
Incorporating Job Migration and Network RAM to Share Cluster Memory
Resources �

Li Xiao Xiaodong Zhang Stefan A. Kubricht
Department of Computer Science

College of William and Mary
Williamsburg, VA 23187-8795

flxiao, zhang, kubrichtg@cs.wm.edu

Abstract

Job migrations and network RAM are two major ap-
proaches for effectively using global memory resources in
a workstation cluster, aimed at reducing page faults in each
local workstation and improving the overall performance of
cluster computing. Using either remote executions or pre-
emptive migrations, a load sharing system is able to migrate
a job from a workstation without sufficient memory space to
a lightly loaded workstation with large idle memory space
for the migrated job. In a network RAM system, if a job
cannot find sufficient memory space for its working sets,
it will utilize idle memory space from other workstations
in the cluster through remote paging. Conducting trace-
driven simulations, we have compared the performance and
trade-offs of the two approaches and their impacts on job
execution time and cluster scalability. Our study indicates
that job-migration-based load sharing schemes are able to
balance executions of jobs in a cluster well, while network
RAM is able to satisfy data-intensive jobs which may not
be migratable by sharing all the idle memory resources in
a cluster. We also show that a network RAM cluster of
workstations is scalable only if the network is sufficiently
fast. Finally, we propose an improved load sharing scheme
by combining job migrations with network RAM for cluster
computing. This scheme uses remote execution to initially
allocate a job to the most lightly loaded workstation and, if
necessary, network RAM to provide a larger memory space
for the job than would be available otherwise. The improved
scheme has the merits of both job migrations and network
RAM. Our experiments show its effectiveness and scalabil-
ity for cluster computing.

�This work is supported in part by the National Science Foundation
under grants CCR-9400719, CCR-9812187, and EIA-9977030, by the Air
Force Office of Scientific Research under grant AFOSR-95-1-0215, and by
Sun Microsystems under grant EDUE-NAFO-980405.

1. Introduction

1.1. Background and objectives of the study

With the rapid development of CPU chips and the in-
creasing demand of data accesses in applications, the mem-
ory resources in a workstation cluster become more and
more expensive relative to CPU cycles. Effective usage
of global memory resources is an important consideration
in the design of load sharing policies for cluster comput-
ing. When a workstation does not have sufficient mem-
ory space for its assigned jobs, the system will experience
a large number of page faults, resulting in long delays for
each job. There are two major approaches to more effec-
tively use global memory resources in a workstation clus-
ter, aiming at minimizing page faults in each local worksta-
tion and improving overall performance of cluster comput-
ing: (1) job-migration-based load sharing schemes and (2)
network RAM. A job-migration-based load sharing system
attempts to migrate jobs from a workstation without suf-
ficient memory space to a lightly loaded workstation with
large idle memory space for the migrated jobs. When a job
migration is necessary, the migration can be either a remote
execution (where a job is initiated on a remote workstation),
or a preemptive migration which suspends the selected job
and moves it to a remote workstation where it is restarted.
In a network RAM system [5], if a job cannot find sufficient
memory space for its working sets, it will utilize idle mem-
ory space from other workstations in the cluster through re-
mote paging. Since remote paging is slower than accessing
local memory (about 100 to 200 times slower depending
on network traffics) but much faster than local disk access
(more than 500 times faster), the idle global memory space
or the network RAM can be considered as another layer be-
tween the local memory and the local disk in the memory
hierarchy of a workstation.

Besides sharing the same objective of reducing page
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faults in each local workstation, the two approaches have
another common technical feature in their implementations.
Both systems maintain a global load index record for each
workstation about how its CPU and/or memory resources
are being utilized. This record is either stored in a master
workstation or distributed among the workstations, and is
updated periodically by the cluster workstations.

