

Remote Procedure Call Design Issues.
Although at first glance the remote
procedure call model seems clean and sim-
ple, under the surface there are several
problems. One problem concerns parameter
(and result) passing. In most programming
languages, parameters can be passed by
value or by reference. Passing value param-
eters over the network is easy; the stub just
copies them into the message and off they
go. Passing reference parameters (pointers)
over the network is not so easy. One needs
a unique, systemwide pointer for each ob-
ject so that it can be remotely accessed. For
large objects, such as files, some kind of
capability mechanism [Dennis and Van
Horn 1966; Levy 1984; Pashtan 19821 could
be set up, using capabilities as pointers. For
small objects, such as integers and Boo-

Computing Surveys, Vol. 17, No. 4, December 1985

Client Machine Server Machine

~I-~~

Figure 3. Remote procedure call.

leans, the amount of overhead and mecha-
nism needed to create a capability and send
it in a protected way is so large that this
solution is highly undesirable.

Still another problem that must be dealt
with is how to represent parameters and
results in messages. This representation is
greatly complicated when different types of
machines are involved in a communication.
A floating-point number produced on one
machine is unlikely to have the same value
on a different machine, and even a negative
integer will create problems between the l’s
complement and 2’s complement machines.

Converting to and from a standard for-
mat on every message sent and received is
an obvious possibility, but it is expensive
and wasteful, especially when the sender
and receiver do, in fact, use the same inter-
nal format. If the sender uses its internal
format (along with an indication of which
format it is) and lets the receiver do the
conversion, every machine must be pre-
pared to convert from every other format.
When a new machine type is introduced,
much existing software must be upgraded.
Any way it is done, with remote procedure
call (RPC) or with plain messages, it is an
unpleasant business.

Some of the unpleasantness can be hid-
den from the user if the remote procedure
call mechanism is embedded in a program-
ming language with strong typing, so that
the receiver at least knows how many pa-
rameters to expect and what types they
have. In this respect, a weakly typed lan-
guage such as C, in which procedures with
a variable number of parameters are com-
mon, is more complicated to deal with.

Still another problem with RPC is the
issue of client-server binding. Consider, for
example, a system with multiple file ser-
vers. If a client creates a file on one of the
file servers, it is usually desirable that sub-

Distributed Operating Systems l 429

Client crashes can also cause trouble for
servers. Consider, for example, the case of
processes A and B communicating via the
UNIX pipe model A] B with A the server
and B the client. B asks A for data and gets
a reply, but unless that reply is acknowl-
edged somehow, A does not know when it
can safely discard data that it may not be
able to reproduce. If B crashes, how long
should A hold onto the data? (Hint: If the
answer is less than infinity, problems will
be introduced whenever B is slow in send-
ing an acknowledgment.)

Closely related to this is the problem of
what happens if a client cannot tell whether
or not a server has crashed. Simply waiting
until the server is rebooted and trying again
sometimes works and sometimes does not.
This is a case in which it works: Client asks
to read block 7 of some file. This is a case
in which it does not work: Client says
transfer a million dollars from one bank
account to another. In the former case, it
does not matter whether or not the server
carried out the request before crashing;
carrying it out a second time does no harm.
In the latter case, one would definitely pre-
fer the call to be carried out exactly once,
no more and no less. Calls that may be
repeated without harm (like the first ex-
ample) are said to be idempotent. Unfortu-
nately, it is not always possible to arrange
for all calls to have this property. Any call
that causes action to occur in the outside
world, such as transferring money, printing
lines, or opening a valve in an automated
chocolate factory just long enough to fill
exactly one vat, is likely to cause trouble if
performed twice.

Spector [1982] and Nelson [1981] have
looked at the problem of trying to make
sure that remote procedure calls are exe-
cuted exactly once, and they have devel-
oped taxonomies for classifying the seman-
tics of different systems. These vary from
systems that offer no guarantee at all (zero
or more executions), to those that guaran-
tee at most one execution (zero or one), to
those that guarantee at least one execution
(one or more).

Getting it right (exactly one) is probably
impossible, because even if the remote ex-
ecution can be reduced to one instruction

sequent writes to that file go to the file
server where the file was created. With
mailboxes, arranging for this is straight-
forward. The client simply addresses the
WRITE messages to the same mailbox that
the CREATE message was sent to. Since
each file server has its own mailbox, there
is no ambiguity.

When RPC is used, the situation is more
complicated, since all the client does is put
a procedure call such as

write(FileDescriptor, BufferAddress, ByteCount);

in his program. RPC intentionally hides all
the details of locating servers from the
client, but sometimes, as in this example,
the details are important.

In some applications, broadcasting and
multicasting (sending to a set of destina-
tions, rather than just one) is useful. For
example, when trying to locate a certain
person, process, or service, sometimes the
only approach is to broadcast an inquiry
message and wait for the replies to come
back. RPC does not lend itself well to
sending messages to sets of processes
and getting answers back from some or
all of them. The semantics are completely
different.

Despite all these disadvantages, RPC re-
mains an interesting form of communica-
tion, and much current research is being
addressed toward improving it and solving
the various problems discussed above.

2.1.3 Error Handling

Error handling in distributed systems is
radically different from that of centralized
systems. In a centralized system, a system
crash means that the client, server, and
communication channel are all completely
destroyed, and no attempt is made to revive
them. In a distributed system, matters are
more complex. If a client has initiated a
remote procedure call with a server that
has crashed, the client may just be left
hanging forever unless a time-out is built
in. However, such a time-out introduces
race conditions in the form of clients that
time out too quickly, thinking that the
server is down, when in fact, it is merely
very slow.

Computing Surveys, Vol. 17, No. 4, December 1985

430 l A. S. Tanenbaum and R. van Renesse

(e.g., setting a bit in a device register that
opens the chocolate valve), one can never
be sure after a crash if the system went
down a microsecond before or a micro-
second after the one critical instruction.
Sometimes one can make a guess based on
observing external events (e.g., looking to
see whether the factory floor is covered
with a sticky, brown material), but in gen-
eral there is no way of knowing. Note that
the problem of creating stable storage
[Lampson 19811 is fundamentally different,
since remote procedure calls to the stable
storage server in that model never cause
events external to the computers.

2.1.4 Implementation issues

Constructing a system in principle is al-
ways easier than constructing it in practice.
Building a 16-node distributed system that
has a total computing power about equal to
a single-node system is surprisingly easy.
This observation leads to tension between
the goals of making it work fast in the
normal case and making the semantics rea-
sonable when something goes wrong. Some
experimental systems have put the empha-
sis on one goal and some on the other, but
more research is needed before we have
systems that are both fast and graceful in
the face of crashes.

Some things have been learned from past
work, however. Foremost among these is
that making message passing efficient is
very important. To this end, systems
should be designed to minimize copying of
data [Cheriton 1984a]. For example, a re-
mote procedure call system that first copies
each message from the user to the stub,
from the stub to the kernel, and finally
from the kernel to the network interface
board requires three copies on the sending
side, and probably three more on the re-
ceiving side, for a total of six. If the call is
to a remote file server to write a 1K block
of data to disk, at a copy time of 1 micro-
second per byte, 6 milliseconds are needed
just for copying, which puts an upper limit
of 167 calls per second, or a throughput of
167 kilobytes per second. When other
sources of overhead are considered (e.g., the
reply message, the time waiting for access

Computing Surveys, Vol. 17, No. 4, December 1985

to the network, transmission time), achiev-
ing even 80 kilobytes per second will be
difficult, if not impossible, no matter how
high the network bandwidth or disk speed.
Thus it is desirable to avoid copying, but
this is not always simple to achieve since
without copies, (part of) a needed message
may be swapped or paged out when it is
needed.

Another point worth making is that there
is always a substantial fixed overhead with
preparing, sending, and receiving a mes-
sage, even a short message, such as a re-
quest to read from a remote file server. The
kernel must be invoked, the state of the
current process must be saved, the desti-
nation must be located, various tables must
be updated, permission to access the net-
work must be obtained (e.g., wait for the
network to become free or wait for the
token), and quite a bit of bookkeeping must
be done.

This fixed overhead argues for making
messages as long as possible, to reduce the
number of messages. Unfortunately, many
current local networks limit physical pack-
ets to 1K or 2K; 4K or 8K would be much
better. Of course, if the packets become too
long, a highly interactive user may occa-
sionally be queued behind ten maximum-
length packets, degrading response time; so
the optimum size depends on the work load.

Virtual Circuits versus Datagrams
There is much controversy over whether
remote procedure call ought to be built on
top of a flow-controlled, error-controlled,
virtual circuit mechanism or directly on top
of the unreliable, connectionless (data-
gram) service. Saltzer et al. [1984] have
pointed out that since high reliability can
only be achieved by end-to-end acknowl-
edgments at the highest level of protocol,
the lower levels need not be 100 percent
reliable. The overhead incurred in provid-
ing a clean virtual circuit upon which to
build remote procedure calls (or any other
message-passing system), is therefore
wasted. This line of thinking argues for
building the message system directly on the
raw datagram interface.

The other side of the coin is that it would
be nice for a distributed system to be able

Distributed Operating Systems l 431

to encompass heterogeneous computers in
different countries with different post,
telephone, and telegraph (PTT) networks
and possibly different national alphabets,
and that this environment requires com-
plex multilayered protocol structures. It is
our observation that both arguments are
valid, but, depending on whether one is
trying to forge a collection of small com-
puters into a virtual uniprocessor or merely
access remote data transparently, one or
the other will dominate.

Even if one opts for building RPC on top
of the raw datagram service provided by a
local network, there are still a number of
protocols open to the implementer. The
simplest one is to have every request and
reply separately acknowledged. The mes-
sage sequence for a remote procedure call
is then: REQUEST, ACK, REPLY, ACK,
as shown in Figure 4a. The ACKs are man-
aged by the kernel without user knowledge.

The number of messages can be reduced
from four to three by allowing the REPLY
to serve as the ACK for the REQUEST, as
shown in Figure 4b. However, a problem
arises when the REPLY can be delayed for
a long time. For example, when a login
process makes an RPC to a terminal server
requesting characters, it may be hours or
days before someone steps up to a terminal
and begins typing. In this event, an addi-
tional message has to be introduced to allow
the sending kernel to inquire whether the
message has arrived or not.

A further step in the same direction is to
eliminate the other ACK as well, and let
the arrival of the next REQUEST imply an
acknowledgment of the previous REPLY
(see Figure 4~). Again, some mechanism is
needed to deal with the case that no new
REQUEST is forthcoming quickly.

One of the great difficulties in imple-
menting efficient communication is that it
is more of a black art than a science. Even
straightforward implementations can have
unexpected consequences, as the following
example from Sventek et al. [1983] shows.
Consider a ring containing a circulating
token. To transmit, a machine captures and
removes the token, puts a message on the
network, and then replaces the token, thus
allowing the next machine “downstream”

Request

Reply Ack

Request Ack

Reply

(4

Request
I

RePlY

Reply Ack

(b)

f Request

Request 2
RePlY

(c)

Figure 4. Remote procedure call (a) with individual
acknowledgments per message, (b) with the reply as
the request acknowledgment, (c) with no explicit
acknowledgments.

the opportunity to capture it. In theory,
such a network is “fair” in that each user
has equal access to the network and no one
user can monopolize it to the detriment of
others. In practice, suppose that two users
each want to read a long file from a file
server. User A sends a request message to
the server, and then replaces the token on
the network for B to acquire.

After A’s message arrives at the server,
it takes a short time for the server to handle
the incoming message interrupt and reen-
able the receiving hardware. Until the re-
ceiver is reenabled, the server is deaf.
Within a microsecond or two of the time A
puts the token back on the network, B sees
and grabs it, and begins transmitting a
request to the (unbeknown to B) deaf file
server. Even if the server reenables halfway
through B’s message, the message will be
rejected owing to missing header, bad frame
format, and checksum error. According to
the ring protocol, after sending one mes-
sage, B must now replace the token, which
A captures for a successful transmission.
Once again B transmits during the server’s
deaf period, and so on. Conclusion: B gets

Computing Surveys, Vol. 17, No. 4, December 1985

432 . A. S. Tanenbaum and R. van Renesse

no service at all until A is finished. If A
happens to be scanning through the Man-
hattan telephone book, B may be in for a
long wait. This specific problem can be
solved by inserting random delays in places
to break the synchrony, but our point is
that totally unexpected problems like this
make it necessary to build and observe real
systems to gain insight into the problems.
Abstract formulations and simulations are
not enough.

2.2 Naming and Protection

All operating systems support objects such
as files, directories, segments, mailboxes,
processes, services, servers, nodes, and I/O
devices. When a process wants to access
one of these objects, it must present some
kind of name to the operating system to
specify which object it wants to access. In
some instances these names are ASCII
strings designed for human use; in others
they are binary numbers used only inter-
nally. In all cases they have to be managed
and protected from misuse.

2.2.1 Naming as Mapping

Naming can best be seen as a problem of
mapping between two domains. For exam-
ple, the directory system in UNIX provides
a mapping between ASCII path names and
i-node numbers. When an OPEN system
call is made, the kernel converts the name
of the file to be opened into its i-node
number. Internal to the kernel, files are
nearly always referred to by i-node number,
not ASCII string. Just about all operating
systems have something similar. In a dis-
tributed system a separate name server is
sometimes used to map user-chosen names
(ASCII strings) onto objects in an analo-
gous way.

Another example of naming is the map-
ping of virtual addresses onto physical ad-
dresses in a virtual memory system. The
paging hardware takes a virtual address as
input and yields a physical address as out-
put for use by the real memory.

In some cases naming implies only a
single level of mapping, but in other cases
it can imply multiple levels. For example,
to use some service, a process might first

Computing Surveys, Vol. 17, No. 4, December 1985

have to map the service name onto the
name of a server process that is prepared
to offer the service. As a second step, the
server would then be mapped onto the num-
ber of the CPU on which that process is
running. The mapping need not always
be unique, for example, if there are multi-
ple processes prepared to offer the same
service.

2.2.2 Name Servers

In centralized systems, the problem of nam-
ing can be effectively handled in a straight-
forward way. The system maintains a table
or database providing the necessary name-
to-object mappings. The most straightfor-
ward generalization of this approach to
distributed systems is the single name
server model. In this model, a server ac-
cepts names in one domain and maps them
onto names in another domain. For exam-
ple, to locate services in some distributed
systems, one sends the service name in
ASCII to the name server, and it replies
with the node number where that service
can be found, or with the process name of
the server process, or perhaps with the
name of a mailbox to which requests for
service can be sent. The name server’s da-
tabase is built up by registering services,
processes, etc., that want to be publicly
known. File directories can be regarded as
a special case of name service.

Although this model is often acceptable
in a small distributed system located at a
single site, in a large system it is undesira-
ble to have a single centralized component
(the name server) whose demise can bring
the whole system to a grinding halt. In
addition, if it becomes overloaded, perform-
ance will degrade. Furthermore, in a geo-
graphically distributed system that may
have nodes in different cities or even coun-
tries, having a single name server will be
inefficient owing to the long delays in ac-
cessing it.

The next approach is to partition the
system into domains, each with its own
name server. If the system is composed of
multiple local networks connected by gate-
ways and bridges, it seems natural to have
one name server per local network. One
way to organize such a system is to have a

Distributed Operating Systems .

Name server 1
looks up a/b/c

Name server 2
looks up b/c

Name server 3
looks up c

433

a

X >

Y >

2 >

a

X

El C

r

Figure 5. Distributing the lookup of a/b/c over three name servers.

global naming tree, with files and other
objects having names of the form: /coun-
try/city/network/pathname. When such a
name is presented to any name server, it
can immediately route the request to some
name server in the designated country,
which then sends it to a name server in the
designated city, and so on until it reaches
the name server in the network where the
object is located, where the mapping can be
done. Telephone numbers use such a hier-
archy, composed of country code, area code,
exchange code (first three digits of tele-
phone number in North America), and sub-
scriber line number.

Having multiple name servers does not
necessarily require having a single, global
naming hierarchy. Another way to organize
the name servers is to have each one effec-
tively maintain a table of, for example,
(ASCII string, pointer) pairs, where the
pointer is really a kind of capability for any
object or domain in the system. When a
name, say a/b/c, is looked up by the local
name server, it may well yield a pointer to
another domain (name server), to which
the rest of the name, b/c, is sent for further
processing (see Figure 5). This facility can
be used to provide links (in the UNIX
sense) to files or objects whose precise
whereabouts is managed by a remote name
server. Thus if a file foobar is located in
another local network, n, with name server
n.s, one can make an entry in the local
name server’s table for the pair (x, n.s) and
then access xlfoobar as though it were a
local object. Any appropriately authorized
user or process knowing the name xlfoobar

could make its own synonym s and then
perform accesses using s/x/foobar. Each
name server parsing a name that involves
multiple name servers just strips off the
first component and passes the rest of the
name to the name server found by looking
up the first component locally.

A more extreme way of distributing the
name server is to have each machine man-
age its own names. To look up a name, one
broadcasts it on the network. At each ma-
chine, the incoming request is passed to the
local name server, which replies only if it
finds a match. Although broadcasting is
easiest over a local network such as a ring
net or CSMA net (e.g., Ethernet), it is also
possible over store-and-forward packet
switching networks such as the ARPANET
[Dalal 19771.

Although the normal use of a name server
is to map an ASCII string onto a binary
number used internally to the system, such
as a process identifier or machine number,
once in a while the inverse mapping is also
useful. For example, if a machine crashes,
upon rebooting it could present its (hard-
wired) node number to the name server to
ask what it was doing before the crash, that
is, ask for the ASCII string corresponding
to the service that it is supposed to be
offering so that it can figure out what pro-
gram to reboot.

2.3 Resource Management

Resource management in a distributed
system differs from that in a centralized
system in a fundamental way. Centralized

Computing Surveys, Vol. 17, No. 4, December 1985

434 l A. S. Tanenbaum and R. van Renesse

systems always have tables that give com-
plete and up-to-date status information
about all the resources being managed; dis-
tributed systems do not. For example, the
process manager in a traditional centralized
operating system normally uses a “process
table” with one entry per potential process.
When a new process has to be started, it is
simple enough to scan the whole table to
see whether a slot is free. A distributed
operating system, on the other hand, has a
much harder job of finding out whether a
processor is free, especially if the system
designers have rejected the idea of having
any central tables at all, for reasons of
reliability. Furthermore, even if there is a
central table, recent events on outlying
processors may have made some table en-
tries obsolete without the table manager
knowing it.

The problem of managing resources
without having accurate global state infor-
mation is very difficult. Relatively little
work has been done in this area. In the
following sections we look at some work
that has been done, including distributed
process management and scheduling.

