
REPLICATION AND FAULT-TOLERANCE IN THE ISIS SYSTEM t

Kenneth P. Birman

Department o f Computer Science
Cornell University, Ithaca, New York

A B S T R A C T

The ISIS system transforms abstract type specifications into
fault-tolerant distributed implementations while insulating users from
the mechanisms used tO achieve fault-toleram:e. This paper discusses
tedmiques for obtaining a fault-tolerant implementation from a now
distributed specification and for achieving improved performanc~ by
concurrently updating replicated data. The system itself is based on a
small set of communication primitives, which are interesting because
they achieve high levels of concurrency while respecting higher level
ordering requirements. The performance of distributed fault-tolerant
services runnin 8 on this initial version of ISIS is found to be nearly as
good as that of non-distributed, fault-intolerant ones.

1. Introduction

Our basic premise is that the complexity of fault-tolerant distri-
buted programs precludes their design and development by non-
experts. This complexity seems to be inherent: systcras achieve
fault-tolerance through redundancy, and thc distributed agreemant
and synchronization protocols needed to manage rredundant data are
hard to implement. Moreover, high levds of concurrency are
required to achieve satisfactory performance, making i t difficult to
reason about correctness in the presense of failures. Alternatives to
direct implementation of fault-tolerant systeam are needed if fault-
tolerance is to gain wide applicability.

The ISIS project seeks to address this need by automating the
transformation of fault-/nto/erant program specifications into fault-
tolerant implementations. This is done by replicating code and data
while ensuring that the resuifi.n 8 distributed program gives behavior
indistinguishable from a single-site instantiation of the original specifi-
cation. Although there are many systems to assist in the construction
of distributed and fault-tolerant software (c.f. ARGUS [Liskov-b],
H) ~ ' q ~] , ~OtYOS [Anchin], LC~YS [Popek], r A m
[Spector], TANDEM [Bartlett]), ISIS goes furthest in insulating users
from the details of fault-tolerant programming. Moreover, ISIS
places few restrictions on programs. In contrast, other systems that
execute programs fault-tolerantly (CIRCUS [Cooper], AURAGEN
[Borg]) are restricted to deterministic programs. Such restrictions
make it hard to design a fault-tolerant service that can be accessed
concurrently from multiple sites -- the primary use anfidpated for
ISIS.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1985 A C M - 0 - 8 9 7 9 1 - 1 7 4 - 1 - 12 /85-0079 $ 0 0 . 7 5

ISIS is also interesting because of the methodology used to build
the system itself. In particular, a communication layer supporting a
variety of broadcast 2 protocols has been implemented. These sim-
plify the description of concurrent algorithms, and make it feasible to
reason about the correctness of the system as a whole.

The structure of this paper is as follows. The next section
introduces resilient objects as a basic unit of fault-tolerance. Subse-
quent sections review the object specification language and show how
fault-tolerant implementations can be expressed in terms of the com-
munication primitives. The paper concludes by discussing the perfor-
mance of a prototype and the current goals of the project.

2. Resilient objects

ISIS extends a conventional operating system by introducing a
new programming abstraction, the resilient object. Each resilient
object provides some service at a set of sites, where it is represented
by components to which requests can be issued using remote pro-
cedure calls [Birrel]. A typical ISIS application would be constructed
by developing conventional front-end programs and interfadng them
to one or more such objects; in eff,ct, ,..he objects "glue" the resulting
distributed program together. The programmer can also define new,
specialized resilient objects ff suitable ones do not already exist.

The translation of a non-distributed specification into a resilient
object is based on several assumptions about the execution environ-
ment and what resiliency should mean. These are addressed in the
remainder of this section.

2.1. Assumptions about the e n v i r o n ~ t

ISIS runs on clusters of computer systems communicating over a
local area network, which must not be subject to part/t/on/n&,
whereby the network divides into subgroups of sites between which
communication is impossible. Issues relating to duster interconneo
lion are deferred to a future paper.

We assume that the only way sites fail is by hailing (crashing)
[Schlictlng]. Failure detection and a collection of fault-tolerant broad..
east protocols are implemented in software on top of the bare net-
work, as described in subsequent sections. Finally, ob~ct specifica-
tions are assumed to be correct. Although ISIS will not crash when
given a buggy specification, the behavior of the resulting object is
unpredictable. For debugging, a user creates a single-site instance of
an object and runs it off-line.