There are several major differences between the two ap-
proaches in the ways that the global memory resources are
shared. Because of these differences, each approach has
its own merits and limits. First, in a network RAM cluster
system, a workstation is provided with a huge global mem-
ory space for its jobs. The global memory space could be
even larger than its local disk space. Thus, it is possible to
eliminate accesses to local disks due to page faults in a net-
work RAM cluster. In contrast, memory allocations of a job
could be limited by the local memory size of a workstation
in a migration-based load sharing cluster system where lo-
cal memory modules are not shared by other workstations.
Thus, a network RAM cluster system could be more ben-
eficial to large or non-migratable data-intensive jobs than
a migration-based load sharing cluster system. Second, the
effectiveness of global paging operations in a network RAM
cluster system is heavily dependent on the cluster network
speed. In contrast, the network, in general, is less frequently
used in a remote-execution-based load sharing cluster sys-
tem. In other words, a remote-execution-based load shar-
ing system relies less on the network speed than a network
RAM system. Finally, a migration-based load sharing sys-
tem is able to balance the workloads among workstations
by sharing both CPU and memory resources, while a net-
work RAM system only considers global memory resources
for load sharing. Without job migrations, job executions
may not be evenly distributed in a cluster — some work-
stations can be more heavily loaded than others. Although
the lightly loaded workstations in a network RAM cluster
system can be used as memory servers for heavily loaded
workstations, their CPU resources are not fully utilized by
the cluster.

Conducting trace-driven simulations, we have compared
the performance and trade-offs of the two approaches and
their impact on job execution time and cluster scalability.
In this study, we quantitatively address the following three
questions: (1) Under what cluster and workload conditions
is a migration-based load sharing policy or the network
RAM beneficial for performance improvement? (2) What
are the performance effects of limited network bandwidths
and cluster size to the two system approaches? (3) How do
we optimize designs of cluster resource management sys-
tems by effectively combining the two system approaches?

1.2. Related work

Regarding network RAM implementations, the Global
Memory System (GMS) [4] and the Remote Memory Pager
[8] attempt to reduce the page fault overhead by remote pag-
ing techniques. DoDo [1] is designed to improve system
throughput by harvesting idle memory space in a distributed
system. The owner processes have the highest priority for
their CPUs and memory allocations in their workstations,
which divides the global memory system into different lo-
cal regions.

Regarding job-migration-based load sharing systems,
most load sharing schemes proposed for distributed systems
(e.g., [3], [6], [7], [12]) mainly consider effectively shar-
ing CPU cycles. A memory ushering algorithm is used in
MOSIX for memory load sharing [2]. Recently, we have
developed several load sharing alternatives by considering
both CPU and memory resources [11]. The objective of
our design is to reduce the number of page faults caused by
unbalanced memory allocations of distributed jobs so that
overall performance can be significantly improved.

The rest of the paper is organized as follows. We de-
scribe the job-migration-based load sharing policies and
the network RAM implementations we have used in this
study in Section 2. We present the performance evalua-
tion methodology and simulation environments in Section
3. The performance comparisons and analyses are pre-
sented in Section 4. We propose an improved load sharing
policy supported by network RAM in Section 5. Some im-
plementation issues are discussed in Section 6. Finally, we
summarize the work in Section 7.

2. Job-migration-based load sharing vs. net-
work RAM

Network RAM and job-migration-based load sharing re-
lated operations on workstation j, for j = 1; :::; P , are char-
acterized by the following variables: (1) RAMj : the total
memory space provided for user-level programs in MBytes
of the workstation, (2) RPj : the amount of remote paging
in MBytes from the workstation, (3) FMj : the idle mem-
ory space in MBytes of the workstation, and (4) MTj : the
memory threshold (the memory space for the stable work-
ing set) in MBytes is the total amount of memory thresholds
accumulated from the running jobs on the workstation. If
RAMj > MTj , page faults would rarely occur, otherwise,
paging would be frequently conducted during executions of
jobs in the workstation.