2.3.1 Processor Allocation

One of the key resources to be managed in
a distributed system is the set of available
processors. One approach that has been
proposed for keeping tabs on a collection of
processors is to organize them in a logical
hierarchy independent of the physical
structure of the network, as in MICROS
[Wittie and van Tilborg 19801. This ap-
proach organizes the machines like people
in corporate, military, academic, and
other real-world hierarchies. Some of the
machines are workers and others are
managers.

For each group of k workers, one manager
machine (the “department head”) is as-
signed the task of keeping track of who is
busy and who is idle. If the system is large,
there will be an unwieldy number of de-
partment heads; so some machines will
function as “deans,” riding herd on k de-
partment heads. If there are many deans,
they too can be organized hierarchically,
with a “big cheese” keeping tabs on k deans.

Computing Surveys, Vol. 17, No. 4, December 1985

This hierarchy can be extended ad infini-
tum, with the number of levels needed
growing logarithmically with the number of
workers. Since each processor need only
maintain communication with one superior
and k subordinates, the information stream
is manageable.

An obvious question is, “What happens
when a department head, or worse yet, a
big cheese, stops functioning (crashes)?”
One answer is to promote one of the direct
subordinates of the faulty manager to fill
in for the boss. The choice of which one
can either be made by the subordinates
themselves, by the deceased’s peers, or in a
more autocratic system, by the sick man-
ager’s boss.

To avoid having a single (vulnerable)
manager at the top of the tree, one can
truncate the tree at the top and have a
committee as the ultimate authority. When
a member of the ruling committee malfunc-
tions, the remaining members promote
someone one level down as a replacement.

Although this scheme is not completely
distributed, it is feasible and works well in
practice. In particular, the system is self-
repairing, and can survive occasional
crashes of both workers and managers
without any long-term effects.

In MICROS, the processors are mono-
programmed, so if a job requiring S pro-
cesses suddenly appears, the system must
allocate S processors for it. Jobs can be
created at any level of the hierarchy. The
strategy used is for each manager to keep
track of approximately how many workers
below it are available (possibly several
levels below it). If it thinks that a sufficient
number are available, it reserves some
number R of them, where R 2 S, because
the estimate of available workers may not
be exact and some machines may be down.

If the manager receiving the request
thinks that it has too few processors avail-
able, it passes the request upward in the
tree to its boss. If the boss cannot handle
it either, the request continues propagating
upward until it reaches a level that has
enough available workers at its disposal. At
that point, the manager splits the request
into parts and parcels them out among the
managers below it, which then do the same

Distributed Operating Systems l 435

thing until the wave of scheduling requests
hits bottom. At the bottom level, the pro-
cessors are marked as “busy,” and the ac-
tual number of processors allocated is re-
ported back up the tree.

To make this strategy work well, R must
be large enough so that the probability is
high that enough workers will be found to
handle the whole job. Otherwise, the re-
quest will have to move up one level in the
tree and start all over, wasting considerable
time and computing power. On the other
hand, if R is too large, too many processors
will be allocated, wasting computing capac-
ity until word gets back to the top and they
can be released.

The whole situation is greatly compli-
cated by the fact that requests for proces-
sors can be generated randomly anywhere
in the system, so at any instant, multiple
requests are likely to be in various stages
of the allocation algorithm, potentially giv-
ing rise to out-of-date estimates of available
workers, race conditions, deadlocks, and
more. In Van Tilborg and Wittie [1981] a
mathematical analysis of the problem is
given and various other aspects not de-
scribed here are covered in detail.

2.3.2 Scheduling

The hierarchical model provides a general
model for resource control but does not
provide any specific guidance on how to do
scheduling. If each process uses an entire
processor (i.e., no multiprogramming), and
each process is independent of all the oth-
ers, any process can be assigned to any
processor at random. However, if it is com-
mon that several processes are working to-
gether and must communicate frequently
with each other, as in UNIX pipelines or
in cascaded (nested) remote procedure
calls, then it is desirable to make sure that
the whole group runs at once. In this sec-
tion we address that issue.

Let us assume that each processor can
handle up to N processes. If there are
plenty of machines and N is reasonably
large, the problem is not finding a free
machine (i.e., a free slot in some process
table), but something more subtle. The
basic difficulty can be illustrated by an

TiilE
slot Machine Machine

0 1 01234567

0

A c

1 0 Q

2 A c

3

4

5 1

0 D

A c

0 D

(a) (b)

Figure6. (a) Two jobs running out of phase with
each other. (b) Scheduling matrix for eight machines,
each with six time slots. The X’s indicated allocated
slots.

example in which processes A and B run
on one machine and processes C and D run
on another. Each machine is time shared
in, say, lOO-millisecond time slices, with A
and C running in the even slices, and B and
D running in the odd ones, as shown in
Figure 6a. Suppose that A sends many mes-
sages or makes many remote procedure
calls to D. During time slice 0, A starts up
and immediately calls D, which unfortu-
nately is not running because it is now C’s
turn. After 100 milliseconds, process
switching takes place, and D gets A’s mes-
sage, carries out the work, and quickly re-
plies. Because B is now running, it will be
another 100 milliseconds before A gets the
reply and can proceed. The net result is one
message exchange every 200 milliseconds.
What is needed is a way to ensure that
processes that communicate frequently run
simultaneously.

Although it is difficult to determine dy-
namically the interprocess communication
patterns, in many cases a group of related
processes will be started off together. For
example, it is usually a good bet that the
filters in a UNIX pipeline will communi-
cate with each other more than they will
with other, previously started processes.
Let us assume that processes are created
in groups, and that intragroup commu-
nication is much more prevalent than
intergroup communication. Let us further
assume that a sufficiently large number
of machines are available to handle the
largest group, and that each machine is

Computing Surveys, Vol. 17, No. 4, December 1985

436 l A. S. Tanenbaum and R. van Renesse

multiprogrammed with N process slots (N-
way multiprogramming).

Ousterhout [19821 has proposed several
algorithms based on the concept of co-
scheduling, which takes interprocess
communication patterns into account while
scheduling to ensure that all members of a
group run at the same time. The first al-
gorithm uses a conceptual matrix in which
each column is the process table for one
machine, as shown in Figure 6b. Thus, col-
umn 4 consists of all the processes that run
on machine 4. Row 3 is the collection of all
processes that are in slot 3 of some ma-
chine, starting with the process in slot 3 of
machine 0, then the process in slot 3 of
machine 1, and so on. The gist of his idea
is to have each processor use a round-robin
scheduling algorithm with all processors
first running the process in slot 0 for a fixed
period, then all processors running the
process in slot 1 for a fixed period, etc. A
broadcast message could be used to tell each
processor when to do process switching, to
keep the time slices synchronized.

By putting all the members of a process
group in the same slot number, but on
different machines, one has the advantage
of N-fold parallelism, with a guarantee that
all the processes will be run at the same
time, to maximize communication through-
put. Thus in Figure 6b, four processes that
must communicate should be put into slot
3, on machines 1, 2, 3, and 4 for optimum
performance. This scheduling technique
can be combined with the hierarchical
model of process management used in
MICROS by having each department head
maintain the matrix for its workers, assign-
ing processes to slots in the matrix and
broadcasting time signals.

Ousterhout also described several varia-
tions to this basic method to improve per-
formance. One of these breaks the matrix
into rows and concatenates the rows to
form one long row. With k machines, any
k consecutive slots belong to different ma-
chines. To allocate a new process group to
slots, one lays a window k slots wide over
the long row such that the leftmost slot is
empty but the slot just outside the left edge
of the window is full. If sufficient empty
slots are present in the window, the pro-

Computing Surveys, Vol. 17, No. 4, December 1985

cesses are assigned to the empty slots;
otherwise the window is slid to the right
and the algorithm repeated. Scheduling is
done by starting the window at the left edge
and moving rightward by about one win-
dow’s worth per time slice, taking care not
to split groups over windows. Ousterhout’s
paper discusses these and other methods in
more detail and gives some performance
results.

2.3.3 Load Balancing

The goal of Ousterhout’s work is to place
processes that work together on different
processors, so that they can all run in par-
allel. Other researchers have tried to do
precisely the opposite, namely, to find sub-
sets of all the processes in the system that
are working together, so that closely related
groups of processes can be placed on the
same machine to reduce interprocess com-
munication costs [Chow and Abraham
1982; Chu et al. 1980; Gylys and Edwards
1976; Lo 1984; Stone 1977,1978; Stone and
Bokhari 19781. Yet other researchers have
been concerned primarily with load balanc-
ing, to prevent a situation in which some
processors are overloaded while others are
empty [Barak and Shiloh 1985; Efe 1982;
Krueger and Finkel 1983; Stankovic and
Sidhu 19841. Of course, the goals of maxi-
mizing throughput, minimizing response
time, and keeping the load uniform are to
some extent in conflict, so many of the
researchers try to evaluate different com-
promises and trade-offs.

Each of these different approaches to
scheduling makes different assumptions
about what is known and what is most
important. The people trying to cluster
processes to minimize communication
costs, for example, assume that any process
can run on any machine, that the comput-
ing needs of each process are known in
advance, and that the interprocess com-
munication traffic between each pair of
processes is also known in advance. The
people doing load balancing typically make
the realistic assumption that nothing about
the future behavior of a process is known.
The minimizers are generally theorists,
whereas the load balancers tend to be

Distributed Operating Systems

2 Machine 1 I Machine

l 437

2 Machine 1 f Machine

(4 (b)

people making real systems who care less
about optimality than about devising algo-
rithms that can actually be used. Let us now
briefly look at each of these approaches.

Graph-Theoretic Models. If the system
consists of a fixed number of processes,
each with known CPU and memory re-
quirements, and a known matrix giving the
average amount of traffic between each pair
of processes, scheduling can be attacked as
a graph-theoretic problem. The system can
be represented as a graph, with each pro-
cess a node and each pair of communicating
processes connected by an arc labeled with
the data rate between them.

The problem of allocating all the pro-
cesses to k processors then reduces to the
problem of partitioning the graph into k
disjoint subgraphs, such that each subgraph
meets certain constraints (e.g., total CPU
and memory requirements below some
limit). Arcs that are entirely within one
subgraph represent internal communica-
tion within a single processor (=fast),
whereas arcs that cut across subgraph
boundaries represent communication be-
tween two processors (=slow). The idea is
to find a partitioning of the graph that
meets the constraints and minimizes the
network traffic, or some variation of this
idea. Figure 7a depicts a graph of interact-
ing processors with one possible partition-
ing of the processes between two machines.
Figure 7b shows a better partitioning, with
less intermachine traffic, assuming that all
the arcs are equally weighted. Many papers
have been written on this subject, for ex-
ample, Chow and Abraham [1982], Chow
and Kohler [1979], Stone [1977, 19781,
Stone and Bokhari [1978], and Lo [1984].
The results are somewhat academic, since
in real systems virtually none of the as-
sumptions (fixed number of processes with

Figure 7. Two ways of statically al-
locating processes (nodes in the
graph) to machines. Arcs show which
pairs of processes communicate.

static requirements, known traffic matrix,
error-free processors and communication)
are ever met.

Heuristic Load Balancing. When the
goal of the scheduling algorithm is dy-
namic, heuristic load balancing, rather than
finding related clusters, a different ap-
proach is taken. Here the idea is for each
processor to estimate its own load contin-
ually, for processors to exchange load in-
formation, and for process creation and
migration to utilize this information.

Various methods of load estimation are
possible. One way is just to measure the
number of runnable processes on each CPU
periodically and take the average of the last
n measurements as the load. Another way
[Bryant and Finkel19811 is to estimate the
residual running times of all the processes
and define the load on a processor as the
number of CPU seconds that all its pro-
cesses will need to finish. The residual time
can be estimated mostly simply by assum-
ing it is equal to the CPU time already
consumed. Bryant and Finkel also discuss
other estimation techniques in which both
the number of processes and length of re-
maining time are important. When round-
robin scheduling is used, it is better to be
competing against one process that needs
100 seconds than against 100 processes that
each need 1 second.

Once each processor has computed its
load, a way is needed for each processor to
find out how everyone else is doing. One
way is for each processor to just broadcast
its load periodically. After receiving a
broadcast from a lightly loaded machine, a
processor should shed some of its load by
giving it to the lightly loaded processor.
This algorithm has several problems. First,
it requires a broadcast facility, which may
not be available. Second, it consumes

Computing Surveys, Vol. 17, No. 4, December 1985

438 l A. S. Tanenbaum and R. van Renesse

considerable bandwidth for all the “here is
my load” messages. Third, there is a great
danger that many processors will try to
shed load to the same (previously) lightly
loaded processor at once.

A different strategy [Barak and Shiloh
1985; Smith 19791 is for each processor
periodically to pick another processor (pos-
sibly a neighbor, possibly at random) and
exchange load information with it. After
the exchange, the more heavily loaded pro-
cessor can send processes to the other one
until they are equally loaded. In this model,
if 100 processes are suddenly created in an
otherwise empty system, after one ex-
change we will have two machines with 50
processes, and after two exchanges most
probably four machines with 25 processes.
Processes diffuse around the network like
a cloud of gas.

Actually migrating running processes is
trivial in theory, but close to impossible in
practice. The hard part is not moving the
code, data, and registers, but moving the
environment, such as the current position
within all the open files, the current values
of any running timers, pointers or file de-
scriptors for communicating with tape
drives or other I/O devices, etc. All of these
problems relate to moving variables and
data structures related to the process that
are scattered about inside the operating
system. What is feasible in practice is to
use the load information to create new
processes on lightly loaded machines, in-
stead of trying to move running processes.

If one has adopted the idea of creating
new processes only on lightly loaded ma-
chines, another approach, called bidding, is
possible [Farber and Larson 1972; Stan-
kovic and Sidhu 19841. When a process
wants some work done, it broadcasts a re-
quest for bids, telling what it needs (e.g., a
68000 CPU, 512K memory, floating point,
and a tape drive).

Other processors can then bid for the
work, telling what their workload is, how
much memory they have available, etc. The
process making the request then chooses
the most suitable machine and creates the
process there. If multiple request-for-bid
messages are outstanding at the same time,
a processor accepting a bid may discover
that the workload on the bidding machine

Computing Surveys, Vol. 17, No. 4, December 1985

is not what it expected because that pro-
cessor has bid for and won other work in
the meantime.

2.3.4 Distributed Deadlock Detection

Some theoretical work has been done in the
area of detection of deadlocks in distributed
systems. How applicable this work may be
in practice remains to be seen. Two kinds
of potential deadlocks are resource dead-
locks and communication deadlocks. Re-
source deadlocks are traditional deadlocks,
in which all of some set of processes are
blocked waiting for resources held by other
blocked processes. For example, if A holds
X and B holds Y, and A wants Y and B
wants X, a deadlock will result.

In principle, this problem is the same in
centralized and distributed systems, but it
is harder to detect in the latter because
there are no centralized tables giving the
status of all resources. The problem has
mostly been studied in the context of
database systems [Gligor and Shattuck
1980; Isloor and Marsland 1978; Menasce
and Muntz 1979; Obermarck 19821.

The other kind of deadlock that can oc-
cur in a distributed system is a communi-
cation deadlock. Suppose A is waiting for a
message from B and B is waiting for C and
C is waiting for A. Then we have a deadlock.
Chandy et al. [1983] present an algorithm
for detecting (but not preventing) commu-
nication deadlocks. Very crudely summa-
rized, they assume that each process that
is blocked waiting for a message knows
which process or processes might send the
message. When a process logically blocks,
they assume that it does not really block
but instead sends a query message to each
of the processes that might send it a real
(data) message. If one of these processes is
blocked, it sends query messages to the
processes it is waiting for. If certain mes-
sages eventually come back to the original
process, it can conclude that a deadlock
exists. In effect, the algorithm is looking
for a knot in a directed graph.

2.4 Fault Tolerance

Proponents of distributed systems often
claim that such systems can be more relia-
ble than centralized systems. Actually,

there are at least two issues involved here:
reliability and availability. Reliability has
to do with the system not corrupting or
losing one’s data. Availability has to do
with the system being up when it is needed.
A system could be highly reliable in the
sense that it never loses data, but at the
same time be down most of the time and
hence hardly usable. However, many people
use the term “reliability” to cover availa-
bility as well, and we will not make the
distinction either in the rest of the paper.

Distributed systems are potentially more
reliable than a centralized system because
if a system only has one instance of some
critical component, such as a CPU, disk, or
network interface, and that component
fails, the system will go down. When there
are multiple instances, the system may be
able to continue in spite of occasional fail-
ures. In addition to hardware failures, one
can also consider software failures. These
are of two types: The software failed to
meet the formal specification (implemen-
tation error), or the specification does not
correctly model what the customer wanted
(specification error). All work on program
verification is aimed at the former, but the
latter is also an issue. Distributed systems
allow both hardware and software errors to
be dealt with, albeit in somewhat different
ways.

An important distinction should be made
between systems that are fault tolerant and
those that are fault intolerant. A fault-
tolerant system is one that can continue
functioning (perhaps in a degraded form)
even if something goes wrong. A fault-
intolerant system collapses as soon as any
error occurs. Biological systems are highly
fault tolerant; if you cut your finger, you
probably will not die. If a memory failure
garbles l/10 of 1 percent of the program
code or stack of a running program, the
program will almost certainly crash in-
stantly upon encountering the error.

It is sometimes useful to distinguish be-
tween expected faults and unexpected
faults. When the ARPANET was designed,
people expected to lose packets from time
to time. This particular error was expected
and precautions were taken to deal with it.
On the other hand, no one expected a mem-
ory error in one of the packet-switching

Distributed Operating Systems

Network

l 439

Message Message

RE2 EEZ’
Backup
process

messa e
to bo h a

Figure 8. Each process has its own backup process.

machines to cause that machine to tell the
world that it had a delay time of zero to
every machine in the network, which re-
sulted in all network traffic being rerouted
to the broken machine.

One of the key advantages of distributed
systems is that there are enough resources
to achieve fault tolerance, at least with
respect to expected errors. The system can
be made to tolerate both hardware and
software errors, although it should be em-
phasized that in both cases it is the soft-
ware, not the hardware, that cleans up the
mess when an error occurs. In the past few
years, two approaches to making distrib-
uted systems fault tolerant have emerged.
They differ radically in orientation, goals,
and attitude toward the theologically sen-
sitive issue of the perfectability of man-
kind (programmers in particular). One
approach is based on redundancy and the
other is based on the notion of an atomic
transaction. Both are described briefly
below.

2.4.1 Redundancy Techniques

All the redundancy techniques that have
emerged take advantage of the existence of
multiple processors by duplicating critical
processes on two or more machines. A par-
ticularly simple, but effective, technique is
to provide every process with a backup
process on a different processor. All pro-
cesses communicate by message passing.
Whenever anyone sends a message to a
process, it also sends the same message to
the backup process, as shown in Figure 8.
The system ensures that neither the pri-
mary nor the backup can continue running
until it has been verified that both have
correctly received the message.