~This work was supported by the Defense Advanced Research Projects Agency
(DoD) under ARPA order 5378, Contract MDA903-85-C-0124, and by the National
Science Foundation under grant DCR-8412582. The views, cVinions and findings
contained in this report are those of the authors and should not be construed as an
official Department of Defense pos;ri,'--.~, policy, or decision.

aHere, the term "broadcast" refers to a software protocol for sending inforrna-
tion from a single source to a ~r~ ~ destination processes. Sttch broadcasts night
take advantage of an etheemet oaacast capability, but can be implemented using
other interconnection devices as well.

79

2.2. Properties of resBlent obJecta
Throughout this paper, the term resiliency is used to denote k-

resiliency, meaning that the following properties are satisfied:

1. Consistency. The object behaves like a non-distributed one which
executes requests sequentially and to completion, with no inter-
leaving of executions.

2. Availability. Let f denote the number of components of an object
that fail simultaneously. If f ~ k then operational coraponents
continue to accept and process requests.

& Progress. If f ~ k then operations are executed without blocking,
despite failures.

4. Recovery. Because ISIS supports replication, two cases should be
distinguished:

a. Partial. If f ~ k a failed component restarts automatically
when its site recovers.

b. Total If f > k failed components restart automatically when all
the failed sites recover.

2.3. Legkal execution morld

Although concurrent access to objects will be common, it is
hard to reason about the correctness of interleaved executiom. This
comideration underlies the consistency requirement given above --
intuitively, that a resilient object should always look idle to its users,
and that the effect of a correct concurrent execution should be the
same as for some correct but non-concurrent one.

Our approach is to treat the execution of each procedure as a
transoct/on: a sequence of actions that occurs to com01etion or not at
all. Objects can issue calls to one another, hence t h ~ transactions
ask nested in the sense of [Moss]. One way to understand the modal
is to vis,mli~e each procedure as executing within a scope dafined by
its caller. Activities outside this scope are permitted to see only the
object state before or after the procedure completes, never while it is
taking place. As a convenience to the programmer, any procedure can
terminate by executing an abort statement, which causes all its effects
to be erased.

Formally, a transaction is a sequence of one or more operations:
local computations or remote procedure calls, which execute as sub-
tramact/ons. A transaction terminates by execnting a commit or
3bort. Commit is implidt when a procedure returns normally, and
makes the effects of a top-level transaction visible to otlmr trausao-
tions, and those of a subtransaction visible to its riblings. Abort must
be explicit, and restores the state that existed prior to execution of
the transaction or subtransaction. Committed transactions must be
serializable: a total order on them should exist stmh that the state of
the system is equivalent to the one that would result if these t r a n s i -
tions were executed sequentially in that order [Papadimitrios] [Gray].
Thus, although interleaved executiom are permitted, they must pro-
duce the same effect as some non-interleaved execution would have
produced.

A purely transactional model would result in inefficiencies. For
example, if a ride-effect of inserting an item into a data structure is
to initiate garbage collection, and an insertion is subsequently
aborted, " the garbage is reinstalled. In ISIS, the programmer can
avoid this problem by explidfly specifying that an operation should
execute as a top-level transactlon, as if it had been invoked by an
extermd caller (this feature was proposed in [Liskov-b]).

3. ObJea spedaeaeou ~ =nd system Intertme

The resilient types are abstract types [Liskov-a] satisfying the
properties listed above. Each resilient object instantiates a resilient
type, and is accessible to holders of a capab///ty on it; these are open
in that they can be freely copied or stored. Resilient type specifica-
tions have the following parts:

1. Declarations for the resilient data encapsulated by the type, con-
risfing of one or more indefinite-length arrays or heaps 3 of resi-
lient records.

2. Procedures for manipulating the resilient data. These can be
given attributes such as create (a new instance of the object is allo-
cated for each invocation), entry (aocesrible to external callers),
and read-only (does no updates).