2.1. Network RAM organizations

A network RAM organization allows each workstation
to use not only its own local memory, but also to access idle
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memory space of other workstations through remote paging
in a cluster. The memory allocation decision for a job on
workstation j is made by

memory allocation =

�
local memory if MTj < RAMj

global memory if MTj � RAMj ,

where the global memory allocation is implemented by
finding the most lightly loaded workstation one by one for
remote paging based on the following search algorithm:

Allocate the idle local memory space to the arrival job;
MDj =MTj ;
While (MDj � RAMj) and

(idle memory space is available elsewhere)
do

find workstation i with the largest idle memory space
among P � 1 workstations (excluding workstation j);

allocate RPi = minfMDj �RAMj ; FMig MBytes
from workstation i to the job in workstation j;
FMi = FMi �RPi;
MDj =MDj �RPi;

where MDj represents the current local memory demand
on workstation j. The while loop continues until the mem-
ory demand is met or no idle memory available in the sys-
tem. If MDj � RAMj after the global allocations, disk
accesses due to page faults will occur in workstation j. In
order to minimize the global paging, we give local mem-
ory accesses the highest priority. The global paging is only
conducted when the remote workstation has additional idle
memory space. Therefore, when a new local job arrives, the
network RAM paging services for remote jobs will be trans-
ferred to other workstations if any memory space occupied
by remote pages is needed for this new job.

2.2. CPU-Memory-based load sharing

The job-migration-based load policy we have selected
for this comparative study is the CPU-Memory-based load
sharing scheme [11], which makes a job migration decision
by considering both CPU and memory resources. The ba-
sic principle of this scheme is as follows. When a work-
station has sufficient memory space for both running and
requesting jobs (MTj < RAMj), the load sharing deci-
sion is made by a CPU-based policy where the load index
in each workstation is represented by the length of the CPU
waiting queue. As long as the CPU waiting queue is not
larger than the threshold which is set based on the CPU ca-
pability, the requesting jobs will be locally executed in the
workstation. Otherwise, the load sharing system finds the
remote workstation with the shortest waiting queue to either

remotely execute this job or to preemptively migrate an eli-
gible job from the local workstation to the remote worksta-
tion. When the workstation does not have sufficient mem-
ory space for the jobs (MTj � RAMj), the load sharing
scheme attempts to migrate jobs to suitable workstations or
even to hold the jobs in a waiting pool if necessary. Again,
the migration can be either remote execution or preemptive
migration.

During an execution of a memory-intensive job, page
faults may occur periodically. Each such period is called
a transition, where page faults are conducted to bring a
working set into memory. The data references will then
be memory hits for a while until the working set changes
and page faults are conducted, forming the next transition
period. The local reference period is called a phase. If the
phases of a job are disjoint or almost disjoint, the best time
to do a preemptive migration is at the end of a phase and
before another transition period is started (bring in the next
working set into memory). The migrated job would carry
no data or a small data set to a remote workstation. How-
ever, in practice it may be difficult to predict the data access
phase and transition patterns of so many different jobs. If
this prediction is impossible, remote executions should be
a practically optimal solution for load sharing of memory-
intensive jobs [11]. For this reason, remote executions are
used in our CPU-Memory-based load sharing policy.

3. Performance Evaluation Methodology

Our performance evaluation is simulation-based, con-
sisting of two major components: a simulated distributed
system and workloads. We discuss performance evaluation
metrics, the simulation model, and the workloads in this
section.

3.1. Performance metrics

We target evaluating and comparing the performance
merits and limits for a given workload scheduled by a job-
migration-based load sharing policy, supported by network
RAM, or without load sharing or network RAM, under var-
ious system and workload conditions. The following per-
formance metrics are used in our evaluation:

� average execution time per jobis defined as �t =P
n

i=1
ti

n
, where ti is the measured execution time of an

individual job, and n is the number of jobs in a given
workload.