Thus, if one process crashes because of
any hardware fault, the other one can con-
tinue. Furthermore, the remaining process

Computing Surveys, Vol. 17, No. 4, December 1985

440 l A. S. Tanenbaum and R. van Renesse

can then clone itself, making a new backup
to maintain the fault tolerance in the fu-
ture. Borg et al. [1983] have described a
system using these principles.

One disadvantage of duplicating every
process is the extra processors required, but
another, more subtle problem is that, if
processes exchange messages at a high rate,
a considerable amount of CPU time may go
into keeping the processes synchronized at
each message exchange. Powell and Pre-
sotto [1983] have described a redundant
system that puts almost no additional load
on the processes being backed up. In their
system all messages sent on the network
are recorded by a special “recorder” process
(see Figure 9). From time to time, each
process checkpoints itself onto a remote
disk.

If a process crashes, recovery is done by
sending the most recent checkpoint to an
idle processor and telling it to start run-
ning. The recorder process then spoon feeds
it all the messages that the original process
received between the checkpoint and the
crash. Messages sent by the newly restarted
process are discarded. Once the new process
has worked its way up to the point of crash,
it begins sending and receiving messages
normally, without help from the recording
process.

The beauty of this scheme is that the
only additional work that a process must
do to become immortal is to checkpoint
itself from time to time. In theory, even the
checkpoints can be disposed with, if the
recorder process has enough disk space to
store all the messages sent by all the cur-
rently running processes. If no checkpoints
are made, when a process crashes, the re-
corder will have to replay the process’s
whole history.

When a process successfully terminates,
the recorder no longer has to worry about
having to rerun it; so all the messages that
it received can be safely discarded. For serv-
ers and other processes that never termi-
nate, this idea must be varied to avoid
repeating individual transactions that have
successfully completed.

One drawback of this scheme is that it
relies on reliable reception of all messages
all the time. In practice, local networks are

Computing Surveys, Vol. 17, No. 4, December 1985

Message Message -----------+

Receiving
process

Recorder
process

i%EG1l
traffic

Figure9. A recorder process copies and stores all
network traffic without affecting the sender and
receiver.

very reliable, but they are not perfect. If
occasional messages can be lost, the whole
scheme becomes much less attractive.

Still, one has to be very careful about
reliability, especially when the problem is
caused by faulty software. Suppose that a
processor crashes because of a software bug.
Both the schemes discussed above [Borg et
al. 1983; Powell and Presotto 19831 deal
with crashes by allocating a spare processor
and restarting the crashed program, possi-
bly from a checkpoint. Of course the new
processor will crash too, leading to the al-
location of yet another processor and
another crash. Manual intervention will
eventually be required to figure out what is
going on. If the hardware designers could
provide a bit somewhere that tells whether
a crash was due to hardware or software, it
would be very helpful.

Both of the above techniques apply only
to tolerance of hardware errors. It is also
possible, however, to use redundancy in
distributed systems to make systems toler-
ant of software errors. One approach is to
structure each program as a collection of
modules, each one with a well-defined func-
tion and a precisely specified interface to
the other modules. Instead of writing a
module only once, N programmers are
asked to program it, yielding N functionally
identical modules.

During execution, the program runs on
N machines in parallel. After each module
finishes, the machines compare their re-
sults and vote on the answer. If a majority
of the machines say that the answer is X,
then all of them use X as the answer, and
all continue in parallel with the next mod-
ule. In this manner the effects of an occa-
sional software bug can be voted down. If
formal specifications for any of the modules

Distributed Operating Systems 441

are available, the answers can also be
checked against the specifications to guard
against the possibility of accepting an an-
swer that is clearly wrong.

A variation of this idea can be used to
improve system performance. Instead of
always waiting for all the processes to fin-
ish, as soon as k of them agree on an
answer, those that have not yet finished
are told to drop what they are doing, accept
the value found by the k processes, and
continue with the next module. Some work
in this area is discussed by Avizienis and
Chen [19771, Avizienis and Kelly [19841,
and Anderson and Lee [1981].

2.4.2 Atomic Transactions

When multiple users on several machines
are concurrently updating a distributed
database and one or more machines crash,
the potential for chaos is truly impressive.
In a certain sense, the current situation is
a step backward from the technology of the
1950s when the normal way of updating a
database was to have one magnetic tape,
called the “master file,” and one or more
tapes with updates (e.g., daily sales reports
from all of a company’s stores). The master
tape and updates were brought to the com-
puter center, which then mounted the mas-
ter tape and one update tape, and ran the
update program to produce a new master
tape. This new tape was then used as the
“master” for use with the next update tape.

Lampson [1981] has described a way of
achieving atomic transactions by building
up a hierarchy of abstractions. We sum-
marize his model below. Real disks can
crash during READ and WRITE opera-
tions in unpredictable ways. Furthermore,
even if a disk block is correctly written,
there is a small (but nonzero) probability
of it subsequently being corrupted by a
newly developed bad spot on the disk sur-
face. The model assumes that spontaneous
block corruptions are sufficiently infre-
quent that the probability of two such
events happening within some predeter-
mined time T is negligible. To deal with
real disks, the system software must be able
to tell whether or not a block is valid, for
example, by using a checksum.

This scheme had the very real advantage
that if the update program crashed, one
could always fall back on the previous mas-
ter tape and the update tapes. In other
words, an update run could be viewed as
either running correctly to completion (and
producing a new master tape) or having no
effect at all (crash part way through, new
tape discarded). Furthermore, update jobs
from different sources always ran in some
(undefined) sequential order. It never hap-
pened that two users would concurrently
read a field in a record (e.g., 6), each add 1
to the value, and each store a 7 in that field,
instead of the first one storing a 7 and the
second storing an 8.

The first layer of abstraction on top of
the real disk is the “careful disk,” in which
every CAREFUL-WRITE is read back im-
mediately to verify that it is correct. If the
CAREFUL-WRITE persistently fails, the
system marks the block as “bad” and then
intentionally crashes. Since CAREFUL-
WRITES are verified, CAREFUL-READS
will always be good, unless a block has gone
bad after being written and verified.

The next layer of abstraction is stable
storage. A stable storage block consists of
an ordered pair of careful blocks, which are
typically corresponding careful blocks on
different drives, to minimize the chance of
both being damaged by a hardware failure.
The stable storage algorithm guarantees
that at least one of the blocks is always
valid. The STABLE-WRITE primitive
first does a CAREFUL-WRITE on one
block of the pair, and then the other. If the
first one fails, a crash is forced, as men-
tioned above, and the second one is left
untouched.

The property of run-to-completion or do- After every crash, and at least once every
nothing is called an atomic update. The time period T, a special cleanup process is

property of not interleaving two jobs is
called serializability. The goal of people
working on the atomic transaction ap-
proach to fault tolerance has been to regain
the advantages of the old tape system,
without giving up the convenience of
databases on disk that can be modified in
place, and to be able to do everything in a
distributed way.

Computing Surveys, Vol. 17, No. 4, December 1985

442 . A. S. Tanenbaum and R. van Renesse

run to examine each stable block. If both
blocks are “good” and identical, nothing
has to be done. If one is “good” and one
is “bad” (failure during a CAREFUL-
WRITE), the “bad” one is replaced by the
“good” one. If both are “good” but different
(crash between two CAREFUL-WRITES),
the second is replaced by a copy of the first.
This algorithm allows individual disk
blocks to be updated atomically and survive
infrequent crashes.

Stable storage can be used to create “sta-
ble processors” [Lampson 19811. To make
itself crashproof, a CPU must checkpoint
itself on stable storage periodically. If it
subsequently crashes, it can always restart
itself from the last checkpoint. Stable stor-
age can also be used to create stable moni-
tors in order to ensure that two concurrent
processes never enter the same critical re-
gion at the same time, even if they are
running on different machines.

Given a way to implement crashproof
processors (stable processors) and crash-
proof disks (stable storage), it is possible to
implement multicomputer atomic transac-
tions. Before updating any part of the data
in place, a stable processor first writes an
intentions list to stable storage, providing
the new value for each datum to be
changed. Then it sets a commit flag to in-
dicate that the intentions list is complete.
The commit flag is set by atomically up-
dating a special block on stable storage.
Finally it begins making all the changes
called for in the intentions list. Crashes
during this phase have no serious conse-
quences because the intentions list is stored
in stable storage. Furthermore, the actual
making of the changes is idempotent, so
repeated crashes and restarts during this
phase are not harmful.

Atomic actions have been implemented
in a number of systems (see, e.g., Fridrich
and Older [1981, 19841, Mitchell and Dion
[19821, Brown et al. [19851, Popek et al.
[1981], and Reed and Svobodova [1981]).

2.5 Services

In a distributed system, it is natural for
user-level server processes to provide func-
tions that have been traditionally provided

Computing Surveys, Vol. 17, No. 4, December 1985

by the operating system. This approach
leads to a smaller (hence more reliable)
kernel and makes it easier to provide, mod-
ify, and test new services. In the following
sections, we look at some of these services,
but first we look at how services and servers
can be structured.

2.5.1 Server Structure

The simplest way to implement a service is
to have one server that has a single, se-
quential thread of control. The main loop
of the server looks something like this:

while true do
begin

GetRequest;
CarryOutRequest;
SendReply

end

This approach is simple and easy to under-
stand, but has the disadvantage that if the
server must block while carrying out the
request (e.g., in order to read a block from
a remote disk), no other requests from
other users can be started, even if they
could have been satisfied immediately. An
obvious example is a file server that main-
tains a large disk block cache, but occasion-
ally must read from a remote disk. In the
time interval in which the server is blocked
waiting for the remote disk to reply, it
might have been able to service the next
ten requests, if they were all for blocks that
happened to be in the cache. Instead, the
time spent waiting for the remote disk is
completely wasted.

To eliminate this wasted time and im-
prove the throughput of the server, the
server can maintain a table to keep track
of the status of multiple partially completed
requests. Whenever a request requires the
server to send a message to some other
machine and wait for the result, the server
stores the status of the partially completed
request in the table and goes back to the
top of the main loop to get the next
message.

If the next message happens to be the
reply from the other machine, that is fine
and it is processed, but if it is a new request
for service from a different client, that can

Distributed Operating Systems l 443

Message arrives
at dispatcher

I Shared data

Dispatcher passes
,request to worker

Figure 10. The dispatcher task waits for requests and passes them on
to the worker tasks.

also be started, and possibly completed be- the dispatcher or some other previously
fore the reply for the first request comes in. blocked task can now run. Thus waiting for
In this way, the server is never idle if there a remote procedure call to finish only
is any work to be done. blocks one task, not the whole server.

Although this organization makes better
use of the server’s CPU, it makes the soft-
ware much more complicated. Instead of
doing nicely nested remote procedure calls
to other machines whose services it needs,
the server is back to using separate SEND
and RECEIVE primitives, which are less
structured.

The other way of organizing the server is
to have each task capable of accepting new
requests for work. When a message arrives,
the kernel gives it at random to one of the
tasks listening to the address or port to
which the message was addressed. That
task carries the work out by itself, and no
dispatcher is needed.

One way of achieving both good perfor-
mance and clean structure is to program
the server as a collection of miniprocesses,
which we call a cluster of tadas. Tasks share
the same code and global data, but each
task has its own stack for local variables
and registers and, most important, its own
program counter. In other words, each task
has its own thread of control. Multipro-
gramming of the tasks can be done either
by the operating system kernel or by a run
time library within each process.

Both of these schemes require some
method of locking the shared data to pre-
vent races. This locking can be achieved
explicitly by some kind of LOCK and
UNLOCK primitives, or implicitly by hav-
ing the scheduler not stop any task while it
is running. For example, task switching
only occurs when a task blocks. With or-
dinary user programs, such a strategy
is undesirable, but with a server whose
behavior is well understood, it is not
unreasonable.

There are two ways of organizing the
tasks. The first way is to assign one task
the job of “dispatcher,” as shown in Figure
10. The dispatcher is the only task that
accepts new requests for work. After in-
specting an incoming request, it determines
if the work can be done without blocking
(e.g., if a block to be read is present in the
cache). If it can, the dispatcher just carries
out the work and sends the reply. If the
work requires blocking, the dispatcher
passes the work to some other task in the
cluster, which can start work on it. When
that task blocks, task switching occurs, and

25.2 File Service

There is little doubt that the most impor-
tant service in any distributed system is the
file service. Many file services and file serv-
ers have been designed and implemented,
so a certain amount of experience is avail-
able (e.g., Birrell and Needham [1980], Del-
lar [19821, Dion [1980], Fridrich and Older
[19811, Fridrich and Older [19841, Mitchell
and Dion [19821, Mullender and Tanen-
baum [1985], Reed and Svobodova [1981],
Satyanarayanan et al. [1985], Schroeder et

Computing Surveys, Vol. 17, No. 4, December 1985

444 l A. S. Tanenbaum and R. van Renesse

al. [1985], Sturgis et al. [1980], Svobodova
[1981], and Swinehart et al. [1979]). A
survey about file servers can be found in
Svobodova [19841.

File services can be roughly classified
into two kinds, “traditional” and “robust.”
Traditional file service is offered by nearly
all centralized operating systems (e.g., the
UNIX file system). Files can be opened,
read, and rewritten in place. In particular,
a program can open a file, seek to the
middle of the file, and update blocks of data
within the file. The file server implements
these updates by simply overwriting the
relevant disk blocks. Concurrency control,
if there is any, usually involves locking
entire tiles before updating them.

Robust file service, on the other hand, is
aimed at those applications that require
extremely high reliability and whose users
are prepared to pay a significant penalty in
performance to achieve it. These file ser-
vices generally offer atomic updates and
similar features lacking in the traditional
file service.

In the following paragraphs, we discuss
some of the issues relating to traditional
file service (and file servers) and then look
at those issues that specifically relate to
robust file service and servers. Since robust
file service normally includes traditional
file service as a subset, the issues covered
in the first part also apply.

Conceptually, there are three compo-
nents that a traditional file service nor-
mally has:

l disk service,
l flat file service,
l directory service.

The disk service is concerned with reading
and writing raw disk blocks without regard
to how they are organized. A typical com-
mand to the disk service is to allocate and
write a disk block, and return a capability
or address (suitably protected) so that the
block can be read later.

The flat file service is concerned with
providing its clients with an abstraction
consisting of files, each of which is a linear
sequence of records, possibly l-byte records
(as in UNIX) or client-defined records. The
operations are reading and writing records,
starting at some particular place in the file.

Computing Surveys, Vol. 17, No. 4, December 1985

The client need not be concerned with how
or where the data in the file are stored.

The directory service provides a mecha-
nism for naming and protecting tiles, so
they can be accessed conveniently and
safely. The directory service typically pro-
vides objects called directories that map
ASCII names onto the internal identifica-
tion used by the file service.

Design Issues. One important issue in a
distributed system is how closely the three
components of a traditional file service are
integrated. At one extreme, the system can
have distinct disk, file, and directory ser-
vices that run on different machines and
only interact via the official interprocess
communication mechanism. This approach
is the most flexible, because anyone need-
ing a different kind of file service (e.g., a B-
tree file) can use the standard disk server.
It is also potentially the least efficient,
since it generates considerable interserver
traffic.

At the other extreme, there are systems
in which all three functions are handled by
a single program, typically running on a
machine to which a disk is attached. With
this model, any application that needs a
slightly different file naming scheme is
forced to start all over making its own
private disk server. The gain, however, is
increased run-time efficiency, because the
disk, file, and directory services do not have
to communicate over the network.

Another important design issue in dis-
tributed systems is garbage collection. If
the directory and file services are inte-
grated, it is a straightforward matter to
ensure that, whenever a tile is created, it is
entered into a directory. If the directory
system forms a rooted tree, it is always
possible to reach every file from the root
directory. However, if the file directory ser-
vice and file service are distinct, it may be
possible to create files and directories that
are not reachable from the root directory.
In some systems this may be acceptable,
but in others unconnected files may be
regarded as garbage to be collected by the
system.

Another approach to the garbage collec-
tion problem is to forget about rooted trees
altogether and permit the system to remove

Distributed Operating Systems l 445

model each request is completely self-con-
tained (file name, file position, etc.), so a
newly reincarnated server will have no
trouble carrying it out.

The price paid for this robustness, how-
ever, is a slightly longer message, since each
file request must contain the full file name
and position. Furthermore, the virtual-
circuit model is sometimes less complex in
environments in which the network can
reorder messages, that is, deliver the second
message before the first. Local networks do
not have this defect, but some wide-area
networks and internetworks do.

any file that has not been accessed for, say,
five years. This approach is intended to
deal with the situation of a client creating
a temporary file and then crashing before
recording its existence anywhere. When the
client is rebooted, it creates a new tempo-
rary file, and the existence of the old one is
lost forever unless some kind of time-out
mechanism is used.

There are a variety of other issues that
the designers of a distributed file system
must address; for example, will the file ser-
vice be virtual-circuit oriented or stateless?
In the virtual-circuit approach, the client
must do an OPEN on a file before reading
it, at which time the file server fetches some
information about the file (in UNIX terms,
the i-node) into memory, and the client is
given some kind of a connection identifier.
This identifier is used in subsequent
READS and WRITES. In the stateless ap-
proach each READ request identifies the
file and file position in full, so the server
need not keep the i-node in memory (al-
though most servers will maintain a cache
for efficiency reasons).

Both virtual-circuit and stateless file
servers can be used with the IS0 OS1 and
RPC models. When virtual circuits are used
for communication, having the file server
maintain open files is natural, However,
each request message can also be self-con-
tained so that the file server need not hold
the file open throughout the communica-
tion session.

Similarly, RPC fits well with a stateless
file server, but it can also be used with a
file server that maintains open files. In the
latter case the client does an RPC to the
file server to OPEN the file and get back a
tile identifier of some kind. Subsequent
RPCs can do READ and WRITE opera-
tions using this file identifier.

The difference between these two be-
comes clear when one considers the effects
of a server crash on active clients. If a
virtual-circuit server crashes and is then
quickly rebooted, it will almost always lose
its internal tables. When the next request
comes in to read the current block from file
identifier 28, it will have no way of knowing
what to do. The client will receive an error
message, which will generally lead to the
client process aborting. In the stateless

Protection. Another important issue
faced by all file servers is access control-
who is allowed to read and write which file.
In centralized systems, the same problem
exists and is solved by using either an ac-
cess control list or capabilities. With access
control lists, each file is associated with a
list of users who may access it. The UNIX
RWX bits are a simple form of access con-
trol list that divides all users into three
categories: owner, group, and others. With
capabilities, a user must present a special
“ticket” on each file access proving that he
or she has access permission. Capabilities
are normally maintained in the kernel to
prevent forgery.