3. Type definitions for the arguments and results of operations.

Resilient procedures are coded using a version of the C pro-
gramming language. All of C is available, as are many operating
system calls. The language has been augmented to include a multi-
tasking facility for internal concurrency, and to provide several new
statement types:

1. I10 statements. Resilient data is aceessed using read and write
statements.

2. Locking statements. These are used for concurrency control, as
discussed in Sec. 4.1.

3. Remote procedure calls. A flexible RPC mechanism is provided,
includin8 nested, recursive, and asynchronous RPC's, as well as
RPC's in which the function to call is a parameter. RPC is also
used to invoke most ISIS system functions. Each ca]] executes as
a transaction.

4. Abort return. A normal return from a resilient procedure is inter-
preted as a corarait of the subtransaction that was being executed.
In an abort return, the effects of the procedure (and any that it has
invoked) are erased.

5. Cobegin. A set of branches (statements) are specified f ~ con-
current execution. The cobegin terminates when all of its
branches terminate. Return is not permitted in a cobegin branch.
Cobegin branches execute as tasks within a single address space.
Currently, these all run at a single rite, although a more flexible
cobegin , which might provide some form of explidt control over
replicated processing, is under consideration for tha future. The
statement is normally used to keep a computation active while
some branch is blocked (e.g. when acquiring a lock).

6. Toplevel. The statement is executed as a topdevel transaction.

Non-resilient clients interact with resilient objects through an
interface that resembles the one used by objects to communicate with
one another, by issuing RPC calls to objects on which they hold or
can obtain a capability (the "name space" has a well-known capabil-
ity). Each call executes as a top-level transaction. A client can also
issue a series of requests as a transaction, first calling BEGIN, and
later COMMIT or ABORT when the outcome is determined.

The abort mechanism described above is interrml -- it is expli-
• dfly executed by a procedure that has detected some exception condi-
tion. Also needed is a way to terminate a transaction from the out-
ride, e.g. if a deadlock occurs or an operator interrupts a computation
for some other reason. ISIS supports a software kill signM, which can
be issued by a client process and cannot be caught or ignored. Asso-
dated with each transaction is a unique transaction-id (TID). The Idli
'primitive takes a ' l iD as its argument and terminates the correspond-
ing transaction by halting it and its subtransactions, and then fordng
them to abort. Additionally, if a non-resilient client fails while ex~
curing a transaction, a kill is automatically performed on its behalf.

Any system that can be forced to abort must avoid irreverrihle
aedom, like inaccurate movement of a mechanical arm. In ISIS, this
is not a problem because the system only invokes ki//if a deadlock is
detected -- thus, a deadlock-free application will never be killed (for
example, one that acquires locks in some predetermined order). Our
approach is more flexible than that of systems which, abort
transactions that executed at a rite which subsequently failed. Thus,
whereas an ISIS application could be designed to move a mechanical
arm while monitoring and reacting to sensor feedback, in many otber
systems, this would not be possible: since the arm motion cannot be
exactly reversed, to avoid aborts they must defer it until the top-levea
commit.

3Sequentially allocated data structures tend to have "hot spots" which are fre-
quemly accessed, reducing potential concurrency [Garwick]. The heap management
facility is used to dynamically allcr.ate and deallocate resilient rec.~ds from within
transactions, avoiding a common source of hot-spots.

80

The ISIS system is itself controlled by a commend language. At
start-up, each site reads an initialization f'de containing configuration
information. Subsequently, reconfiguration end other commands can
be issued interactively.

4. Runtime Issum
4.1. Fault-tolerant execution of a reqm~t

A task refers to the physical execution of a request by one of
the components of a resilient object, designated the coordinator.
Components are identical: eny can be coordinator for eny request,
which tends to distribute processing load. The components that are
passive for a request are designated as cohorts and serve as backups --
one takes over if the coordinator fails. A task must satisfy the pro-
perfies enumerated in Sec. 2.2 to produce a correct logical execution.
We now consider these properties individually.