� execution time breakdowns: The average execution
time is further broken into CPU service time, queuing
time, disk access time due to page faults, and network-
ing time for job migrations or remote pagings includ-
ing network contention time.
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3.2. A simulated workstation cluster

We have developed a simulator for a bus-based work-
station cluster which has the following functional abilities:
(1) to support different job-migration-based load sharing
policies, including the CPU-Memory-based policy, (2) to
simulate the remote paging system described in Section 2.1
providing network RAM for the cluster, (3) to simulate bus
contention, and (4) to simulate system heterogeneity. The
simulated cluster is scalable and is configured with 6 to 18
workstations containing 300 MHz CPUs each with local
memory of 128 MBytes. The cluster network is an Eth-
ernet bus of 10 Mbps and 100 Mbps. Each disk access time
due to a page fault is 10 ms. The size of a memory page is
4 KBytes. The CPU local scheduling uses the round-robin
policy.

When a page fault happens during job execution, the job
is suspended from the CPU during the paging service. The
CPU service is switched to a different job. When page faults
happen in the executions of several jobs, they will be served
in FIFO order. The overhead of a remote execution is set
to 0.1 second for 10Mbps Ethernet and 0.05 for 100Mbps
Ethernet based on the numbers of real systems provided by
[6].

The bus service and contention are simulated based on
typical bus transactions as follows. Each workstation is
given a sequence number which also represents its prior-
ity rank to access the bus. The priority increases as the
sequence number decreases. As multiple requests for bus
services arrive in sequence, the requests will be served in
FIFO order. If the requests arrive simultaneously, they will
be served in an order based on their workstations’ bus ac-
cess priorities.

3.3. Workloads

The workloads we have used are the 8 traces from [6].
The jobs in each trace were distributed among 6 homoge-
neous workstations. Each job has the following three major
parameters: arrival time, arrival workstation, and duration
time. We generate the memory demand of each job from a
Pareto distribution with the mean size of 1 MBytes 1. We
assume that the memory threshold of a job is 40% of its
requested memory space. Each job has the following 4 at-
tributes: arrival time, arrival workstation, requested mem-
ory size, and duration time. The number of jobs is doubled
and tripled in each trace as the number of workstations is
scaled from 6 to 12, and scaled from 12 to 18, respectively.

1We have run the simulations for memory demands from Pareto distri-
butions with the mean sizes of 1, 2, 4, and 8 MBytes, and have obtained
consistent performance results. Results with a larger mean size are more
supportive of our solutions. We only present the results on the mean mem-
ory demand of 1 MBytes in this paper.

For the job-migration-based load sharing system, the
page faults in each workstation are conducted in our sim-
ulation as follows. When the memory threshold of jobs in
a workstation is equal to or larger than the available mem-
ory space (MTj � RAMj), each job in the workstation
will cause page faults at a page fault rate which is propor-
tional to the memory usage of this workstation. In practice,
application jobs have page fault rates from 1 to 10 per mil-
lion instructions. We set the rate in the same range in our
experiments.

For the network RAM system, when MTj � RAMj in
a workstation, The remote paging is conducted as described
in Section 2.1. The remote paging rate of a job is propor-
tional to the size of the global memory space allocated to
this job. If the aggregate global memory space in the cluster
is not sufficient for the job, the job in the workstation will
cause page faults to access the local disk at a page fault rate.

4. Simulation Results and Analysis

Our performance evaluation targets understanding the
effects of network bandwidth changes to both the job-
migration-based load sharing scheme and the network RAM
supported by remote paging. We have also quantitatively
evaluated two performance trade-offs for comparing the two
schemes: (1) the trade-off between reducing local disk ac-
cesses due to page faults and increasing network contention
and delay due to remote paging; (2) the trade-off between
reducing local disk accesses by network RAM and balanc-
ing job execution among workstations by job migrations.

4.1. Impact of limited network bandwidths

Both job migrations and remote paging rely on the clus-
ter network for data transfers. However, the performance of
each scheme is affected differently by changes of the net-
work speed. Contention and scalability are two major fac-
tors impacting the performance of the two schemes.