With a distributed system using remote
file servers, both of these approaches have
problems. With access control lists the file
server has to verify that the user in fact is
who he or she claims to be. With capabili-
ties, how do you prevent users from making
them up?

One way to make access control lists
viable is to insist that the client first set up
an authenticated virtual circuit with the
file server. The authentication may involve
a trusted third party as in Birrell et al.
[1982, 19841. When remote procedure calls
are used, setting up an authenticated ses-
sion in advance is less attractive. The
problem of authentication using RPC is
discussed by Birrell [19851.

With capabilities, the protection nor-
mally results from the fact that the kernel
can be trusted. With personal computers
on a network, how can the file server trust
the kernel? After all, a user can easily boot
up a nonstandard kernel on his or her

Computing Surveys, Vol. 17, No. 4, December 1985

446 . A. S. Tanenbaum and R. van Renesse

machine. A possible solution is to encrypt
the capabilities, as discussed by Mullender
and Tanenbaum [1984, 1985, 19861 and
Tanenbaum et al. [1986].

Performance. Performance is one of the
key problems in using remote file servers
(especially from diskless workstations).
Reading a block from a local disk requires
a disk access and a small amount of CPU
processing. Reading from a remote server
has the additional overhead of getting the
data across the network. This overhead has
two components: the actual time to move
the bits over the wire (including contention
resolution time, if any) and the CPU time
the file server must spend running the pro-
tocol software.

Cheriton and Zwaenepoel [19831 describe
measurements of network overhead in
the context of the V system. With an 8-
megahertz 68000 processor and a lo-me-
gabyte-per-second Ethernet, they observe
that reading a 512-byte block from the local
machine takes 1.3 milliseconds and from a
remote machine 5.7 milliseconds, assuming
that the block is in memory and no disk
access is needed. They also observe that
loading a 64K program from a remote file
server takes 255 milliseconds versus 60 mil-
liseconds locally, when transfers are in 16K
units. A tentative conclusion is that access
to a remote file server is four times as
expensive as to a local one. (It is also worth
noting that the V designers have gone to
great lengths to achieve good performance;
many other file servers are much slower
than V’s.)

One way to improve the performance of
a distributed file system is to have both
clients and servers maintain caches of disk
blocks and possibly whole files. However,
maintaining distributed caches has a num-
ber of serious problems. The worst of these
is, “What happens when someone modifies
the ‘master copy’ on the disk?” Does the
file server tell all the machines maintaining
caches to purge the modified block or
file from their caches by sending them
“unsolicited messages” as in XDFS [Sturgis
et al. 1980]? How does the server even know
who has a cache? Introducing a complex
centralized administration to keep track is
probably not the way to go.

Computing Surveys, Vol. 1’7, No. 4, December 1985

Furthermore, even if the server did know,
having the server initiate contact with its
clients is certainly an unpleasant reversal
of the normal client-server relationship, in
which clients make remote procedure calls
on servers, but not vice versa. More re-
search is needed in this area before we have
a satisfactory solution. Some results are
presented by Schroeder et al. [1985].

Reliability. Reliability is another key
design issue. The simplest approach is to
design the system carefully, use good qual-
ity disks, and make occasional tape back-
ups. If a disk ever gets completely wiped
out because of hardware failure, all the
work done since the last tape backup is lost.
Although this mode of operation may seem
scary at first, nearly all centralized com-
puter systems work this way, and with a
mean time between failure of 20,000 or
more hours for disks these days, it works
pretty well in practice.

For those applications that demand a
higher level of reliability, some distributed
systems have a more robust file service, as
mentioned at the beginning of this section.
The simplest approach is mirrored disks:
Every WRITE request is carried out in
parallel on two disk drives. At every instant
the two drives are identical, and either one
can take over instantly for the other in the
event of failure.

A refinement of this approach is to have
the file server offer stable storage and
atomic transactions, as discussed earlier.
Systems offering this facility are described
by Brown et al. [1985], Dion [1980],
Mitchell and Dion [1982], Needham and
Herbert [19821, Reed and Svobodova
[19811, Sturgis et al. [19801, and Svobodova
[1981]. A detailed comparison of a number
of file servers offering sophisticated con-
currency control and atomic update facili-
ties is given by Svobodova [1984]. We just
touch on a few of the basic concepts here.

At least four different kinds of files can
be supported by a file server. Ordinary files
consist of a sequence of disk blocks that
may be updated in place and that may be
destroyed by disk or server crashes.
Recoverable files have the property that
groups of WRITE commands can be brack-
eted by BEGIN TRANSACTION and

END TRANSACTION, and that a crash
or abort midway leaves the file in its origi-
nal state. Robust files are written on stable
storage and contain sufficient redundancy
to survive disk crashes (generally two disks
are used). Finally, multiversion files consist
of a sequence of versions, each of which
is immutable. Changes are made to a file
by creating a new version. Different file
servers support various combinations of
these.

All robust file servers need some mecha-
nism for handling concurrent updates to a
file or group of files. Many of them allow
users to lock a file, page, or record to pre-
vent conflicting writes. Locking introduces
the problem of deadlocks, which can be
dealt with by using two-phase locking
[Eswaran et al. 19761 or timestamps [Reed
19831.

When the file system consists of multiple
servers working in parallel, it becomes pos-
sible to enhance reliability by replicating
some or all files over multiple servers.
Reading also becomes easier because the
workload can now be split over two servers,
but writing is much harder because multi-
ple copies must be updated simultaneously,
or this effect simulated somehow.

One approach is to distribute the data
but keep some of the control information
(semi-) centralized. In LOCUS [Popek et
al. 1981; Walker et al. 19831, for example,
files can be replicated at many sites, but
when a file is opened, the file server at one
site examines the OPEN request, the num-
ber and status of the file’s copies, and the
state of the network. It then chooses one
site to carry out the OPEN and the subse-
quent READS and WRITES. The other
sites are brought up to date later.

2.5.3 Print Service

Compared with file service, on which a
great deal of time and energy has been
expended by a large number of people, the
other services seem rather meager. Still, it
is worth saying at least a little bit about a
few of the more interesting ones.

Nearly all distributed systems have some
kind of print service to which clients can
send files, file names, or capabilities for
files with instructions to print them on one

Distributed Operating Systems l 447

of the available printers, possibly with some
text justification or other formatting be-
forehand. In some cases the whole file is
sent to the print server in advance, and the
server must buffer it. In other cases only
the file name or capability is sent, and the
print server reads the file block by block as
needed. The latter strategy eliminates the
need for buffering (read: a disk) on the

’ server side but can cause problems if the
file is modified after the print command is
given but prior to the actual printing. Users
generally prefer “call-by-value” rather than
“call-by-reference” semantics for printers.

One way to achieve the “call-by-value”
semantics is to have a printer spooler
server. To print a file, the client process
sends the file to the spooler. When the file
has been copied to the spooler’s directory,
an acknowledgment is sent back to the
client.

The actual print server is then imple-
mented as a print client. Whenever the
print client has nothing to print, it requests
another file or block of a file from the print
spooler, prints it, and then requests the
next one. In this way the print spooler is a
server to both the client and the printing
device.

Printer service is discussed by Janson et
al. [1983] and Needham and Herbert
[1982].

2.5.4 Process Service

Every distributed operating system needs
some mechanism for creating new pro-
cesses. At the lowest level, deep inside the
system kernel, there must be a way of cre-
ating a new process from scratch. One way
is to have a FORK call, as UNIX does, but
other approaches are also possible. For ex-
ample, in Amoeba, it is possible to ask the
kernel to allocate chunks of memory of
given sizes. The caller can then read and
write these chunks, loading them with the
text, data, and stack segments for a new
process. Finally, the caller can give the
filled-in segments back to the kernel and
ask for a new process built up from these
pieces. This scheme allows processes to be
created remotely or locally, as desired.

At a higher level it is frequently useful to
have a process server that one can ask

Computing Surveys, Vol. 17, NO. 4, December 1985

448 l A. S. Tanenbaum and R. van Renesse

whether there is a Pascal, TROFF, or some
other service, in the system. If there is, the
request is forwarded to the relevant server.
If not, it is the job of the process server to
build a process somewhere and give it the
request. After, say, a very large-scale inte-
gration (VLSI) design rule checking server
has been created and has done its work, it
may or may not be a good idea to keep it in
the machine where it was created, depend-
ing on how much work (e.g., network
traffic) is required to load it, and how often
it is called. The process server could easily
manage a server cache on a least recently
used basis, so that servers for common
applications are usually preloaded and
ready to go. As special-purpose VLSI pro-
cessors become available for compilers
and other applications, the process server
should be given the job of managing them
in a way that is transparent to the system’s
users.

2.55 Terminal Service

How the terminals are tied to the system
obviously depends to a large extent on the
system architecture. If the system consists
of a small number of minicomputers, each
with a well-defined and stable user popu-
lation, then each terminal can be hard
wired to the computer that its user nor-
mally logs on to. If, however, the system
consists entirely of a pool of processors that
are dynamically allocated as needed, it is
better to connect all the terminals to one
or more terminal servers that serve as
concentrators.

The terminal servers can also provide
such features as local echoing, intraline
editing, and window management, if de-
sired. Furthermore, the terminal server can
also hide the idiosyncracies of the various
terminals in use by mapping them all onto
a standard virtual terminal. In this way the
rest of the software deals only with the
virtual terminal characteristics and the ter-
minal server takes care of the mappings to
and from all the real terminals. The ter-
minal server can also be used to support
multiple windows per terminal, with each
window acting as a virtual terminal.

Computing Surveys, Vol. 17, No. 4, December 1985

2.5.6 Mail Service

Electronic mail is a popular application of
computers these days. Practically every
university computer science department in
the Western world is on at least one inter-
national network for sending and receiving
electronic mail. When a site consists of only
one computer, keeping track of the mail is
easy. When a site has dozens of computers
spread over multiple local networks, how-
ever, users often want to be able to read
their mail on any machine they happen to
be logged on to. This desire gives rise to the
need for a machine-independent mail ser-
vice, rather like a print service that can be
accessed systemwide. Almes et al. [1985]
discuss how mail is handled in the Eden
system.

2.5.7 Time Service

There are two ways to organize a time
service. In the simplest way, clients can just
ask the service what time it is. In the other
way, the time service can broadcast the
correct time periodically, to keep all the
clocks on the other machines in sync. The
time server can be equipped with a radio
receiver tuned to WWV or some other
transmitter that provides the exact time
down to the microsecond.

Even with these two mechanisms, it is
impossible to have all processes exactly
synchronized. Consider what happens
when a process requests the time of day
from the time server. The request message
comes in to the server, and a reply is sent
back immediately. That reply must propa-
gate back to the requesting process, cause
an interrupt on its machine, have the ker-
nel started up, and finally have the time
recorded somewhere. Each of these steps
introduces an unknown, variable delay.

On an Ethernet, for example, the amount
of time required for the time server to put
the reply message onto the network is non-
deterministic and depends on the number
of machines contending for access at that
instant. If a large distributed system has
only one time server, messages to and from
it may have to travel a long distance and
pass over store-and-forward gateways with

Distributed Operating Systems l 449

variable queuing delays. If there are multi- nal format to those demanded by the wide-
ple time servers, they may get out of syn- area network carrier.
chronization because their crvstals run at
slightly different rates. Einstein’s special
theory of relativity also puts constraints on
synchronizing remote clocks.

The result of all these problems is that
having a single global time is impossible.
Distributed algorithms that depend on
being able to find a unique global ordering
of widely separated events may not work as
expected. A number of researchers have
tried to find solutions to the various prob-
lems caused by the lack of global time (see,
e.g., Jefferson [1985], Lamport [1978,
19841, Marzullo and Owicki [1985], Reed
[1983], and Reif and Spirakis [1984]).

2.58 Boot Service

The boot service has two functions: bring-
ing up the system from scratch when the
power is turned on and helping important
services survive crashes. In both cases, it is
helpful if the boot server has a hardware
mechanism for forcing a recalcitrant ma-
chine to jump to a program in its own read-
only memory (ROM) in order to reset it.
The ROM program could simply sit in a
loop waiting for a message from the boot
service. The message would then be loaded
into that machine’s memory and executed
as a program.

The second function alluded to above is
the “immortality service.” An important
service could register with the boot service,
which would then poll it periodically to see
if it were still functioning. If not, the boot
service could initiate measures to patch
things up, for example, forcibly reboot it or
allocate another processor to take over its
work. To provide high reliability, the boot
service should itself consist of multiple
processors, each of which keeps checking
that the others are still working properly.

2.5.9 Gateway Service

If the distributed system in question needs
to communicate with other systems at re-
mote sites, it may need a gateway server to
convert messages and protocols from inter-

3. EXAMPLES OF DISTRIBUTED
OPERATING SYSTEMS

Having disposed with the principles, it is
now time to look at some actual distributed
systems that have been constructed as re-
search projects in universities around the
world. Although many such projects are in
various stages of development, space limi-
tations prevent us from describing all of
them in detail. Instead of saying a few
words about each system, we have chosen
to look at four systems that we consider
representative. Our selection criteria were
as follows. First, we only chose systems that
were designed from scratch as-distributed
systems (systems that gradually evolved by
connecting together existing centralized
systems or are multiprocessor versions of
UNIX were excluded). Second, we only
chose systems that have actually been im-
plemented; paper designs did not count.
Third, we only chose systems about which
a reasonable amount of information was
available.

Even with these criteria, there were
many more systems that could have been
discussed. As an aid to the reader interested
in pursuing this subject further, we provide
here some references to other relevant
work: Accent [Fitzgerald and Rashid 1985;
Rashid and Robertson 19811, Argus [Liskov
1982,1984; Liskov and Scheifler 1982; Oki
et al. 19851, Chorus [Zimmermann, et al.
19811, CRYSTAL [Dewitt et al. 19841,
DEMOS [Powell and Miller 19831, Distrib-
uted UNIX [Luderer et al. 19811, HXDP
[Jensen 19781, LOCUS [Popek et al. 1981;
Walker et al. 1983; Weinstein et al. 19851,
Meglos [Gaglianello and Katseff 19851,
MICROS [Curtis and Wittie 1984; Mohan
and Wittie 1985; Wittie and Curtis 1985;
Wittie and van Tilborg 19801, RIG [Ball et
al. 19761, Roscoe/Arachne [Finkel et al.
1979; Solomon and Finkell978,1979], and
the work at Xerox Palo Alto Research Cen-
ter [Birrell 1985; Birrell and Nelson 1984;
Birrell et al. 1984; Boggs et al. 1980; Brown
et al. 1985; Swinehart et al. 19791.

Computing Surveys, Vol. 17, No. 4, December 1985

450 l A. S. Tanenbaum and R. van Renesse

The systems we examine here are the
Cambridge Distributed Computing System,
Amoeba, V, and Eden. The discussion of
each system follows the list of topics treated
above, namely, communication primitives,
naming and protection, resource manage-
ment, fault tolerance, and services.

3.1 The Cambridge Distributed Computing
System

The Computing Laboratory at the Univer-
sity of Cambridge has been doing research
in networks and distributed systems since
the mid-1970s, first with the Cambridge
ring and later with the Cambridge Distrib-
uted Computing System [Needham and
Herbert 19821. The Cambridge ring is not
a token-passing ring, but rather contains
several minipacket slots circulating around
the ring. To send a packet, a machine waits
until an empty slot passes by, then inserts
a minipacket containing the source, desti-
nation, some flag bits, and 2 bytes of data.
Although the 2-byte minipackets them-
selves are occasionally useful (e.g., for
acknowledgments), several block-oriented
protocols have been developed for reliably
exchanging 2K packets by accumulating
1024 minipackets. The nominal ring band-
width is 10 megabytes per second, but since
each minipacket has 2 bytes of data and 3
bytes of overhead, the effective bandwidth
is 4 megabytes per second.

The Cambridge ring project was very suc-
cessful, with copies of the ring currently in
operation at many universities and com-
panies in the United Kingdom and else-
where. The availability of the ring led to
research on distributed computing systems
initially using nine Computer Automation
LS14 minicomputers and later using about
a dozen Motorola 680008, under the direc-
tion of Roger Needham.

The Cambridge system is primarily com-
posed of two components: the processor
bank and the servers. When a user logs in,
he or she normally requests one machine
from the processor bank, uses it as a per-
sonal computer for the entire work session,
and returns it when logging out. Processors
are not normally dynamically allocated for
short periods of time. The servers are ded-

Computing Surveys, Vol. 17, No. 4, December 1985

icated machines that provide various useful
services, including file service, name ser-
vice, boot service, etc. The number and
location of these servers is relatively static.

3.7.7 Communication Primitives

Owing to the evolution from network to
distributed system described earlier, the
communication primitives are usually de-
scribed as network protocols rather than
language primitives. The choice of the
primitives was closely tuned to the capabil-
ities of the ring in order to optimize per-
formance. Nearly all communication is
built up from sending packets consisting of
a 2-byte header, a 2-byte process identifier,
up to 2048 data bytes, and a 2-byte check-
sum. On top of this basic packet protocol
are a simple remote procedure call protocol
and a byte stream protocol.

The basic packet protocol, which is a
pure datagram system, is used by the single-
shot protocol to build up something similar
to a remote procedure call. It consists of
having the client send a packet to the server
containing the request, and then having the
server send a reply. Some machines are
multiprogrammed, so that the second
minipacket is used to route the incoming
packet to the correct process. The request
packet itself contains a function code and
the parameters, if any. The reply packet
contains a status code and the result, if
any. Clients do not acknowledge receipt of
the result.

Some applications, such as terminal han-
dling and file transfer, work better with a
flow-controlled, virtual-circuit protocol.
The byte stream protocol is used for these
applications. This protocol is a full-duplex,
connection-oriented protocol, with full flow
control and error control.

3.1.2 Naming and Protection

Services can be located in the Cambridge
system by using the name server. To look
up a name, the client sends an ASCII string
to the name server, which then looks it up
in its tables and returns the machine num-
ber where the service is located, the port
used to address it, and the protocol it

Distributed Operating Systems l 451

Login Session Class Control

MARVIN 1 91432 sTwENl 31513

expects. The name server stores service
names as unstructured ASCII strings,
which are simply matched against incoming
requests character by character; that is, it
does not manage hierarchical names. The
name server itself has a fixed address that
never changes, so this address may be
embedded into programs.

Although the service database is rela-
tively static, from time to time names must
be added or deleted to the name server’s
database. Commands are provided for this
purpose, but for protection reasons these
commands may only be executed by the
system administrator.