4.1.1. Consistency

Consistency is a question of event orderings: an acy~c ordering
must be established between conflicting events end enforced during
execution. To ensure that this is the case, each object implements a
concurrency control algorithm [Bernstein]. It is difficult to automati-
cally infer a good concurrency control method from an object specifi-
cation. Therefore, ISIS requires that the progzammer provide a
single-site concurrency control algorithm, which it transforms into a
distributed one. ISIS provides flexible support for constructing lock-
based algorithms, of which 2-phase locking is the best known end
easiest to code. Two lock classes are supported; within each class,
read, promotable read, "previous committed version" read, end write
locks can be requested. The classes are:

1. Nested 2-phase locks. When a subtrensaction commits, the lock is
retained by its parent transaction [Moss]; when the top-level com-
mits, it is released.

2. Local 2-phase locks. When the transaction or subtransaction hold-
ing the lock commits, it is released.

Once an ordering between events is established, it is important
to respect it without employing excessive synchronization. As will be
seen shortly, the ISIS communication primitives can provide high lev-
els of concurrency while respecting exactly the message delivery ord-
erings needed to execute a distributed computation correctly.

4.1.2. Availability

Availability is satisfied by replicating the code end data for each
resilient object. Since data accesses are transactional, each item is
represented as a stack of versions [Moss], replicated at k+ 1 or more
sites. A read-eny copy, write-all (operational) copies rule is used
when locldng or accessing replicated data. An item is updated by
pnshin 8 a new version on all copies of the corresponding stack, or
replacing the top-most version if one already exists for the transaction
doing the update. Abort is implemented by popping the top version,
and commit by pepping the top two and then pushing the first again.

4.1.3. Progresa

ISIS ensures that operations progsess to completion using a
checkpoint-restart scheme [Birrmm-a]. Each RPC is broad_~_3t to the
operational components of an object, end constitutes a chectpoint. If
the coordinator fails while executing the request, one of its cohorts
takes over as the coordinator. It restores its copy of the object to the
state at the time of the checkpoint, discarding versions of data items
that were written by the transaction being restarted (this requires no
communication with other components or objects). The actions of
the failed coordinator are then repeated in restart mode. When the
coordinator issues a call in restart mode that does not repeat some
F:ior call issued by the failed coordinator, the called ohject detects
this (see below) end rejects the request. Normal execution then
resumes and the call is reissued.

When the new coordinator reissues en operation during restart,
it should not be re-executed -- otherwise, the system state could
become inconsistent (i.e. if an increment is performed twice). To
avoid this, the results returned by operations are replicated in addi-

tion to the updates they perform on replicated data. When a coordi-
nator finishes executing a request it broadcasts the result to its
cohorts as well as to the caller. The cohorts retain copies of each
result under the ' l i d of the transaction. Since the same TID is used
during restart, they can fred and return a copy of the retained result,
or, if none is found, reject the request, which will then be reissued in
normal mode. Retained results are discarded when the parent of a
subtransaction commits or aborts, retaining its own result, or when
the top-level commits (results of actions in a top-level statement must
be retained). Note that if a resilient object takes external actions,
like moving a robot arm, the device must provide a function
equivalent to retained results -- for example, a way to determine the
command it last executed.

While restarting, it is not enough for the new coordinator to
determine the results returned by operations that were previously
executed. The serialization order must also be the same as was used
before the failure -- otherwise, the values read from local data items
by the new coordinator might differ from those read by the previous
one, again leading to inconsistencies. ISIS addresses this issue by
replicating both read end write locks, so that after a failure the new
coordinator holds all the locks acquired by the previous coordinator'
before it failed. The approach is to piggyback read lockin 8 informa-:
tion on other messages that could depend on their existence -- RPC
requests end updates issued subsequent to the acquisition of the lock.
Then, if any "evidence" to the existence of the lock survives a crash,
in the form of an RPC or update that was not wiped ore, the locking
information needed to ensure consistent restarf actions survives as
well. After the crash, this information is forwarded to the new
coordinator, which registers it before granting eny pending write-lock
requests. If all the evidence pertaining to a read-lock is lost, actions
inconsistent with that lock might occur during restart -- but this is
acceptable, since data stored at the failed site are discarded during
recovery, and the actions taken by the operational part of the system
will thus be self-consistent (but see also the discussion of flush in Sec.
4.3.4).