Figure 1 presents the average execution times per job
(the left figure) and the network contention portions in the
execution times (right figure) of “trace 0” running on clus-
ters of 6, 12 and 18 workstations, where the jobs are ex-
ecuted without load sharing (denoted as “Base”), sched-
uled by CPU-Memory-based load sharing policy with re-
mote executions (denoted as “LS RE”), and executed on a
network RAM system (denoted as “Net RAM”). The bus
speed varies from 10 Mbps to 100 Mbps. The mean mem-
ory demand of the jobs is 1 MBytes.

The page fault rate was set to 5.96 per million instruc-
tions for all the experiments on “trace 0”. Since the number
of jobs proportionally increases as the number of worksta-
tions increases in the cluster, the average execution times
per job of “trace 0” by “Base” are identical on clusters of 6,
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12, and 18 workstations. Using the same page fault rate,
we conducted the experiments to compare the execution
time performance between “LS RE” and “Net RAM” for
the same workload of “trace 0”.

We have the following observations based on the ex-
perimental results in Figure 1. First, the performance of
“LS RE” is not significantly affected as the cluster is scaled
from 6 to 12, and from 12 to 18 workstations. The per-
formance improves only slightly as the bus speed increases
from 10 Mbps to 100 Mbps. This is because the data
communication via the network by remote executions is a
small portion in the total execution time (0% to 0.005%,
see the right figure in Figure 1). Second, the performance
of “Net RAM”, supported by remote paging, is highly sen-
sitive to the network speed and the number of workstations
in the cluster. For example, the average execution time of
“Net RAM” is 46% lower than that of “LS RE” on the clus-
ter of 6 workstations where the bus speed is 10 Mbps. As
the bus speed increases to 100 Mbps, the average execu-
tion time of “Net RAM” is further reduced 45%. However,
as the cluster of 10 Mbps increases to 12 workstations, the
average execution time of “Net RAM” sharply increases (to
about 3.6 times higher than that of “LS RE”). As the cluster
speed increases to 100 Mbps, the execution time is signif-
icantly reduced, and is 69% lower than that of “LS RE”.
Similar performance data are collected as the number of
workstations increases to 18. Our experiments show that
the cluster scalability and workload performance when us-
ing network RAM are highly dependent on the speed of the
cluster because the network latency due to data transfer and
contention is a significant portion in the total execution time
(0.05% to 46.03%, see the right figure in Figure 1). Finally,
in the workload of “trace 0”, some jobs are marked as non-
migratable. Therefore, the power and benefits of job migra-
tions may be limited.

In order to fully take advantage of job migrations, we
released the restrictions on the non-migratable jobs so that
remote executions can be applied to all the jobs in “trace
0”. Figure 2 presents the average execution time per job
(left figure) and the networking portions in the execution
times (right figure) of the modified “trace 0” scheduled by
“LS RE” in comparisons with “Base” and “NET RAM” on
the clusters of 6, 12 and 18 workstations. We show that
the performance of “LS RE” is significantly improved. The
execution times of “LS RE” using a 10 Mbps cluster are
slightly lower than the execution times of “Net RAM” us-
ing 100 Mbps clusters of 6, 12, and 18 workstations. In
this case, the remote-execution-based load sharing policy
not only outperforms the network RAM, but is also more
cost-effective.

From the scalability point of view, “LS RE” demands
less network bandwidth in order to scale the cluster by con-
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Figure 1. The average execution times per job (the
left figure) and the networking portions in the execu-
tion times (right figure) of “trace 0” with job migra-
tion restrictions running on clusters of 6, 12 and 18
workstations.

necting more workstations than “Net RAM” does. For ex-
ample, “LS RE” is scalable from 6 to 18 workstations for
both 10 and 100 Mbps buses, while “Net RAM” is only
scalable for the 100 Mbps bus.