Finding the location of a service is only
half the work. To use most services, a pro-
cess must identify itself in an unforge-
able way, so that the service can check to
see whether that user is authorized. This
identification is handled by the Active
Name Server, which maintains a table of
currently logged-in users. Each table entry
has four fields: the user’s login name, his
or her session key (a big random number),
the user’s class (e.g., faculty, student), and
a control key, as shown in Figure 11.

To use a service, a user supplies the ser-
vice with his login name, session key (ob-
tained at login time), and class. The service
can then ask the Active Name Server if
such an entry exists. Since session keys are
sparse, it is highly unlikely that a student
will be able to guess the current session key
for the computer center director, and thus
be able to obtain services reserved for the
director. The control key must be presented
to change an entry, thus providing a mech-
anism to restrict changing the Active Name
Server’s table to a few people.

3.1.3 Resource Management

The main resource managed by the system
is the processor bank, handled by a service
called the resource manager. Usually a user
requests a processor to be allocated at login
time, and then loads it with a single-user
operating system. The processor then be-
comes the user’s personal computer for the
rest of the login session.

The resource manager accepts requests
to allocate a processor. In these requests

l6AR6ARA 1 61300 19lWENl I I 27130
AMY 42106 FACLLTY 31616

61346 DIRECmR 41940

Figure 11. The Active name table.

the user specifies a CPU type (e.g., 68000),
a list of attributes (e.g., memory size), and
a program to be run. The resource manager
then selects the most suitable CPU cur-
rently available for allocation. Various
defaults are available, so, for example, a
user can specify wanting to run TRIPOS
(a straightforward single-user operating
system), and the resource manager will se-
lect an appropriate CPU type if none has
been specified.

The downloading of programs into pro-
cessor bank machines is controlled by a
server called the ancilla, although some of
the machines have intelligent ring inter-
faces that actually do most of the work.
The ancilla also helps simulate the ma-
chine’s console and front panel, so that
users have the same control over a proces-
sor bank machine as they would over real
personal computers on their desks.

3.1.4 Fault Tolerance

The approach taken to fault tolerance in
the Cambridge system is to make it easy to
bring servers back up after a crash. When
a ring interface detects a special minipacket
whose source is the name server, it reboots
the processor by forcing it to jump to a
program in ROM. This program then sends
a request to the boot server, which in turn
goes to the name server asking for reverse
name lookup. The name server then
searches its tables to find the service that
is running on the machine from which the
reverse lookup request came. As soon as
the reply comes in, the server knows
what it is supposed to be doing and can
request the resource manager and ancilla
to download the appropriate program.
When machines are physically reset or

Computing Surveys, Vol. 17, No. 4, December 1985

452 . A. S. Tanenbaum and R. van Renesse

Figure 12. The filing machine is posi-
tioned between the users and the file server.
It maintains a block cache and handles
ASCII names.

Processor
bank
machines

Filing File
machine server

Block cache Regular files
ASCII names Special files

Index files

powered up, the same procedure is carried
out automatically.

Another area in which some effort has
been put to make the system fault tolerant
is the file system, which supports atomic
updates on special files. This facility is
described in the next section.

3.1.5 Services

We have already described several key serv-
ers, including the name server, resource
manager, ancilla, and active name server.
Other small servers include the time server,
print server, login server, terminal server,
and error server, which records system er-
rors for maintenance purposes. The tile
server is examined here.

The file system started out with the idea
of a single universal file server that pro-
vided basic storage service but very primi-
tive naming and protection system, coupled
with single-user TRIPOS operating sys-
tems in the processor bank machines, in
which the naming and directory manage-
ment would be done. The CAP computer (a
large research machine within the Cam-
bridge Computing Laboratory that does not
have any disks of its own) also uses the file
server. After some experience with this
model, it was decided to create a new server,
known as the filing machine, as a front end
to the file system to improve the perform-
ance (mostly by providing the filing ma-
chine with a large cache, something that
the small user machines could not afford).
The CAP machine, which has adequate
memory, continues to use the file server
directly. The position of the filing machine
is shown in Figure 12.

The universal file server supports one
basic file type, with two minor variations.
The basic file type is an unstructured file

Computing Surveys, Vol. 17, No. 4, December 1985

consisting of a sequence of 16-bit words,
numbered from 0 to some maximum.
Operations are provided for reading or writ-
ing arbitrary numbers of words, starting
anywhere in the file. Each file is uniquely
identified by a 64-bit PUID (Permanent
User IDentifier) consisting of a 32-bit disk
address and a 32-bit random number.

The first variation is the special file,
which has the property that writes to it are
atomic, that is, they will either succeed
completely or not be done at all. They will
never be partly completed, even in the face
of server crashes.

The second variation is a file called an
index, which is a special file consisting of a
sequence of slots, each holding one PUID.
When a file is created, the process creating
it must specify an index and slot in that
index into which the new file’s PUID is
stored. Since indexes are also files and as
such have PUIDs themselves, an index may
contain pointers (PUIDs) to other indices,
allowing arbitrary directory trees and
graphs to be built. One index is distin-
guished as being the root index, which has
the property that the file server’s internal
garbage collector will never remove a file
reachable from the root index.

In the initial implementation, the full
code of the TRIPOS operating system was
loaded into each pool processor. All of the
directory management and handling of
ASCII names was done on the processor
bank machines. Unfortunately, this scheme
had several problems. First, TRIPOS was
rather large and filled up so much memory
that little room was left for buffers, mean-
ing that almost every read or write request
actually caused a disk access (the universal
file server has hardly any buffers). Second,
looking up a name in the directory hierar-
chy required all the intermediate directo-

ries between the starting point and the file
to be physically transported from the file
server to a machine doing the search.

To get around these problems, a filing
machine with a large cache was inserted in
front of the file server. This improvement
allowed programs to request files by name
instead of PUID, with the name lookup
occurring in the filing machine now. Owing
to the large cache, most of the relevant
directories are likely to be already present
in the filing machine, thus eliminating
much network traffic. Furthermore, it al-
lowed the TRIPOS code in the user ma-
chines to be considerably stripped, since
the directory management was no longer
needed. It also allowed the file server to
read and write in large blocks; this was
previously possible, but rarely done because
of lack of buffer space on the user side. The
resulting improvements were substantial.

3.1.6 Implementation

As should be clear by now, the whole Cam-
bridge system is a highly pragmatic design,
which from its inception [Wilkes and Need-
ham 19801 was designed to be actually used
by a substantial user community. About 90
machines are connected by three rings now,
and the system is fairly stable. A related
research project was the connection of a
number of Cambridge rings via a satellite
[Adams et al. 19821. Future research
may include interconnection of multiple
Cambridge rings using very-high-speed
(2-megabit-per-second) lines.

3.2 Amoeba

Amoeba is a research project on distributed
operating systems being carried out at the
Vrije Universiteit in Amsterdam under the
direction of Andrew Tanenbaum. Its goal
is to investigate capability-based, object-
oriented systems and to build a working
prototype system to use and evaluate. It
currently runs on a collection of 24 Moto-
rola 68010 computers connected by a
lo-megabytes-per-second local network.

The Amoeba architecture consists of four
principal components, as shown in Figure
13. First are the workstations, one per user,

Distributed Operating Systems l 453

Processor
pool Workstations

Specialized servers

(file. data base, etc)

Figure 13. The Amoeba architecture.

on which users can carry out editing and
other tasks that require fast interactive re-
sponse. Second are the pool processors, a
group of CPUs that can be dynamically
allocated as needed, used, and then re-
turned to the pool. For example, the “make”
command might need to do six compila-
tions; so six processors could be taken out
of the pool for the time necessary to do the
compilation and then returned. Alterna-
tively, with a five-pass compiler, 5 X 6 =
30 processors could be allocated for the six
compilations, gaining even more speedup.

Third are the specialized servers, such as
directory, file, and block servers, database
servers, bank servers, boot servers, and var-
ious other servers with specialized func-
tions. Fourth are the gateways, which are
used to link Amoeba systems at different
sites (and, eventually, different countries)
into a single, uniform system.

All the Amoeba machines run the same
kernel, which primarily provides message-
passing services and little else. The basic
idea behind the kernel was to keep it small,
not only to enhance its reliability, but also
to allow as much as possible of the operat-
ing system to run as user processes, provid-
ing for flexibility and experimentation.

Some of the research issues addressed by
the project are how to put as much of the
operating system as possible into user pro-
cesses, how to use the processor pool, how
to integrate the workstations and pro-
cessor pool, and how to connect multiple
Amoeba sites into a single coherent system
using wide-area networks. All of these
issues use objects and capabilities in a
uniform way.

Computing Surveys, Vol. 17, No. 4, December 1985

454 l A. S. Tanenbaum and R. van Renesse

3.2.1 Communication Primitives

The conceptual model for Amoeba com-
munication is the abstract data type or
object model, in which clients perform op-
erations on objects in a location-indepen-
dent manner. To implement this model,
Amoeba uses a minimal remote procedure
call model for communication between
clients and servers. The basic client primi-
tive is to send a message of up to about 32
kilobytes to a server and then block waiting
for the result. Servers use GET-RE-
QUEST and PUT-REPLY to get new
work and send back the results, respec-
tively. These primitives are not embedded
in a language environment with automatic
stub generation. They are implemented as
small library routines that are used to in-
voke the kernel directly from C programs.

All the primitives are reliable in the sense
that detection and retransmission of lost
messages, acknowledgment processing, and
message-to-packet and packet-to-message
management are all done transparently by
the kernel. Messages are unbuffered. If a
message arrives and no one is expecting it,
the message is simply discarded. The send-
ing kernel then times out and tries again.
Users can specify how long the kernel
should retransmit before giving up and re-
porting failure. The idea behind this strat-
egy is that server processes are generally
cloned in N-fold, so normally there will be
a server waiting. Since a message is dis-
carded only if the system is badly over-
loaded, having the client time out and try
again later is not a bad idea.

Although the basic message primitives
are blocking, special provision is made for
handling emergency messages. For exam-
ple, if a database server is currently blocked
waiting for a tile server to get some data
for it, and a user at a terminal hits the
BREAK key (indicating that he or she
wants to kill off the whole request), some
way is needed to gracefully abort all
the processes working on behalf of that
request. In the Amoeba system the terminal
server generates and sends a special EX-
CEPTION message, which causes an inter-
rupt at the receiving process.

This message forces the receiver to stop
working on the request and send an

Computing Surveys, Vol. 17, No. 4, December 1985

immediate reply with a status code of
REQUEST ABORTED. If the receiver was
also blocked waiting for a server, the excep-
tion is recursively propagated all the way
down the line, forcing each server in turn
to finish immediately. In this manner, all
the nested processes terminate normally
(with error status), so that little violence is
done to the nesting structure. In effect, an
EXCEPTION message does not terminate
execution. Instead, it just says “Force nor-
mal termination immediately, even if you
are not done yet, and return an error
status.”

3.2.2 Naming and Protection

All naming and protection issues in
Amoeba are dealt with by a single, uniform
mechanism: sparse capabilities [Tanen-
baum et al. 19861. The system supports
objects such as directories, files, disk
blocks, processes, bank accounts, and de-
vices, but not small objects such as integers.
Each object is owned by some service and
managed by the corresponding server pro-
cesses.

When an object is created, the process
requesting its creation is given a capability
for it. Using this capability, a process can
carry out operations on the object, such as
reading or writing the blocks of a file, or
starting or stopping a process. The number
and types of operations applicable to an
object are determined by the service that
created the object; a bit map in the capa-
bility tells which of those the holder of the
capability is permitted to use. Thus the
whole of Amoeba is based on the conceptual
model of abstract data types managed by
services, as mentioned above. Users view
the Amoeba environment as a collection of
objects, named by capabilities, on which
they can perform operations. This is in
contrast to systems in which the user view
is a collection of processes connected by
virtual circuits.

Each object has a globally unique name
contained in its capabilities. Capabilities
are managed entirely by user processes;
they are protected cryptographically, not
by any kernel-maintained tables or mech-
anisms. A capability has four fields, as

Distributed Operating Systems l 455

directory server with a capability for a di-
rectory (itself an object) and an ASCII
string and ask for the capability that cor-
responds to that string in the given direc-
tory. Other operations are entering and
deleting (ASCII string, capability) pairs.

This naming scheme is flexible in that a
directory may contain capabilities for an
arbitrary mixture of object types and loca-
tions, but it is also uniform in that every
object is controlled by a capability. A direc-
tory entry may, of course, be for another
directory, and so it is simple to build up
a hierarchical (e.g., UNIX-like) directory
tree, or even more general naming graphs.
Furthermore, a directory may also contain
a capability for a directory managed by a
different directory service. As long as all
the directory services have the same inter-
faces with the user, one can distribute ob-
jects over directory services in an arbitrary
way.

3.2.3 Resource Management

Resource management in Amoeba is per-
formed in a distributed way, again using
capabilities. Each Amoeba machine (pool
processor, work station, etc.) runs a re-
source manager process that controls that
machine. This process actually runs inside
the kernel for efficiency reasons, but it uses
the normal abstract data type interface
with its clients. The key operations it sup-
ports are CREATE SEGMENT, WRITE
SEGMENT, READ SEGMENT, and
MAKE PROCESS. To create a new pro-
cess, a process would normally execute
CREATE SEGMENT three times for
the child process’s text, data, and stack
segments, getting back one capability for
each segment. Then it would fill each one
in with that segment’s initial data and
finally perform MAKE PROCESS with
these capabilities as parameters, getting
back a capability for the new process.

Using the above primitives, it is easy to
build a set of processes that share text
and/or data segments. This facility is useful
for constructing servers that consist inter-
nally of multiple miniprocesses (tasks) that
share text and data. Each of these processes
has its own stack and, most important, its
own program counter, so that when one of

40 24 0 48

Service port Object Rts Check

Figure 14. An Amoeba capability.

shown in Figure 14:

The service port: a sparse address cor-
responding to the service that owns the
object, such as a file or directory service.
The object number: an internal identi-
fier that the service uses to tell which of
its objects this is (comparable to the
i-number in UNIX).
The rights field: a bit map telling which
operations on the object are permitted.
The check field: a large random number
used to authenticate the capability.

When a server is asked to create an ob-
ject, it picks an available slot in its internal
tables (e.g., a free i-node, in UNIX termi-
nology), puts the information about the
new object there, and picks a new random
number to be used exclusively to protect
this new object. Each server is free to use
any protection scheme that it wants to, but
the normal one is for it to build a capability
containing its port, the object number, the
rights (initially all present), and a known
constant. The two latter fields are then
thoroughly mixed by encrypting them with
the random number as key, which is then
stored in the internal table.

Later, when a process performs an oper-
ation on the object, a message containing
the object’s capability is sent to the server.
The server uses the (plaintext) object num-
ber to find the relevant internal table entry
and extract the random number, which is
then used to decrypt the rights and check
fields. If the decryption yields the correct
known constant, the rights field is believed
and the server can easily check whether the
requested operation is permitted. More de-
tails about protection of capabilities can be
found in Mullender and Tanenbaum [1984,
19861 and Tanenbaum et al. [1986].

Capabilities can be stored in directories
managed by the directory service. A direc-
tory is effectively a set of (ASCII string,
capability) pairs. The most common direc-
tory operation is for a user to present the

Computing Surveys, Vol. 17, No. 4, December 1985

456 . A. S. Tanenbaum and R. van Renesse

them blocks on a remote procedure call, the
others are not affected. For example, the
file server might consist of 10 processes
sharing a disk cache, all of which start out
by doing a GET-REQUEST. When a mes-
sage comes in, the kernel sees that ten
processes are all listening to the port spec-
ified in the message; so it picks one process
at random and gives it the message. This
process then performs the requested oper-
ation, possibly blocking on remote proce-
dure calls (e.g., calling the disk) while doing
so, but leaving the other server processes
free to accept and handle new requests.

At a higher level the processor pool is
managed by a process server that keeps
track of which processors are free and
which are not. If an installation wants to
multiprogram the processor pool machines,
then the process server manages each proc-
ess table slot on a pool processor as a virtual
processor. One of the interesting research
issues here is the interplay between the
workstations and the processor pool; that
is: When should a process be started up on
the workstation and when should it be off-
loaded to a pool processor? Research has
not yet yielded any definitive answers here,
although it seems intuitively clear that
highly interactive processes, such as screen
editors, should be local to the workstation,
and batchlike jobs, such as big compila-
tions (e.g., UNIX “make”), should be run
elsewhere.

The bank server provides a basic mech-
anism on top of which many interesting
policies can be implemented. For example:
If some resource is in short supply, are
servers allowed to raise the price as a ra-
tioning mechanism? Do you get your
money back when you release disk space?
That is: Is the model one of clients and
servers buying and selling blocks, or is it
like renting something? If it is like renting,
there will be a flow of money from users to
the various servers, and so users need in-
comes to keep them going, rather than sim-
ply initial fixed budgets. When new users
are added, virtual money has to be created
for them. Does this lead to inflation? The
possibilities here are legion.

3.2.4 Fault Tolerance

The basic idea behind fault tolerance in
Amoeba is that machine crashes are infre-
quent, and that most users are not willing
to pay a penalty in performance in order to
make all crashes 100 percent transparent.
Instead, Amoeba provides a boot service,
with which servers can register. The boot
service polls each registered server at
agreed upon intervals. If the server does
not reply properly within a specified time,
the boot service declares the server to be
broken and requests the process server to
start up a new copy of the server on one of
the pool processors.

Accounting. Amoeba provides a general To understand how this strategy affects
mechanism for resource management and clients, it is important to realize that
accounting in the form of the bank server, Amoeba does not have any notion of a
which manages “bank account” objects. virtual circuit or a session. Each remote
Bank accounts hold virtual money, possibly procedure call is completely self-contained
in multiple currencies. The principal oper- and does not depend on any previous setup;
ation on bank account objects is transfer- that is, it does not depend on any volatile
ring virtual money between accounts. For information stored in server’s memories. If
example, to pay for file storage, a file server a server crashes before sending a reply, the
might insist on payment in advance of X kernel on the client side will time out and
dollars per megabyte of storage, and a pho- try again. When the new server comes up,
totypesetter server might want a payment the client’s kernel will discover this and
in advance of Y yen per page. The system send the request there, without the client
management can decide whether or not dol- even knowing that anything has happened.
lars and zlotys are convertible, depending Of course, this approach does not always
on whether or not it wants users to have work, for example, if the request is not
separate quotas on disk space and typeset- idempotent (the chocolate factory!) or if a
ter pages, or just give each user a single sick disk head has just mechanically
budget to use as he or she sees fit. scraped all the bits from some disk surface,

Computing Surveys, Vol. 17, No. 4, December 1985

Distributed Operating Systems l 457

but it works much of the time and has zero
overhead under normal conditions.