4.1.4. Recovery

If a partial failure occurs, a failed component can recover by
discarding its old state and copying the current state from some
operational component. In effect, the components of an object act at
dynamic backups, eliminatin 8 the need for stable (disk) storage. We
will show that the communication primitives ensure that recovery is
serialized with respect to other operatiom.

One way to implement total recovery is to save checlqmints and
committed versions of the object data on stable storage. When the
components that failed last have recovered [Skeen], they resume
operation from their stable stores; other components use the partial
recovery method. However, this approach is costly. A preferable
alternative is to restart from total failure in the initial state and then
to reload the objects from application-level backups end logs. ISIS
provides a log facility that can save RPC requests for subsequent
replay. If a transaction aborts, its log entries are deleted. This per-
mrs each application to implement a low-cost recovery method of its
OWn.

4.2. The communication subsystem

We now turn to implementation issues, end particularly the way
in which the above techniques can be expressed using a small set of
communication primitives [Birman-b]. For brevity, protocols and
correctness proofs are not included here.

ISIS employs a communication subsystem providing three types
of broadcast protocol for transmitting a message reliably from a
sender prtxess to some set of destinations. The protocols are atomic
in an "all or nothing" sense: if any destination receives a message;
then unless it fails, all destinations will receive 4 it.

'Reception can be indirect. If process t receives a message ra from process s,
and s subsequently fails, than the state of t may depend cm messages received by s
before it, sent ra. Therefore, unless t fails as well. those messages must be delivered
to their remaining destinations.

81

The BCAST primitive

It is often desired that if two broadcasts are received in some
order at a common destination site, they be received in that order at
all other common destinations, even if this order was not predeter-
mined. For example, some parts of 1SI$ maintain replicated lists by
ensuring that insertions and deletions occur in the same order at each
copy. This behavior is obtained using the primitive
BCAST(msg, label, dests), where msg is the message and /abel is a
string of characters. Two BCAST's having the same label are ordered
in the same way at all common destinations. A BCAST having the
label " ' is ordered with respect to all other BCAST's.

The OBCAST primitive

If a computation transmits multiple messages to a single desti-
nation, they should be prcx:essed in the order they were sent. The
ordered broadcast primitive, OBCAST(msg, ts, dests), respects such
"prespedfied" delivery orderings. Here, ts is a t imes tmp that can be
compared with other timestamps. OBCAST ensures that bro~dca*ts
are received at overlapping destinations in the order prescribed by
their timestamps (if the destinations do not overlap, delivery order is
unconstrained). OBCAST is the source of most concurrency in 1S15:
although the delivery ordering is assured, transmission can be delayed
to take advantage of piggybacking. Since many ISIS messages are
small and local computing continues in parallel with the OBCAST, the
resulting speedup can be dramatic. A scheduling algorithm is being
designed to optimize transmission dedsiom.

TImestamps are generated by incrementing a local counter for
each broadcast. The counter is also changed to be larger than any
fimestarnp received in a message. Thus, if one broadc'~t could have
affected a second broadcast, the timestamp of the first will be smaller
than the timestamp of the second [Lamport]. Note that tiraestamps
generated by unrelated processes are comparable, hence it might
seem that OBCAST is being asked to respect spedous orderings. In
[Birman-b], we give a OBcAgr implementation that respects only
those orderings that could arise in a resilient computation.

The GBCAST primitive
The basic characteristic of a coordinator-cohort computation is

that the cohorts monitor the coordinator for failure. To capture this,
we will say that the operational components of an object form a pro-
cess group. The third broadcast primitive, denoted GBCAST,
transmits information about failures and recoveries to process group
members. A recovering component uses GBCAST to join the opera-
tional ones; when a component fails, some other component issues a
failure GBCAST on its behalf.

Our GBCAST protocol ensures that GBCAST events are totally
ordered with respect to OBCAST and BCAST events, and that when a
failure occurs, the corresponding GBCAST is delivered after any other
broadcasts from the failed process. Each component can therefore
maintain a v/ew listing the membership of the process group, updat-
ing it when a GBCAST is received. The ordering property then
implies that although components do not receive broadcast simultane-
ously (in wail-dock time), they do receive each message in the same
view. This lead us to formulate algorithms implementing the tech-
niques described earlier in terms of/og/ca/orderings that the proto-
cols can implement, rather than expiidt synchronization. A result is
that it remains easy to establish the correctness of the algorithms
despite concurrency in the communication layer.