All Jobs are Migratable in Trace0

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

10Mbps   100Mbps 10Mbps   100Mbps 10Mbps   100Mbps A
v
e
ra

g
e
 E

x
e
c
u

ti
o

n
 T

im
e
 P

e
r 

J
o

b
 (

S
e
c
o

n
d

s
)

Base
LS_RE
Net_RAM

6 workstations 12 workstations 18 workstations

50.6

All Jobs are Migratable in Trace0

10.11

21.35

0.91

46.03

1.80
0.0380.1040.0190.0490.004 0.002 0.05

0

5

10

15

20

25

30

35

40

45

50

10Mbps   100Mbps 10Mbps   100Mbps 10Mbps   100Mbps 

N
e

tw
o

rk
in

g
 P

o
rt

io
n

 i
n

 E
x

e
c

u
ti

o
n

 T
im

e
 (

%
)

LS_RE
Net_RAM

6 workstations 12 workstations 18 workstations

Figure 2. The average execution times per job (the left
figure) and the networking portions in the execution
times (right figure) of “trace 0” without job migration
restrictions running on clusters of 6, 12 and 18 work-
stations.

4.2. Trade-offs between page fault reductions and
load sharing

Page faults in the network RAM are reduced at the cost
of additional network contention and delay. Although page
fault reductions may be limited by the remote-execution-
based load sharing scheme for large data-intensive jobs, the
scheme requires less additional network support compared
with the network RAM. In order to provide insights into the
trade-offs between the two schemes, we present the execu-
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tion time breakdowns of “trace 0” where all jobs are migrat-
able in Figures 3 and 4. The execution time of a workload
consists of “CPU”, “networking”, “page faults”, and “queu-
ing” portions. “CPU” is the execution time by the CPU for
the workload. “Networking” is the time spent on the cluster
network, which is used for remote pagings by the network
RAM, or for remote executions by the load sharing scheme
(including network contention time). “Page faults” is the
local disk delay time for both schemes. “Queuing” is the
average waiting time for a job to be executed on a worksta-
tion. When the workload is executed on a 10 Mbps cluster
of 6 and 12 workstations, the networking time for remote
pagings by the network RAM is one of the major portions
in the execution time. For example, the networking times
contribute 15.5% and 23.08% to the execution times on the
6 workstation cluster and the 12 workstation cluster (see the
left figures in Figures 3 and 4), respectively. In contrast, the
networking time for remote executions by the load sharing
scheme is insignificant (0.06% and 0.11%). Consequently,
the queuing time for each job in the network RAM is signifi-
cantly increased by networking delay, causing much longer
execution times than for the remote-execution-based load
sharing scheme.

We have also shown that the networking time portions
in the executions of the workload by the network RAM are
significantly reduced by increasing the bus speed from 10
Mbps to 100 Mbps. Consequently, the queuing time for
each job is also significantly reduced (see the right figures
in Figures 3 and 4).

10Mbps Cluster of 6 Workstations

1.3307

0.2061

0.4116

0.1315

0.1315

0.1315
0.0154

0.0119

0.0228

0.1025

0.0002

0.0000

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

BASE LS_RE Net_RAM

E
x

e
c

u
ti

o
n

 T
im

e
 B

re
a

k
d

o
w

n
s

 P
e

r 
J

o
b

 (
S

)

networking
page faults
CPU
queuing

100Mbps Cluster of 6 Workstations

0.21750.2060

1.3307

0.13150.1315

0.1315

0.01180.0119

0.0228
0.0000

0.0001 0.0017

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

BASE LS_RE Net_RAM

E
x

e
c

u
ti

o
n

 T
im

e
 B

re
a

k
d

o
w

n
s

 P
e

r 
J

o
b

 (
S

)

networking
page faults
CPU
queuing

Figure 3. The average execution times per job of
“trace 0” without job migration restrictions running
on a 10 Mbps cluster (the left figure) and a 100 Mbps
cluster (the right figure) of 6 workstations.