3.2.5 Services

Amoeba has several kinds of block, file, and
directory services. The simplest one is a
server running on top of the Amoeba kernel
that provides a file service functionally
equivalent to the UNIX system call inter-
face, to allow most UNIX programs to run
on Amoeba with only the need to relink
them with a special library.

A more interesting server, however, is
FUSS (Free University Storage System),
which views each file as a sequence of
versions. A process can acquire a capability
for a private copy of a new version, modify
it, and then commit it in a single indivisible
atomic action. Providing atomic commits
at the file level (rather than only as a
facility in some database systems) simpli-
fies the construction of various servers,
such as the bank server, that have to be
highly robust. FUSS also supports multiple,
simultaneous access using optimistic con-
currency control. It is described in greater
detail by Mullender and Tanenbaum
[1985].

Other key services are the directory ser-
vice, bank service, and boot service, all of
which have already been discussed.

3.2.6 Implementation

The Amoeba kernel has been ported to five
different CPUs: 68010, NS32016, 8088,
VAX, and PDP-11. All the servers de-
scribed above, except the boot server, have
been written and tested, along with a num-
ber of others. Measurements have shown
that a remote procedure call from user
space on one 68010 to user space on a
different 68010 takes just over 8 millisec-
onds (plus the time to actually carry out
the service requested). The data rate be-
tween user processes on different machines
has been clocked at over 250,000 bytes per
second, which is about 20 percent of the
raw network bandwidth, an exceptionally
high value.

A library has been written to allow UNIX
programs to run on Amoeba. A substantial
number of utilities, including compilers, ed-

itors, and shells, are operational. A server
has also been implemented on UNIX to
allow Amoeba programs to put capabilities
for UNIX files into their directories and
use them without having to know that the
files are actually located on a VAX running
UNIX.

In addition to the UNIX emulation
work, various applications have been im-
plemented using pure Amoeba, including
parallel traveling salesman and parallel
alpha-beta search [Bal et al. 19851. Current
research includes connecting Amoeba sys-
tems at five locations in three countries
using wide-area networks.

3.3 The V Kernel

The V kernel is a research project on dis-
tributed systems at Stanford University
under the direction of David Cheriton
[Cheriton 1984a; Cheriton and Mann 1984;
Cheriton and Zwaenepoel 1984a, 1984131.
It was motivated by the increasing avail-
ability of powerful microcomputer-based
workstations, which can be seen as an
alternative to traditional time-shared mini-
computers. The V kernel is an outgrowth
of the experience acquired with earlier sys-
tems, Thoth [Cheriton 1982; Cheriton et al.
19791 and Verex.

The V kernel can be thought of as a
software back plane, analogous to the
Multibus or S-100 bus back planes. The
function of a back plane is to provide an
infrastructure for components (for hard-
ware, boards; for software, processes) to
communicate, and nothing else. Conse-
quently, most of the facilities found in tra-
ditional operating systems, such as a file
system, resource management, and protec-
tion, are provided in V by servers outside
the kernel. In this respect V and Amoeba
are conceptually very similar.

Another point on which V and Amoeba
agree is the free-market model of services.
Services such as the file system are, in
principle, just ordinary user processes. Any
user who is dissatisfied with the standard
file system [Stonebraker 1981; Tanenbaum
and Mullender 19821 is free to write his or
her own. This view is in contrast to the
“centrally planned economy” model of most

Computing Surveys, Vol. 17, No. 4, December 1985

458 l A. S. Tanenbaum and R. van Renesse

Work- Work-
station station

Network I ’ I I

I I I
File File Rint
server server server

Figure 15. A typical V configuration.

time-sharing systems, which present the
file system on a “like it or lump it” basis.

The V system consists of a collection of
workstations (currently SUNS), each run-
ning an identical copy of the V kernel. The
kernel consists of three components: the
interprocess communication handler, the
kernel server (for providing basic services,
such as memory management), and the de-
vice server (for providing uniform access to
I/O devices). Some of the workstations
support an interactive user, whereas others
function as file servers, print servers, and
other kinds of servers, as shown in Figure
15. Unlike Amoeba, V does not have a
processor pool.

3.3.1 Communication Primitives

The V communication primitives have been
designed in accordance with the back-plane
model mentioned above. They provide
basic, but fast communication. To access a
server, a client does SEND(message, pid),
which transmits the fixed-length (32-byte)
“message” to the server, and then blocks
until the server has sent back a reply, which
overwrites “message.” The second param-
eter, “pid,” is a 32-bit integer that uniquely
identifies the destination process. A mes-
sage may contain a kind of pseudopointer
to one of the client’s memory segments.
This pseudopointer can be used to permit
the server to read from or write to the
client’s memory. Such reads and writes are
handled by kernel primitives COPYFROM
and COPYTO. As an optimization, when a
client does a SEND containing one of these
pseudopointers with READ permission, the
first 1K of the segment is piggybacked onto
the message, on the assumption that the
server will probably want to read it even-

Computing Surveys, Vol. 17, No. 4, December 1985

tually. In this way, messages longer than
32 bytes can be achieved.

Servers use the RECEIVE and REPLY
calls. The RECEIVE call can provide a
segment buffer in addition to the regular
message buffer, so that if (part of) a seg-
ment has been piggybacked onto the mes-
sage, it will have a place to go. The REPLY
call can also provide a segment buffer for
the case in which the client provides a
pseudopointer that the server can use to
return results exceeding 32 bytes.

To make this communication system eas-
ier to use, calls to servers can be embedded
in stubs so that the caller just sees an
ordinary procedure call. Stub generation is
not automated, however.

3.3.2 Naming and Protection

V has three levels of naming. At the bottom
level, each process has a unique 32-bit pid,
which is the address used to send messages
to it. At the next level, services (i.e., pro-
cesses that carry out requests for clients)
can have symbolic (ASCII string) names in
addition to their pids. A service can register
a symbolic name with its kernel so that
clients can use the symbolic name instead
of the pid. When a client wants to access a
service by its name, the client’s kernel
broadcasts a query to all the other kernels,
to see where the server is. The (Server-
Name, pid) pair is then put in a cache for
future use.

The top level of naming makes it possible
to assign symbolic names to objects, such
as files. Symbolic names are always inter-
preted in some “context,” analogous to
looking up a file name in some directory in
other systems. A context is a set of records,
each including the symbolic name, server’s

pid, context number, and object identifier.
Each server manages its own contexts;
there is no centralized “name server.” A
symbolic name is looked up in a context by
searching all the records in that context for
one whose name matches the given name.
When a match is found, the context num-
ber and object identifier can be sent to the
appropriate server to have some operation
carried out.

Names may be hierarchical, as in u/b/c.
When a is looked up in some context, the
result will probably be a new context, pos-
sibly managed by a new server on a differ-
ent machine. In that case the remaining
string, b/c is passed on to that new server
for further lookup, and so on.

It is also possible to prefix a symbolic
name with an explicit context, as in
[HomeDirectory] a/b/c, in which case the
name is looked up in the context specified,
rather than in the current context (analo-
gous to the current working directory in
other systems). A question that quickly
arises is, “Who keeps track of the various
context names, such as ‘HomeDirectory’
above?” The answer is that each worksta-
tion in the system has a Context Prefix
Server, whose function is to map context
names onto server names, so that the ap-
propriate server can be found to interpret
the name itself.

3.3.3 Resource Management

Each processor in V has a dedicated func-
tion, either as a user workstation or a file,
print, or other dedicated server; so no form
of dynamic processor allocation is provided.
The key resources to be managed are pro-
cesses, memory, and the I/O devices.
Process and memory management is pro-
vided by the kernel server. I/O manage-
ment is provided by the device server. Both
of these are part of the kernel present on
each machine, and are accessed via the
standard message mechanism described
above. They are special only in that they
run in kernel mode and can get at the raw
hardware.

Processes are organized into groups
called teams. A team of processes share a
common address space, and therefore must

Distributed Operating Systems l 459

all run on the same processor. Application
programs can make use of concurrency by
running as a team of processes, each of
which does part of the kernel. If one process
in a team is blocked waiting for a reply to
a message, the other ones are free to run.
The kernel server is prepared to carry out
operations such as creating new processes
and teams, destroying processes and teams,
reading and writing processes’ states, and
mapping processes onto memory.

All I/O in V is done using a uniform
interface called the V I/O protocol. The
protocol allows processes to read and write
specific blocks on the device. This block
orientation was chosen to provide idempo-
tency. Terminal drivers must store the last
block read and filter out duplicate requests
in order to maintain the idempotency prop-
erty. Implementation of byte streams is up
to the users. The I/O protocol has proved
general enough to handle disks, printers,
terminals, and even a mouse.

3.3.4 Fault Tolerance

Since it was designed primarily for use in
an interactive environment, V provides
little in the way of fault tolerance. If
something goes wrong, the user just does
it again. V, however, does address excep-
tion handling. Whenever a process causes
an exceptional condition to occur, such as
stack overflow or referencing nonexistent
memory, the kernel detecting the error
sends a specially formatted message to the
exception server, which is outside the ker-
nel. The exception server can then invoke
a debugger to take over. This scheme does
not require a process to make any advance
preparation for being debugged and in prin-
ciple, can allow the process to continue
execution afterward.

3.3.5 Services

Since most of the V workstations do not
have a disk, the central file server plays a
key role in the system. The file server is
not part of the operating system. Instead,
it is just an ordinary user program running
on top of the V kernel. Internally it is
structured as a team of processes. The main

Computing Surveys, Vol. 17, No. 4, December 1985

460 . A. S. Tanenbaum and R. van Renesse

process handles directory operations, in-
cluding opening files; subsidiary processes
perform the actual read and write com-
mands, so that when one of them blocks
waiting for a disk block, the others can
continue operation. The members of file
server team share a common buffer cache,
used to keep heavily used blocks in main
memory.

The file system is a traditional hierar-
chical system, similar to that of Thoth
[Cheriton 19821. Each file has a file descrip-
tor, similar to an i-node in UNIX, except
that the file descriptors are gathered into
an ordinary file, which can grow as needed.

Extensive measurements have been
made of the performance of the file server.
As an indication, it takes 7.8 milliseconds
to read a 1K block from the file server when
the block is in the cache. This time includes
the communication and network overhead.
When the block must be fetched from the
disk, the time is increased to 35.5 millisec-
onds. Given that the access time of the
small Winchester disks used on personal
computers is rarely better than 40 millisec-
onds, it is clear that the V implementation
of diskless workstations with a fast (18-
millisecond) central file server is definitely
competitive.

Other V servers include the print server,
gateway server, and time server. Other
servers are in the process of being devel-
oped.

3.3.6 Implementation

The V kernel has been up and running at
Stanford University since September 1982.
It runs on SUN Microsystems 68000-based
workstations, connected by 3-megabit-per-
second and lo-megabit-per-second Ether-
nets. The kernel is used as a base for a
variety of projects at Stanford, including
the research project on distributed operat-
ing systems. A great deal of attention has
been paid to tuning the system to make it
fast.

3.4 The Eden Project

The goal of the Eden system [Almes et al.
1985; Black 1983, 1985; Jessop et al. 1982;
Lazowska et al. 19811, which is being de-

Computing Surveys, Vol. 1’7, No. 4, December 1985

veloped at the University of Washington in
Seattle under the direction of Guy Almes,
Andrew Black, Ed Lazowska, and Jerre
Noe, is to investigate logically integrated
but physically distributed operating sys-
tems. The idea is to construct a system
based on the principle of one user and one
workstation (no processor pool), but with a
high degree of systemwide integration.
Eden is object oriented, with all objects
accessed by capabilities, which are pro-
tected by the Eden kernel. Eden objects, in
contrast to, say, Amoeba objects, contain
not only passive data, but also one or more
processes that carry out the operations de-
fined for the object. Objects are general:
Applications programmers can determine
what operations their objects will provide.
Objects are also mobile, but at any instant
each object (and all the processes it con-
tains) resides on a single workstation.

Much more than most research projects
of this kind, Eden was designed top down.
In fact, the underlying hardware and lan-
guage was radically changed twice during
the project, without causing too much rede-
signing. This would have been much more
difficult in a bottom-up, hardware-driven
approach.

3.4.1 Communication Primitives

Communication in Eden uses “invocation,”
a form of remote procedure call. Programs
are normally written in EPL, the Eden
Programming Language, which is based on
Concurrent Euclid. (The EPL translator is
actually a preprocessor for Concurrent
Euclid.) To perform an operation on an
object, say, Lookup, on a directory object,
the EPL programmer just calls Lookup,
specifying a capability for the directory to
be searched, the string to be searched for,
and some other parameters.

The EPL compiler translates the call to
Lookup to a call to a stub routine linked
together with the calling procedure. This
stub routine assembles the parameters
and packs them in a standard form called
ESCII (Eden Standard Code for Informa-
tion Interchange), and then calls a lower
level routine to transmit the function code
and packed parameters to the destination
machine.

Distributed Operating Systems l 461

Each directory entry contains the ASCII
string by which the capability is accessed
and the capability itself. Clients can only
access the contents of a directory by invok-
ing the directory object with one of the
valid operations, which include add entry,
delete entry, lookup string, and rename ca-
pability. Capabilities are protected from
forgery by the kernel, but users keep copies
of capabilities for their own use; the kernel
verifies them when they are used.

The basic protection scheme protects ob-
jects, using capabilities. Since all processes
are embedded in objects, a process can be
protected by restricting the distribution of
capabilities to its object. The only way to
obtain service from an object is by invoking
the object with the proper capability, pa-
rameters, etc., all of which are checked by
the kernel and EPL run-time system before
the call is made.

When the message arrives at the desti-
nation machine, a stub routine there un-
packs the ESCII message and makes a local
call on Lookup using the normal EPL call-
ing sequence. The reply proceeds analo-
gously in the opposite direction. The stub
routines on both sides are automatically
generated by the EPL compiler.

The implementation of invocation is
slightly complicated by the fact that an
object may contain multiple processes.
When one process blocks waiting for a re-
ply, the others must not be affected. This
problem is handled by splitting the invo-
cation into two layers. The upper layer
builds the message, including the capability
for the object to be invoked and the ESCII
parameters, passes it to the lower layer,
and blocks the calling process until the
reply arrives. The lower layer then makes
a nonblocking call to the kernel to actually
send the message. If other processes are
active within the object, they can now be
run; if none are active, the object waits until
a message arrives.

On the receiving side, a process within
the invoked object will normally have pre-
viously executed a call announcing its will-
ingness to perform some operation (e.g.,
Lookup in the above example), thereby
blocking itself. When the Lookup message
comes in, it is accepted by a special dis-
patcher process that checks to see which
process, if any, is blocked waiting to per-
form the operation requested by the mes-
sage. If a willing process is found, it runs
and sends a reply, unblocking the caller. If
no such process can be found, the message
is queued until one becomes available.

3.4.2 Naming and Protection

Naming and protection in Eden are accom-
plished using the capability system. Data
are encapsulated within objects, and are
only accessible by invoking one of the op-
erations defined by the object. To invoke
an object, a process must have a valid ca-
pability. Thus there is a uniform naming
and protection scheme throughout Eden.

Capabilities may be stored in any object.
Directories provide a convenient mecha-
nism for grouping capabilities together.

3.4.3 Resource Management

Because no version of Eden runs on bare
machines, most of the issues associated
with low-level resource management have
not yet been dealt with. Nevertheless, some
resource management issues have been ad-
dressed. For example, when an object is
created, the issue arises of where to put it.
At present, it is just put on the same work-
station as the object that created it unless
an explicit request has been given to put it
somewhere else.

Another issue that has received consid-
erable attention is how to achieve concur-
rency within an object. From the beginning
of the project it was considered desirable to
allow multiple processes to be simultane-
ously active within an object. These pro-
cesses all share a common address space,
although each one has its own stack for
local variables, procedure call/return in-
formation, etc. Having multiple active
processes within an object, coupled with
the basic Eden semantics of remote invoca-
tions that block the caller but not the
whole object, makes the implementation
somewhat complicated. It is necessary to
allow one process to block waiting for a
reply without blocking the object as a
whole. Monitors are used for synchroniza-
tion. This multiprogramming of processes

Computing Surveys, Vol. 17, No. 4, December 1985

462 . A. S. Tanenbaum and R. van Renesse

within an object is handled by a run-time
system within that object, rather than by
the kernel itself (as is done in Amoeba and
also in V). The experiences of Eden,
Amoeba, and V all seem to indicate that
having cheap, “lightweight” processes that
share a common address space is often
useful [Black 19851.

Management of dynamic storage for ob-
jects has also been a subject of some work.
Each object has a heap for its own internal
use, for which the EPL compiler generates
explicit allocate and deallocate commands.
However, a different storage management
scheme is used for objects themselves.
When a kernel creates an object, it allocates
storage for the object from its own heap
and gives the object its own address space.
It also manages the user capabilities for the
object in such a way that it is possible
systematically to find all capabilities by
scanning the kernel’s data structures.

3.4.4 Fault Tolerance

The Eden kernel does not support atomic
actions directly, although some services
provide them to their clients. Invocations
can fail with status CANNOT LOCATE
OBJECT when the machine on which the
invoked object resides crashes. On the other
hand, Eden goes to a considerable length
to make sure that objects are not totally
destroyed by crashes. The technique used
to accomplish this goal is to have objects
checkpoint themselves periodically. Once
an object has written a copy of its state to
disk, a subsequent crash merely has the
effect of resetting the object to the state
that it had at the most recent checkpoint.
Checkpoints themselves are atomic, and
this property can be used to build up more
complex atomic actions.

By judicious timing of its checkpoints,
an object can achieve a high degree of reli-
ability. For example, within the user mail
system, a mailbox object will checkpoint
itself just after any letter is received or
removed. Upon receipt of a letter, a mailbox
can wait for confirmation of the checkpoint
before sending an acknowledgment back to
the sender, to ensure that letters are never
lost because of crashes. One drawback of

Computing Surveys, Vol. 17, No. 4, December 1985

the whole checkpoint mechanism is that it
is expensive: Any change to an object’s
state, no matter how small, requires writing
the entire object to the disk. The Eden
designers acknowledge this as a problem.

Another feature of Eden that supports
fault tolerance is the ability of the file
system, when asked, to store an object as
multiple copies on different machines
(see below).

3.4.5 Services

The Eden file system maintains arbitrary
objects. One particular object type, the
BYTESTORE, implements linear files, as
in UNIX. It is possible to set the “current
position” anywhere in the file and then read
sequentially from that point. Unlike V and
Amoeba, Eden does not have special ma-
chines dedicated as servers. Instead, each
workstation can support file objects, either
for the benefit of the local user or remote
ones.