4.3. Fault-tolerant Implementation of selected operations

4.3.1. RPC calls and reception; commit ~ Ilbort

To issue an RPC, a task first generates a transaction id under
which the execution will occur. If a non-resilient process is perform-
ing the RPC, a new top-level transaction is created and a unique iden-
tifier is assigned as its 'riD. If a task with TID • does a series of
RPC's, ' l iD's for the resulting subtransactions are formed by extend-
ing • with an index: x . l , •.2, etc. Finally, if a toplevel statement is
executed, a ' l iD is generated as for a subtransaction but the prefix is
flagged as a top-level event. Having determined the 'riD, the culler
OBCAST's the RPC to the components of the destination object. A

capability management facility translates the capability into a list of
process addresses for transmission ~. The caller then waits for a reply.

Upon receiving the RPC, a component must determine ff it is
the new coordinator. All components of each object are statically
ordered by site number into a ring. A component computes its rank-
/n& as the distance along the ring from the site where the ~ ofi-
gilmted; the coordinator is deemed to b¢ the lowest ranked opera-
tional component. This tends to place the coordinator at the smile
site as the originator, which is desirable because it m,rlmizes the
potential degree of asynchrony between the comlxments at a site and
their cohorts. The new coordinator returns a retained result if one is
found. Otherwise, it executes the new request and OBCAST's the
result to the caller and its cohorts. A cohort watches the coordinator
for failure, which it detects by reception of a GBCAST message, and
then recoraputes the ranking. Since all COmlxments have the same
view when an RPC is received, and all subsequently see the same
sequence of failures and recoveries, the conclusions reached by com-
ponents are consistent. Note that all necessary synchronization is
provided by the communication primitives.

Now, consider task termination. For each task, a capability lift
(CLIST) is maintained, containing the capabilities of objects whose
components should be informed when the task commits or aborts.
The coordinator uses OBCAST to send a commit or abort message to
the objects in the CLIST. A CLIST is initially empty; a capability is
added when an RPC is issued to an object. Additionally, when a
reply is received from a committed subtransaction, the CLIST for
that subtransaction is piggybacked on the reply and merged with that
of the caller (unless the subtransaction executed in a toplevd state-
ment, in which case its CLIST is discarded when it commits).

On reception, a commit or abort message for transaction T is
delayed if some subtransaction of T is still active (a subtransacfion
can reply to its cailer before issuing its own commit or abort, hence
the parent's commit could arrive before the child's computation is fin-
ished). After all subtramactions have terminated, retained results
corresponding to T are deleted, and 'the local lock manaSer
version-stack managers are informed of the event. When a ~ is
received by a coordinator for a task, it waits until restart is completed
(to ensure that the C L I ~ is accurate), forwards the signal to any

active sub~ansactions, and then initiates an abort.

4.3.2.]Recovery It-ore paraal Mlurm
To initiate recovery, a component issues a GBCAST to the

operational components of the object to which it belongs. When this
message is received, any component transfers its state to the recover-
ing one: since the state o f the operational components are detarnfined
by the messages they have received, and each has received the same
set of messages, all are in the same state. Note that all the n__~_ ,=ary
synchronization is provided by the GBCAST primitive.

4.3.3. M=nIslng replicated Iodm
The locking methods discussed earlier are easily realized using

our broadcast primitives. A read-lock is first obtained locally by the
coordinator of a computation. Then, a read lock resistration me~,.~e
is OBCAST to the other copies of the data item. The coordinator
immediately continues execution, as if its read-lock were already
replicated, although the message may not actually have been
delivered anywhere. If the coordinator fails and any process has
received a message m sent after the lock acquisition, the read-lock
will be registered before the failure is "detected" by the cohorts
managing other copies of the lock. This follows because the read-
lock registration precedes m and hence must be delivered despite the
failure, whereas (by definition) the GBCAST fonows m and hence
must occur after the lock registration. Because there is no urgency to
send a read-lock registration message, piggybacking is particularly
cost-effective (hence the description of Sec. 4.1.3).