Another trade-off of the two schemes is between page
fault reductions and load sharing. Without job migrations,
job executions may not be evenly distributed among the
workstations by the network RAM although page faults can

10Mbps Cluster of 12 Workstations

3.2227

0.2058

1.3307

0.1315

0.1315

0.1315

0.0228

0.0345

0.0118

0.0000

1.0167

0.0004

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

BASE LS_RE Net_RAM

E
x

e
c

u
ti

n
 T

im
e

 B
re

a
k

d
o

w
n

s
 P

e
r 

J
o

b
 (

S
)

networking
page faults
CPU
queuing

100Mbps Cluster of 12 Workstations

0.22270.2058

1.3307

0.13150.1315

0.1315

0.01200.0118

0.0228
0.0000

0.00480.0002

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

BASE LS_RE Net_RAM

E
x

e
c

u
ti

n
 T

im
e

 B
re

a
k

d
o

w
n

s
 P

e
r 

J
o

b
 (

S
)

networking
page faults
CPU
queuing

Figure 4. The average execution times per job of
“trace 0” without job migration restrictions running
on a 10 Mbps cluster (the left figure) and a 100 Mbps
cluster (the right figure) of 12 workstations.

be significantly reduced through remote pagings. The un-
balanced loads among workstations when using network
RAM is another reason for the long queuing times for the
workload executed on the 10 Mbps clusters of 6 and 12
workstations.

5. An improved load sharing scheme

Our experiments show advantages and limits of the net-
work RAM and the remote-execution-based load sharing
scheme. A natural optimization step for overcoming the
limits of each scheme is to combine them. Here is the
basic idea of this improved load sharing scheme. When
a workstation has sufficient space for both current and re-
questing jobs, the job execution location will be determined
by the CPU-based policy. When a workstation runs out of
memory space for both current and requesting jobs, we first
attempt to migrate the new arrival job to the most lightly
loaded workstation. If the workstation does not have suffi-
cient memory space for the job, the network RAM will be
used to satisfy the memory allocation of the job through re-
mote paging. The memory allocation combing both remote
executions and network RAM of the scheme is outlined as
follows:

If (MTj � RAMj)
find workstation i with the largest idle memory space

among P workstations;
If i 6= j

remotely execute the job at workstation i;
If (MTi � RAMi) and (Qnet < NT )

allocate global memory by using network RAM;
else

schedule the job by the CPU-based load sharing policy;
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All the notations in the above operations except Qnet and
NT have been defined in the beginning of Section 2. Vari-
able Qnet is the number of jobs waiting to access the net-
work, and NT is the network threshold which functions to
allow only a limited number of network accesses at a time.
The purpose of setting NT is to prevent a large number of
bus requests during a small time interval. Such bursty bus
requests will cause network contention to sharply increase.

The improved load sharing scheme is denoted as
“LS Net RAM”. Each workload trace is further divided
into two types: (1) some jobs are restricted for migrations
in a trace and (2) all the jobs in a trace are migratable. Fig-
ures 5 and 6 present the average execution times of all the
8 traces of both type 1 (left figure) and type 2 (right fig-
ure) executed on the 10 Mbps and 100 Mbps clusters of 6
workstations, respectively.

Our experiments show that “LS Net RAM” performs
well for all the 8 traces of both types, while “LS RE” or
“Net RAM” only performs well on one type of traces. We
obtained consistent results on clusters of 12 and 18 work-
stations.
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Figure 5. The average execution times per job of all
the 8 traces (the left figure for the 8 traces where some
jobs are non-migratable, and the right figure for the 8
traces where all the jobs are migratable), running on
a 10 Mbps cluster of 6 workstations.