The model used for file service in Eden
is quite different from the usual model of a
file server, which manages some set of tiles
and accepts requests from clients to per-
form operations on them. In Eden, each file
(i.e., BYTESTORE object) contains within
it the processes needed to handle opera-
tions on it. Thus the file contains the server
rather than the server containing the file
as in most other systems.

Of course, actually having a process run-
ning for each file in existence would be
unbearably expensive, so an optimization
is used in the implementation. When a file
is not open, its processes are dormant and
consume no resources (other than the disk
space for its checkpoint). Mailboxes, direc-
tories, and all other Eden objects work the
same way. When an object is not busy with
an invocation, the processes inside it are
put to sleep by checkpointing the whole
object to the disk.

When a file is opened, a copy of the code
for its internal processes is found, and the
processes started up. Although all files on
a given workstation share the same code,
when the first file is opened on a work-
station, the code may have to be fetched
from another workstation.

Distributed Operating Systems l 463

The approach has advantages and dis-
advantages compared with the traditional
one-file-server-for-all-files way of doing
things. There are two main advantages.
First, the complicated, multithreaded file
server code is eliminated: There is no tile
server. The processes within a BYTE-
STORE object are dedicated to a single file.
Second, files can be migrated freely about
all the nodes in the system, so that, for
example, a tile might be created locally and
then moved to a remote node where it will
later be used.

The chief disadvantage is performance.
All the processes needed for the open tiles
consume resources, and fetching the code
for the first file to be opened on a work-
station is slow.

The Eden file system supports nested
transactions [Pu and Noe 19851. When an
atomic update on a set of files (or other
objects) is to be carried out, the manager
for that transaction first makes sure that
all the new versions are safely stored on
disk, then it checkpoints itself, and finally
it updates the directory.

The transaction facility can be used to
support replicated tiles [Pu et al. 19861. In
the simplest case, a directory object maps
an ASCII name onto the capability for
that object. However, the system also has
“repdirs,” objects that map ASCII names
onto sets of capabilities, for example, all
the copies of a replicated file. Updating a
replicated file is handled by a transaction
manager, which uses a two-phase commit
algorithm to update all the copies simul-
taneously. If one of the copies is not
available for updating (e.g., its machine is
down or the network is partitioned), a new
copy of the file is generated, and the capa-
bility for the unreachable copy discarded.
Sooner or later, the garbage collector will
notice that the old copy is no longer in use
and remove it.

We touched briefly on the mail server
above. The mail system defines message,
mailbox, and address list objects, with op-
erations to deliver mail, read mail, reply to
mail, and so on.

The appointment calendar system is an-
other example of an Eden application. It is
used to schedule meetings and runs in two

phases. When someone proposes a meeting,
a transaction is first done to mark the
proposed time as “tentatively occupied” on
all the participants’ calendars. When a par-
ticipant notices the proposed date, he or
she can then approve or reject it. If all
participants approve the meeting, it is
“committed” by another transaction; if
someone rejects the proposed appointment,
the other participants are notified.

3.4.6 Implementation

Eden has had a somewhat tortuous imple-
mentation history. The initial version was
designed to be written in Ada4 on the Intel
432, a highly complex multiprocessor, fault-
tolerant microprocessor chip ensemble. To
make a long story short, neither the Ada
compiler nor the 432 lived up to the pro-
ject’s expectations. To gather information
for further design, a “throwaway” imple-
mentation was made on top of VMS on a
VAX.

The VAX/VMS version, called Newark
(because that was thought to be far from
Eden), was written in Pascal and was not
distributed (i.e., it ran on a single VAX). It
supported multiple processes per object
(VMS kernel processes) but did not have
automatic stub generation. Furthermore,
the whole implementation was rather cum-
bersome, so it was then decided to design a
programming language that would provide
automatic stub generation, better type
checking, and a more convenient way of
dealing with concurrency.

This reevaluation led to EPL and a new
implementation on top of UNIX instead of
VMS. Subsequently, Eden was ported to
68000-based workstations (SUNS), also on
top of UNIX, rather than on the bare hard-
ware (and in contrast to the Cambridge
system, V, and Amoeba, all of which run
on bare 68000s). The decision to put UNIX
on the bottom, instead of the top (as was
done with Amoeba), made system develop-
ment easier and assisted users in migrating
from UNIX to Eden. The price that has
been paid is poor performance and a fair

‘Ada is a trademark of the U.S. Department of
Defense.

Computing Surveys, Vol. 17, No. 4, December 1985

464 . A. S. Tanenbaum and R. van Renesse

amount of effort spent trying to convince
UNIX to do things against its will.

3.5 Comparison of the Cambridge,
Amoeba, V, and Eden Systems

Our four example systems have many as-
pects in common, but also differ in some
significant ways. In this section we sum-
marize and compare the four systems with
respect to the main design issues that we
have been discussing.

3.5.1 Communication Primitives

All four systems use an RPC-like mecha-
nism (as opposed to an IS0 OS1 commu-
nication-oriented mechanism).

The Cambridge mechanism is the sim-
plest, using the single-shot protocol with a
2K request packet and a 2K reply packet
for most client-server communication. A
byte stream protocol is also available.

Amoeba uses a similar REQUEST-
REPLY mechanism, but allows messages
up to 32 kilobytes (with the kernel-han-
dling message fragmentation and reassem-
bly), as well as acknowledgments and time-
outs, thus providing user programs with a
more reliable and simpler interface.

V also uses a REQUEST-REPLY mech-
anism, but messages longer than an Eth-
ernet packet are dealt with by having the
sender include a sort of “capability” for a
message segment in the REQUEST packet.
Using this “capability,” the receiver can
fetch the rest of the message, as needed.
For efficiency, the first 1K is piggybacked
onto the REQUEST itself.

Eden comes closest to a true RPC mech-
anism, including having a language and
compiler with automatic stub generation
and a minilanguage for parameter passing.
None of the four examples attempts to
guarantee that remote calls will be executed
exactly once.

3.5.2 Naming and Protection

All four systems use different schemes for
naming and protection. In the Cambridge
system a single name server process maps
symbolic service names onto (node, process
identifier) pairs so that the client will know

Computing Surveys, Vol. 17, No. 4, December 1985

where to send the request. Protection is
done by the active name table, which keeps
track of the authorization status of each
logged in user.

Amoeba has a single mechanism for all
naming and protection-sparse capabili-
ties. Each capability contains bits specify-
ing which operations on the object are
allowed and which are not. The rights are
protected cryptographically, so that user
programs can manipulate them directly;
they are not stored in the kernel. ASCII-
string-to-capability mapping and capability
storage are handled by directory servers for
convenience.

Eden also uses capabilities, but these are
not protected by sparseness or encryption,
and so they must be protected by the ker-
nel. A consequence of this decision is that
all the kernels must be trustworthy. The
Amoeba cryptographic protection scheme
is less restrictive on this point.

V has naming at three levels: Processes
have pids, kernels have ASCII-to-pid map-
pings, and servers use a context mechanism
to relate symbolic names to a given context.

3.5.3 Resource Management

Resource management is also handled quite
differently on all four systems. In the Cam-
bridge system the main resource is the
processor bank. A resource manager is pro-
vided to allocate machines to users. Gen-
erally, this allocation is fairly static-upon
login a user is allocated one machine for
the duration of the login session, and this
is the only machine the user uses during
the session. The user may load any oper-
ating system that he or she chooses in this
machine.

Amoeba also has a pool of processors, but
these are allocated dynamically. A user run-
ning “make” might be allocated ten pro-
cessors to compile ten files; afterward, all
the processors would go back into the pool.
Amoeba also provides a way for processes
to create segments on any machine (assum-
ing that the proper capability can be
shown) and for these segments to be forged
into processes. Amoeba is unique among
the four systems in that it has a bank server
that can allow servers to charge for services

Distributed Operating Systems l 465

entire objects can be checkpointed, making
checkpointing a slow operation and thus
discouraging its frequent use.

and to limit resource usage by accounting
for it.

In V, each processor is dedicated as either
a workstation or a server, so processors are
not resources to be dynamically allocated.
Each V kernel manages its own local re-
sources; there is no systemwide resource
management.

Eden has been built on top of existing
operating systems, and therefore most of
the issues of resource management are done
by the underlying operating system. The
main issue remaining for Eden is allocating
and deallocating storage for objects.

3.5.4 Fault Tolerance

None of the four systems go to great lengths
to make themselves fault tolerant; for ex-
ample, none support atomic actions as a
basic primitive. All four (with the possible
exception of Eden) were designed with the
intention of actually being used, so that the
inherent trade-off between performance
and fault tolerance tended to get resolved
in favor of performance.

In the Cambridge system the only con-
cession to fault tolerance is a feature in the
ring interface to allow a machine to be
remotely reset by sending a special packet
to the interface. There is also a small server
that helps get the servers started up.

Amoeba provides some fault tolerance
through its boot server, with which pro-
cesses can register. The boot server pools
the registered processes periodically and,
finding one that fails to respond, requests
a new processor and downloads the failed
program to it. This strategy does not re-
trieve the processes that were killed when
a machine has gone down, but it does au-
tomatically ensure that no key service is
ever down for more than, say, 30 seconds.

V does not address the problem of fault
tolerance at all.

Of the four systems, Eden makes the
most effort to provide a higher degree of
reliability than provided by the bare hard-
ware. The main tool used is checkpointing
complete objects from time to time. If a
processor crashes, each of its objects can be
restored to the state it had at the time of
the last checkpoint. Unfortunately, only

3.5.5 Services

The file systems used by Cambridge,
Amoeba, V, and Eden are all quite different.
The Cambridge system has two servers, the
universal file server, and the filing machine,
which was added later to improve the per-
formance by providing a large buffer cache.
The universal file server supports a primi-
tive flat file, with no directory structure,
which is provided by the filing machine or
the user machines. The universal file server
has regular and special files, of which the
latter can be updated atomically.

Amoeba has several file systems. One of
them is compatible with UNIX, to allow
UNIX applications to run on Amoeba. An-
other one, FUSS, supports multiversion,
multiserver, tree-structured, immutable
files with atomic commit. Directory servers
map ASCII names to capabilities, thus al-
lowing an arbitrary graph of files and direc-
tories to be constructed.

V has a traditional file server similar to
UNIX. It is based on the earlier Thoth
system.

Eden has no file server at all in the usual
sense. Instead, each file object has embed-
ded in it a process that acts like a private
file server for that one file. Like Amoeba,
Eden has separate directory servers that
map ASCII strings onto capabilities and
provides the ability to map one string onto
several files, thus providing for file repli-
cation. All four systems have a heteroge-
neous variety of other services (e.g., print,
mail, bank).

4. SUMMARY

Distributed operating systems are still in
an early phase of development, with many
unanswered questions and relatively little
agreement among workers in the field about
how things should be done. Many experi-
mental systems use the client-server model
with some form of remote procedure call as
the communication base, but there are also
systems built on the connection model.

Computing Surveys, Vol. 17, No. 4, December 1985

466 . A. S. Tanenbaum and R. van Renesse

Relatively little has been done on distrib-
uted naming, protection, and resource
management, other than building straight-
forward name servers and process servers.
Fault tolerance is an up-and-coming area,
with work progressing in redundancy tech-
niques and atomic actions. Finally, a con-
siderable amount of work has gone into the
construction of file servers, print servers,
and various other servers, but here too
there is much work to be done. The only
conclusion that we draw is that distributed
operating systems will be an interesting and
fruitful area of research for a number of
years to come.

ACKNOWLEDGMENTS

We would like to thank Andrew Black, Dick Grune,
Sape Mullender, and Jennifer Steiner for their critical
reading of the manuscript.

REFERENCES

ADAMS, C. J., ADAMS, G. C., WATERS, A. G., LESLIE,
I., AND KIRK, P. 1982. Protocol architecture of
the UNIVERSE project. In Proceedings of the 6th
International Conference on Computer Commu-
nication (London, Sept. 7-10). International Con-
ference for Computer Communication, pp. 379-
383.

ALMES, G. T., BLACK, A. P., LAZOWSKA, E. D., AND
NI!IE, J. D. 1985. The Eden system: A technical
review. IEEE Trans. Softw. Eng. SE-11 (Jan.).
43-59.

ANDERSON, T., AND LEE, P. A. 1981. Fault Toler-
ance, Principles and Practice. Prentice-Hall
International, London.

AVIZIENIS, A., AND CHEN, L. 1977. On the im-
plementation of N-version programming for
software fault-tolerance during execution. In
Proceedings of the International Computer Soft-
ware and Applications Conference. IEEE, New
York, pp. 149-155.

AVIZIENIS, A., AND KELLY, J. 1984. Fault tolerance
by design diversity. Computer 17 (Aug.), 66-80.

BAL, H. E., VAN RENESSE, R., AND TANENBAUM, A.
S. 1985. A distributed, parallel, fault tolerant
computing system. Rep. 1%106, Dept. of Mathe-
matics and Comnuter Science. Vriie Univ., The
Netherlands, Oct.

-

BALL, J. E., FELDMAN, J., Low, R., RASHID, R., AND
ROVNER, P. 1976. RIG, Rochester’s intelligent
gateway: System overview. IEEE Trans. Softw.
Eng. SE-Z (Dec.), 321-329.

BARAK, A., AND SHILOH, A. 1985. A distributed load-
balancing policy for a multicomputer. Softw.
Pratt. Exper. 1.5 (Sept.), 901-913.

BIRMAN, K. P., AND ROWE, L. A. 1982. A local
network based on the UNIX operating system.
IEEE Trans. Softw. Eng. SE-8 (Mar.), 137-146.

BIRRELL, A. D. 1985. Secure communication using
remote procedure calls. ACM Trans. Comput.
Syst. 3, 1 (Feb.), 1-14.

BIRRELL, A. D., AND NEEDHAM, R. M. 1980. A uni-
versal file server. IEEE Trans. Softw. Eng. SE-6,
(Sept.), 450-453.

BIRRELL, A. D., AND NELSON, B. J. 1984.
Implementing remote procedure calls. ACM
Trans. Comput. Syst. 2, 1 (Feb.), 39-59.

BIRRELL, A. D., LEVIN, R., NEEDHAM, R. M., AND
SCHROEDER, M. 1982. Grapevine: An exercise
in distributed computing. Commun. ACM 25, 4
(Apr.), 260-274.

BIRRELL, A. D., LEVIN, R., NEEDHAM, R. M., AND
SCHROEDER, M. 1984. Experience with Grape-
vine: The growth of a distributed system. ACM
Trans. Comput. Syst. 2, 1 (Feb.), 3-23.

BLACK, A. P. 1983. An asymmetric stream commu-
nications system. Oper. Syst. Rev. (ACM) 17, 5,
4-10. .

BLACK, A. P. 1985. Supporting distributed applica-
tions: Experience with Eden. In Proceedings of
the 10th Symposium on Operating Systems Prin-
ciples (Orcas Island, Wash., Dec. l-4). ACM, New
York, pp. 181-193.

Boccs, D. R., SCHOCH, J. F., TAFT, E. A., ANY
METCALFE, R. M. 1980. Pup: An internetwork
architecture. IEEE Trans. Commun. COM-28
(Apr.), 612-624.

BORG, A., BAUMBACH, J., AND GLAZER, S. 1983. A
message system supporting fault tolerance. Oper.
Syst. Rev. (ACM) 17,5,90-99.

BROWN, M. R., KOLLING, K. N., AND TAG. E. A.
1985. The Alnine file svstem. ACM Trans. Com-
put. Syst. 3, 4 ~Nov.), 261-293.

BROWNBRIDGE, D. R., MARSHALL, L. F., AND
RANDELL, B. 1982. The Newcastle connec-
tion-Or UNIXES of the world unite! Softw.
Pratt. Exper. 12 (Dec.), 1147-1162.

BRYANT, R. M., AND FINKEL, R. A. 1981. A stable
distributed scheduling algorithm. In Proceed-
ings of the 2nd International Conference on Dis-
tributed Computer Systems (Apr.). IEEE, New
York, pp. 314-323.

CHANDY, K. M., MISRA, J., AND HAAS, L. M.
1983. Distributed deadlock detection. ACM
Trans. Comput. Syst. 1,2 (May), 145-156.

CHERITON, D. R. 1982. The Thoth System: Multi-
Process Structuring and Portability. American
Elsevier, New York.

CHERITON, D. R. 1984a. An experiment using regis-
ters for fast message-based interprocess commu-
nication. Oper. Syst. Rev. 18 (Oct.), 12-20.

CHERITON, D. R. 1984b. The V kernel: A software
base for distributed svstems. IEEE Softw. 1
(Apr.), 19-42. -

CHERITON, D. R., AND MANN, T. P. 1984. Uniform
access to distributed name interpretation in the

Computing Surveys, Vol. 17, No. 4, December 1985

Distributed Operating Systems 467

FARBER, D. J., AND LARSON, K. C. 1972. The system
architecture of the distributed computer sys-
tem-The communications system. In Proceed-
ings of the Symposium on Computer Networks
(Brooklyn, Apr.). Polytechnic Inst. of Brooklyn,
Brooklyn, N.Y.

FINKEL, R. A., SOLOMON, M. H., AND TISCHLER, R.
1979. The Roscoe resource manager. COMP-
CON 79 Digest of Papers (Feb.). IEEE, New York,
pp. 8891.

FITZGERALD, R., AND RASHID R. 1985. The integra-
tion of virtual memory management and inter-
process communication in Accent. In Proceedings
of the 10th Symposium on Operating Systems
Principles (Orcas Island, Wash., Dec. l-4). ACM,
New York, pp. 13-14.

FRIDRICH, M., AND OLDER, W. 1981. The Felix file
server. In Proceedings of the 8th Symposium on
Operating Systems Principles (Pacific Grove,
Calif., Dec. 14-16). ACM, New York, pp. 37-44.

FRIDRICH, M., AND OLDER, W. 1984. HELIX: The
architecture of a distributed file system. In Pro-
ceedings of the 4th International Conference on
Distributed Computing Systems. IEEE, New
York, pp. 422-431.

GAGLIANELLO, R. D., AND KATSEFF, H. P. 1985.
Meglos: An operating system for a multiprocessor
environment. In Proceedings of the 5th Znterna-
tional Conference on Distributed Computing Sys-
tems (May). IEEE, New York, pp. 35-42.

GLIGOR, V. D., AND SHATTUCK, S. H. 1980.
Deadlock detection in distributed systems. IEEE
Trans. Softw. Eng. SE-6 (Sept.), 435-440.

GYLYS, V. B., AND EDWARDS, J. A. 1976. Optimal
partitioning of workload for distributed systems.
In Proceedings of COMPCON (Sept.). IEEE, New
York, pp. 353-357.