5An inexpensive ~otccot for rnaintaimng a cache c~ group addressing informa-
6on, and to update h if it is found to be ~ t of date during message trans~s~ien, is
given in Dirman-b].

82

Unlike a read-lock, a write-lock must be granted explidfly by all
components of an obj~t , cxctpt in certain special cases ~ described in
[Raeuchle]. Moreover, a write-lock request can be performed
correctly whether or not other broadcasts issued by the computation
have been delivered, hence the request is not subject to the OBCAST
type of ordering constraint. On the other hand, if two writedock
requests on the same date item are issued concurrently, they could
deadlock by being granted in different orders at different sites. This
is just the type of ordering problem addressed by BC,,LST. To acqulre~
a write-lock, the request is BCAST using the identifier of the data
item as a label. If a component fails during the protocol, the partially
acquired write-lock is withdrawn and then re-reqLu~sted. Since the
read-lock registration message preceded the GBCAST announcing the
failure, either it is delivered before the GBCAST, or no site has
received a message sent by the process after it obtained the lock.
The write-lock is re-reqtmsted after the GBCAST message is received,
so it will be forced to wait on the read-lock if evidence that the tran-
saction held a read lock survives the crash (in the form of some
action it took that reflects the data it read). Moreover, since BCAST
is delivered in the same order everywhere~ concurrent write-lock
requests will not &adlock.

,4.3.,4. Updattug r t ~ : a t a d data

Read operations are satisfied from the version stack for the
local copy of the data item bein 8 accessed. Three implementafiom
are supported for write operations.

Synchronem eWhae.

For this method, OBCA~T is used to transmit the new value to
all operational compommts. The coordinator then waits for ack-
nowiedgermat that the operatiom have hi=n completed (or a fmlure
occurs, as signa/]ed by arrival of a GBCAST).

Comurrent update.

Although syn~ronom update is conceptually .timrle, costly
delays are incurred while waiting for acknowledgements. Usin$ con-
current upda:e, data are updated locally by the coordinator, which
uses OBCAST to inform its cohorts without waiting for acknowledg-
ments [Joseph-hi. Recall that OBCAST is also used to commit, which
releases locks. Since the updates precede the commit and OBCAST
respects this ordering, any process that obtains a lock will observe the
correct version of any data it reads. Thus, the semantics of the syn-
dtronous update are preserved but, if few write-locks are needed, the
response time is limited by the/oca/execution speed of the requestl

To preserve the consistency constraint on executions, two addi-
tional issues must be addressed. First, when a top-level transaction
that has done updates is ready to reply to its caller, the reply must be
delayed until all cemponents have received the initial RPC -- other-
wise, a failure could cause the R.PC and all the updates it generated
to be lost, invalidating the result returned to the caller. ISIS is able
to satisfy this constraint without introducing any overhead. Similarly,
if an object using concurrent ulxla~ performs actions with external
sida-effects, a failure could erase any pending concurrent updates
together with any assodated read-lock information, although the
external actions that depended on this information would persist.
Then, during restart, although the actions of the object would be
internally consistent, they might be inconsistent with the externany
observed behavior of the system before it failed. For such cases, a
flush primitive is provided, which the object calls before taking any
external actions. Hush blocks until all pending updates have been
delivered.

Delayed updat~

The concurrent ulxlate scheme assumes a pessimistic write.
locking algorithm, which waits for responses from all operational
components each time a write-lock is needed. Pessimistic locking per-
mits the programmer to design a deadlock-free object (by acquiring
write-locks in a predetermined order), and hence to implement

Wl'he most i,hl:~C~-~ant of these is that, since ¢o~'dinatcts for a single transaction
are run at the same site, after a tzamaction has acquired a distributed writeqock on
m item x, its sub-transaetlom can do Local locking on x using the same regis~ation
technique as was described fc~ read-locks.

objects that take irreversible actions. However, better performance
can sometimes be obtained using an optim~tic locking algorithm
together with delayed updating. Write-locks are acquired locally by
the coordinator, which queues update messages but does not transmit
them. When the transaction is prepared to commit, it attempts to
acquire these write locks from its cohorts aad aborts (discarding its
queued updates) if deadlock would result. Otherwise, it trmxsmits th¢
updates using OBCAST.