6. Implementation Issues

We are currently in the initial stages of developing this
load sharing scheme, combining network RAM with mi-
gration techniques, on a cluster of Linux workstations. Our
high-level simulation study indicates that this is a worth-
while endeavor, however, the simulation is unable to con-
sider all of the possible performance penalties without ad-
ditional data. The remote paging is a source of overhead
on any workstation providing network RAM. CPU cycles
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Figure 6. The average execution times per job of all
the 8 traces (the left figure for the 8 traces where some
jobs are non-migratable, and the right figure for the 8
traces where all the jobs are migratable), running on
a 100 Mbps cluster of 6 workstations.

are used in receiving and unpacking the message request
(and perhaps the page to be replaced), locating the requested
page, and then transmitting the page using the communica-
tion protocol. This overhead is unavoidable and difficult to
model in detail without experimental results. In building
an actual implementation, there are additional factors and
questions related to the unknowns that must be addressed:

(1) Are there significant penalties for processes execut-
ing on a workstation functioning as a server for remote pag-
ing when a remote page on the workstation is requested?

(2) Should processes on such a workstation be inter-
rupted to serve remote paging requests?

(3) Should a workstation with active CPU-bound jobs
even be allowed to function as a network RAM provider,
even if it has idle memory?

(4) What are the implications of the load sharing goal?
Is the scheme better suited for high-throughput computing
rather than high-performance computing?

Results from previous studies [1][4] imply that there can
be a performance impact resulting from the number of CPU
cycles required to serve remote pages. It is unclear how sig-
nificant this impact could be on a cluster using the migra-
tion policy. For high-performance computing, the goal is
to minimize the execution time of an individual job. When
a job must compete for cycles with a remote paging mech-
anism, the job will not execute as fast as possible. This
is contrary to the goals of a high-performance computing
policy. To meet the requirements of this type of policy, it
may be necessary to use only machines with both an idle
CPU as well as idle memory as network RAM providers,
or perhaps to inhibit process interruption due to requests
to service remote pages. For a load sharing goal empha-
sizing high performance computing, a prerequisite may be
mandatory to limit the availability of memory on a node
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for network RAM if there are jobs already running on the
workstation.

A high-throughput computing policy attempts to effi-
ciently utilize all of the resources in a cluster to generate
faster overall execution. It is acceptable for jobs running on
a workstation serving remote pages to execute more slowly,
if other jobs benefit by achieving faster execution times
through the use of network RAM, as long as throughput is
maximized.

Further work must be done to fully understand how the
overhead inherent in providing network RAM affects run-
ning jobs on a workstation administering the service. With
this knowledge, we will be able to adapt the load sharing
policy to meet the efficiency requirements of the various
load sharing goals.

7. Conclusion

We have experimentally examined and compared job mi-
grations and network RAM for sharing global cluster mem-
ory resources. Based on our experiments and analysis we
have the following observations and conclusions:

� Providing a large memory space through remote pag-
ing, network RAM is particularly beneficial for large
or data-intensive workloads where some jobs may not
be migratable. However, the network RAM perfor-
mance is heavily dependent on the cluster speed and
the availability of the idle memory space in the clus-
ter. Since load balancing is not considered, uneven job
distributions may degrade the overall performance of
cluster computing using network RAM.

� Dynamically migrating jobs by considering both the
CPU and memory resources of the cluster, the load
sharing policy using remote executions is particularly
beneficial to data-intensive workloads where most jobs
are migratable, and where each job fits in a memory
space of a single workstation. The requirement of net-
work speed by the remote-execution-based load shar-
ing scheme is not as high as the network RAM. How-
ever, if the memory allocation of a job does not fit
in any single workstation in the cluster, the additional
memory requirement has to be satisfied by local disks,
causing longer execution time.

� The improved load sharing scheme overcomes the lim-
its and combines the advantages of the both schemes.
We have shown that this scheme is effective for scal-
able cluster computing.

Memory allocations of jobs are generated by a Pareto
distribution in the experiments presented in this paper. We

have also run the simulations on the workloads with differ-
ent memory demand distributions, and observed consistent
performance results with that of the workloads by the Pareto
memory demand distributions. The other distributions we
have used for comparisons are uniform distribution, expo-
nential distribution, and erlang distribution.

Acknowledgements: We wish to thank Yanxia Qu for par-
ticipating the work of the load sharing project.
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