HWANG, K., CROFT, W. J., GOBLE, G. H. WAH, B.
W., BRIGGS, F. A., SIMMONS, W. R., AND
COATES, C. L. 1982. A UNIX-based local com-
puter network. Computer 15 (Apr.), 55-66,

ISLOOR, S. S., AND MARSLAND, T. A. 1978. An ef-
fective on-line deadlock detection technique for
distributed database management systems. In
Proceedings of the International Computer and
Software Application Conference. IEEE, New
York, pp. 283-288.

JANSON, P., SVOBODOVA, L., AND MAEHLE, E.
1983. Filing and printing services in a local area
network. In Proceedings of the 8th Data Commu-
nications Symposium (Cape Cod, Mass., Oct.
3-6). IEEE, New York, pp. 211-219.

JEFFERSON, D. R. 1985. Virtual time. ACM Trans.
Program. Lang. Syst. 7 (July), 404-425.

JENSEN, E. D. 1978. The Honeywell experimental
distributed processor-An overview of its objec-
tive, philosophy and architectural facilities. Com-
puter 1 Z (Jan), 28-38.

JESSOP, W. H., JACOBSON, D. M., NOE, J. D., BAER,
J.-L., AND Pu, C. 1982. The Eden transaction-
based file system. In Proceedings of the 2nd Sym-

V system. In Proceedings of the 4th International
Conference on Distributed Computing Systems.
IEEE, New York, pp. 290-297.

CHERITON, D. R., AND ZWAENEPOEL, W. 1983. The
distributed V kernel and its performance for disk-
less workstations. In Proceedings of the 9th Sym-
posium on Operating System PrincipZes. ACM,
New York, pp. 128-140.

CHERITON, D. R., AND ZWAENEPOEL, W. 1984.
One-to-many interprocess communication in the
V-svstem. In SZGCOMM ‘84 Tutorials and Svm-
poskm on Communications Architectures and
Protocols (Montreal, Quebec, June 6-8). ACM,
New York.

CHERITON, D. R., MALCOLM, M. A., MELEN, L. S.,
AND SAGER, G. R. 1979. Thoth, a portable real-
time operating system. Commun. ACM 22, 2
(Feb.), 105-115.

CHESSON, G. 1975. The network UNIX system. In
Proceedings of the 5th Symposium on Operating
Systems Principles (Austin, Tex., Nov. 19-21).
ACM, New York, pp. 60-66.

CHOW, T. C. K., AND ABRAHAM, J. A. 1982. Load
balancing in distributed svstems. IEEE Trans.
Softw. Eng. SE-8 (July), 401-412.

CHOW, Y. C., AND KOHLER, W. H. 1979. Models for
dynamic load balancing in heterogeneous multi-
ple processor systems. IEEE Trans. Comput.
C-28 (May), 354-361.

CHU, W. W., HOLLOWAY, L. J., MIN-TSUNG, L., AND
EFE, K. 1980. Task allocation in distributed
data processing. Computer 23 (Nov.), 57-69.

CURTIS, R. S., AND WI~IE, L. D. 1984. Global
naming in distributed systems. IEEE Softw. 1,
76-80.

DALAL, Y. K. 1977. Broadcast protocols in packet
switched computer networks. Ph.D. Dissertation,
Computer Science Dept., Stanford Univ., Stan-
ford, Calif.

DELLAR, C. 1982. A file server for a network of
low-cost personal microcomputers. Softw. Pratt.
Erper. 22 (Nov.), 1051-1068.

DENNIS, J. B., AND VAN HORN, E. C. 1966.
Programming semantics for multiprogrammed
computations. Commun. ACM 9, 3 (Mar.), 143-
154.

DEWIIT, D. J., FINKEL, R. A., AND SOLOMON, M.
1984. The CRYSTAL multicomnuter: Design
and implementation experience. Tech. Rep. TR-
553, Computer Science Dept., Univ. of Wisconsin,
Madison, Wis.

DION, J,. 1980. The Cambridge file server. Oper. Syst.
Reu. (ACM) 14 (Oct.), 41-49.

EFE, K. 1982. Heuristic models of task assignment
scheduling in distributed systems. Computer 15
(June), 50-56.

ESWARAN, K. P., GRAY, J. N., LORIE, J. N., AND
TRAIGER, I. L. 1976. The notions of consistency
and predicate locks in a database system. Com-
mun. ACM 19, 11 (Nov.), 624-633.

Computing Surveys, Vol. 17, No. 4, December 1985

468 l A. S. Tanenbaum and R. van Renesse

posium on Reliability in Distributed Software ana’
Database Systems (Julv). IEEE. New York.

MILLSTEIN, R. E. 1977. The national software
works. In Proceedings of the ACM Annual Con-
ference (Seattle, Wash., Oct. 16-19). ACM, New
York, pp. 44-52.

MITCHELL, J. G., AND DION, J. 1982. A comparison
of two network-based file servers. Commun. ACM
25, 4 (Apr.), 233-245.

pp. 163-169:
_.

KRUEGER, P., AND FINKEL, R. A. 1983. An adaptive
load balancing algorithm for a multicomputer.
Unpublished manuscript, Computer Science
Dept., Univ. of Wisconsin.

LAMPORT, L. 1978. Time, clocks, and the ordering
of events in a distributed system. Commun. ACM
21, 7 (July), 558-565.

LAMPORT, L. 1984. Using time instead of timeout
for fault-tolerant distributed systems. ACM
Trans. Program. Long. Syst. 6 (Apr.), 254-280.

LAMPSON, B. W. 1981. Atomic transactions. In Dis-
tributed Systems-Architecture and Implementa-
tion, B. W. Lampson, Ed. Springer-Verlag, Berlin
and New York, pp. 246-265.

LAZOWSKA, E. D., LEVY, H. M., ALMES, G. T.,
FISCHER, M. J., FOWLER, R. J., AND VESTAL,
S. C. 1981. The architecture of the Eden svstem.
In Proceedings of the 8th Symposium on Operating
Svstems Princioles (Pacific Grove. Calif.. Dec. 14-
16). ACM, New York, pp. 148-159.

LEVY, H. M. 1984. Capability-Based Computer Sys-
tems. Digital Press, Maynard, Mass.

LISKOV, B. 1982. On linguistic support for distrib-
uted nrozrams. IEEE Trans. Softw. Ens. SE-8
(Mayj, 203-210.

LISKOV, B. 1984. Overview of the Argus language
and system. Programming Methodology Group
Memo 40. Laboratory for Computer Science,
Massachusetts Institute of Technology, Cam-
bridge, Mass., Feb.

LISKOV, B., AND SCHEIFLER, R. 1982. Guardians and
actions: Linguistic support for robust, distributed
programs. ACM Trans. Program. Lang. Syst. 5, 3
(July), 381-404. 1983. ACM, pp. 7-19, Jan. 1982.

LO, V. M. 1984. Heuristic algorithms for task assign-
ment in distributed systems. In Proceedings of
the 4th International Conference on Distributed
Computing Systems. IEEE, New York, pp. 30-39.

LUDERER, G. W. R., CHE, H., HAGGERTY, J. P.,
KIRSLIS, P. A., AND MARSHALL, W. T. 1981. A
distributed UNIX system based on a virtual cir-
cuit switch. In Proceedings of the 8th Symposium
on Operating Systems Principles (Pacific Grove,
Calif., Dec. 14-16). ACM, New York, pp. 160-
168.

MAMRAK, S. A., MAURATH, P., GOMEZ, J., JANARDAN,
S., AND NICHOLAS, C. 1982. Guest layering dis-
tributed processing support on local- operating
systems. In Proceedings of the 3rd Znternational
Conference on Distributed Computing Systems.
IEEE, New York, pp. 854-859.

MARZULLO, K., AND OWICKI, S. 1985. Maintaining
the time in a distributed system. Oper. Syst. Reu.
19 (July), 44-54.

MENASCE, D., AND MUNTZ, R. 1979. Locking and
deadlock detection in distributed databases.
IEEE Trans. Softw. Eng. SE-5 (May), 195-202.

MOHAN, C. K., AND WI~IE, L. D. 1985. Local re-
configuration of management trees in large net-
works. In Proceedings of the 5th International
Conference on Distributed Computing Systems
(May). IEEE, New York, pp. 386-393.

MULLENDER, S. J., AND TANENBAUM, A. S. 1984.
Protection and resource control in distributed
operating systems. Comput. Networks 8 (Nov.),
421-432.

MULLENDER, S. J., AND TANENBAUM, A. S. 1985. A
distributed file service based on optimistic con-
currency control. In Proceedings of the 10th Sym-
posium on Operating Systems Principles (Orcas
Island, Wash., Dec. l-4). ACM, New York, pp.
51-62.

MULLENDER, S. J., AND TANENBAUM, A. S. 1986.
The design of a capability-based distributed op-
erating system. Computer J. (in press).

NEEDHAM, R. M., AND HERBERT, A. J. 1982. The
Cambridge Distributed Computing System.
AddisonrWesley, Reading, Mass. - ”

NELSON, B. J. 1981. Remote procedure call. Tech.
Rep. CSL-81-9, Xerox Palo Alto Research
Center, Palo Alto, Calif.

OBERMARCK, R. 1982. Distributed deadlock detec-
tion algorithm. ACM Trans. Database Syst. 7
(June), 187-208.

OKI, B. M., LISKOV, B. H., AND SCHEIFLER, R. W.
1985. Reliable object storage to support atomic
actions. In Proceedings of the 10th Symposium on
Operating Systems Principles (Orcas Island,
Wash., Dec. l-4). ACM, New York, pp. 147-159.

OUSTERHOUT, J. K. 1982. Scheduling techniques for
concurrent systems. In Proceedings of the 3rd
International Conference on Distributed Comput-
ing Systems. IEEE, New York, pp. 22-30.

PASHTAN, A. 1982. Object oriented operating sys-
terns: An emerging design methodology. In Pro-
ceedings of the ACM National Conference (Dallas.
Tex., &t: 25-27). ACM, New York, pp. 126-131:

POPEK, G., WALKER, B., CHOW, J., EDWARDS, D.,
KLINE, C., RUDISIN, G., AND THIEL, G. 1981.
LOCUS: A network transparent, high reliability
distributed system. In Proceedings of the 8th
Symposium on Operating Systems Principles (Pa-
cific Grove, Calif., Dec. 14-16). ACM, New York,
pp. 160-168.

POWELL, M. L., AND MILLER, B. P. 1983. Process
migration in DEMOS/MP. Oper. Syst. Rev.
(ACM) 17,5,110-119.

POWELL, M. L., AND PRESO’ITO, D. L. 1983.
Publishing-A reliable broadcast communication
mechanism. Oper. Syst. Reu. (ACM) 17, 5, lOO-
109.

Computing Surveys, Vol. 17, No. 4, December 1985

Distributed Operating Systems 469

Principles (Pacific Grove, Calif., Dec. 10-12).
ACM, New York, pp. 108-114.

SPECTOR, A. Z. 1982. Performing remote operations
efficiently on a local computer network. Commun.
ACM 25,4 (Apr.), 246260.

STANKOVIC, J. A., AND SIDHU, I. S. 1984. An adap-
tive bidding algorithm for processes, clusters, and
distributed ups. In Proceedings of the 4th Inter-
national Conference on Distributed Computing
Systems. IEEE, New York, pp. 49-59.

STONE, H. S. 1977. Multiprocessor scheduling with
the aid of network flow algorithms. IEEE Trans.
Softw. Eng. SE-3 (Jan.), 88-93.

STONE, H. S. 1978. Critical load factors in distrib-
uted computer systems. IEEE Trans. Softw. Eng.
SE-4 (May), 254-258.

STONE, H. S., AND BOKHARI, S. H. 1978. Control
of distributed processes. Computer 11 (July),
97-106.

STONEBRAKER, M. 1981. Operating system support
for database management. Commun. ACM 24, 7
(July), 412-418.

STURGIS, H. E., MITCHELL, J. G., AND ISRAEL, J.
1980. Issues in the design and use of a distrib-
uted file system. Oper. Syst. Rev. 24 (July),
55-69.

SVENTEK, J., GREIMAN, W., O’DELL, M., AND
JANSEN, A. 1983. Token ring local networks-
A comparison of experimental and theoretical
performance. Lawrence Berkeley Lab. Rep.
16254.

SVOBODOVA, L. 1981. A reliable object-oriented data
repository for a distributed computer system. In
Proceedings of the 8th Symposium on Operating
Systems Principles (Pacific Grove, Calif., Dec. 14-
16). ACM, New York, pp. 47-58.

SVOBODOVA, L. 1984. File servers for network-based
distributed systems. ACM Comput. Sure. 16, 4
(Dec.), 353-398.

SWINEHART, D., MCDANIEL, G., AND Boccs, D.
1979. WFS: A simple shared file system for a
distributed environment. In Proceedings of the
7th Symposium on Operating Systems Principles
(Pacific Grove, Calif., Dec. 10-12). ACM, New
York, pp. 9-17.

TANENBAUM, A. S., AND MULLENDER, S. J. 1982.
Operating system requirements for distributed
data base systems. In Distributed Data Bases,
H.-J. Schneider, Ed. North-Holland Publ.,
Amsterdam, pp. 105-114.

TANENBAUM, A. S., MULLENDER, S. J., AND VAN
RENESSE, R. 1986. Using sparse capabilities in
a distributed operating system. In Proceedings of

the 6th International Conference on Distributed
Computer Systems. IEEE, New York, 1986, pp.
558-563.

VAN TILBORG, A. M., AND W~IE, L. D. 1981. Wave
scheduling: Distributed allocation of task forces
in network computers. In Proceedings of the 2nd
International Conference on Distributed Comput-
ing Systems. IEEE, New York, pp. 337-347.

m

pu,

C., AND NOE, J. D. 1985. Nested transactions
for general objects. Rep. TR-85-12-03, Computer
Science Dept., Univ. of Washington, Seattle,
Wash.
C., NOE, J. D., AND PROUDFOOT, A. 1986.
Regeneration of replicated objects: A technique
and its Eden implementation. In Proceedings of
the 2nd International Conference on Data &I&-
neering (Los Angeles, Calif., Feb. 4-6). IEEE,
New York, pp. 175-187.

RASHID, R. F., AND ROBERTSON, G. G. 1981. Accent:
A communication oriented network operating
system kernel. In Proceedings of tne 8th Sympo-
sium on Operating Systems Principles (Pacific
Grove, Calif., Dec. 14-16). ACM, New York, pp.
64-75.

REED, D. P. 1983. Implementing atomic actions on
decentralized data. ACM Trans. Comput. Syst. 1,
1 (Feb.), 3-23.

REED, D. P., AND SVOBODOVA, L. 1981.
SWALLOW: A distributed data storage system
for a local network. In Local Networks for Com-
puter Communications, A. West and P. Janson,
Eds. North-Holland Publ., Amsterdam, pp. 355-
373.

REIF, J. H., AND SPIRAKIS, P. G. 1984. ‘Real-time
synchronization of interprocess communications.
ACM Trans. Program. Lang. Syst. 6, 2 (Apr.),
215-238.

RITCHIE, D. M., AND THOMPSON, K. 1974. The
UNIX time-sharing system. Commun. ACM 19,
7 (July), 365-375.

SALTZER, J. H., REED, D. P., AND CLARK, D. D.
1984. End-to-end arguments in system design.
ACM Trans. Comput. Syst. 2, 4 (Nov.), 277-278.

SATYANARAYANAN, M., HOWARD, J., NICHOLS, D.,
SIDEBOTHAM, R., SPECTOR, A., AND WEST, M.
1985. The ITC distributed file system: Princi-
ples and design. In Proceedings of the 10th Sym-
posium on Operating Systems Principles (Orcas
Island, Wash., Dec. l-4). ACM, New York,
pp. 35-50.

SCHROEDER, M., GIFFORD, D., AND NEEDHAM, R.
1985. A caching file system for a program-
mer’s workstation. In Proceedings of the 10th
Symposium on Operating Systems Principles
(Orcas Island, Wash., Dec. l-4). ACM, New
York, pp. 25-34.

SMITH, R. 1979. The contract net protocol: High-
level communication and control in a distributed
problem solver. In Proceedings of the 1st Znter-
national Conference on Distributed Computing
Systems. IEEE, New York, pp. 185-192.

SOLOMON, M. H., AND FINKEL, R. A. 1978.
ROSCOE: A multimicrocomputer operating sys- -
tern. In Proceedings of the 2nd Rocky Mountain
Symposium on Microcomputers (Aug.), pp. 201-
210.

SOLOMON, M. H., AND FINKEL, R. A. 1979. The
Roscoe distributed operating system. In Proceed-
ings of the 7th Symposium on Operating Systems

Computing Surveys, Vol. 17, No. 4, December 1985

470 l A. 5’. Tanenbaum and R. van Renesse

WALKER, B., POPEK, G., ENGLISH, R., KLINE, C., Distributed Computing Systems (May). IEEE,
AND THIEL, G. 1983. The LOCUS distributed New York, pp. 549-551.
operating system. Oper. Syst. Reu. (ACM) 17, 5,
49-70.

WI~IE, L. D., AND VAN RLBORG, A. M. 1980.

WAMBECQ, A. 1983. NETIX: A network-using op-
MICROS, a distributed operating system for MI-

erating system, based on UNIX software. In Pro-
CRONET, a reconfigurable network computer.

ceedings of the NFWO-ENRS Contact Group
IEEE Trans. Comput C-29 (Dec.), 1133-1144.

(Leuven, Belgium, Mar.). WUPIT, A. 1983. Comparison of UNIX network sys-

WEINSTEIN. M. J.. PAGE. T. W.. JR.. LIVESEY. B. K..
terns. ACM, New York, pp. 99-108.

, , , I I

AND POPEK, G. J. 1985. Transactions and syn- ZIMMERMANN, H. 1980. OS1 reference model-The
chronization in a distributed operating system. In IS0 model of architecture for open systems in-
Proceedings of the 20th Symposium on Operating terconnection. IEEE Trans. Commun. COM-28
Systems Principles (Orcas Island, Wash., Dec. (Apr.), 425-432.
l-4). ACM, New York, pp. 115-125.

WILKES, M. V., AND NEEDHAM, R. M. 1980. The
ZIMMERMANN, H., BANINO, J.-S., CARISTAN, A.,

Cambridge model distributed system. Oper. Syst.
GUILLEMONT, M., AND MORISSET, G.
1981.

Reu. 14 (Jan.), 21-29.
Basic concepts for the support of distrib-

uted systems: The chorus approach. In Proceed-
WITTIE, L., AND CURTIS, R. 1985. Time manage-

ment for debugging distributed systems. In Pro-
ceedings of the 5th International Conference on

ings of t& 2nd International Conference on Dis-
tributed Computing Systems. IEEE, New York,
pp. 60-66.

Received July 1985; final revision accepted April 1986.

Computing Surveys, Vol. 17, No. 4, December 1985