Using delayed updates, the possibility of an occasional abort is
accepted as an alternative to issuing multiple write-lock requests --
only a single locking action is n~dad, and it occurs at tim end of tim
transaction. Moreover, other transactions can read old versions of
any data items being updated (but only at remote sites) and multiple
updates could be sent in each message. These benefits have a cosP.
large amounts of buffering may be needed to support the techaique,
and irreversible actions are precluded. ' l~e ISIS prototype will be
used to compare delayed and concurrent update in the future.

5. System architecture
5.1. Communication primitives

A detailed discussion of the communication subsystem is given
in [Birman-b]; we now summarize its archittmure briefly. The primi-
tives are build in layers, starting with a "bare" network providing
unreliable datagrams. A site-to-site acknowledgement protocol con-
verts this into a sequenced, error-free message abstraction, using
timeouts to detect apparent failures. An agreement protocol is then
used to convert the site-failures and recoveries into an agreed upon
ordering of events. If timeouts cause a failure to be detected errone-
ously, the protocol forces the affected site to undergo recovery.

Built on this is a layer that supports the various primitives.
BCAST employs a two-phase protocol based on one by Skeon [Skeen-
b]. OBCAST has a very light-weight implementation, based on the
idea of flooding the system with copies of a message: Each process
buffers copies of the messages needed to ensure the consistency of its
view of the system. If message m is delivered to process p, and some
message m' precedes m, a copy is sent to p as well (duplicates are
discarded). A garbage collection phase deletes superfluous copies
after a message has reached all its destinations. By using extensive
piggybacking and a simple scheduling algorithm to control message
transmission, the cost of an OBCA3T is kept low -- often, less than
one packet per destination. GBCAST is implemented using a two-
phase protocol similar to the one for BCAST, but with an additional
mechanism that flushes messages from a failed process before deliver-
ing the GBCAST announcing the failure. More details and correctness
proofs appear in [Birrnan-b].

5.2. lllgher level system structure

ISIS is best viewed as an adjunct to a conventional operating
system, providing persistent fault-tolerant services which complement
conventional fault-intolerant programming support. Our prototype
was built under 4.2 UNIX. Performance is limited primarily by
UNIX overhead, and is reported in the next section.

The system is organized hierardfically, as illustrated in Fig. 1.
The lowest level of ISIS provides the communication primitives
described earlier, together with a a message editing subsystem sup-
porting variable format messages with symbolically named message-
fields. Built on top of this is the a layer supporting concurrent tasks,
monitors for mutual exdusinn [Lampson], the tr&maedonal version
stack, and the lock manager. These are used by the implementatiom
of the algorithms of Sec. 4. A number of system services are imple-
mented as resilient objects: the capability manager [Dietrich], which
maps a capability on an object to a list of sites where its components
reside, the name-space, which maps symbolic names to capabilities,
and the interface used by external non-resilient processes to issue
requests to resilient objects.

In UNIX, processes and inter-process communication are expen-
sive. Consequently, a single system process handles functions com-
mon to all resilient objects, and a single "type manager" is used for
each resilient type. A type manager multiplexes its time between the
different instances of its type residing at the site where it is executing;

83

I Object Specification [High-level Fault- Presentation Layer
Language I Tolerant services

~ a ~ _ ~me~pact [~ e User-Defined Object Types Objectlayer
T 0, T~

Object create, delete. RPC's, lock acqoistion, Fault-tolerant
read / replicated write, commit / abort, kill Irnplementat/on

O ~ A S ~ GBC~BroadcastPrimitive$

I - M E T J ' ~ ' ~] ~ I T tional / L II I°;~-;;r II rec°'da''°c]ut.itie,
I I Site-Site Communication Low-level Facilities

[TCP/IP Packet Transport I

Figure 1 : ISiS SYSTEM ARCHITECTURE

these in turn multiplex their time among currently active tasks. Pro-
cess creation occurs only when a new type manager must be started
(this idea was suggested in [Lazowska].) Commands to interactively
load and unload type managers (e.g. when a new type is defined) are
provided by the system process.

6. Performance of the prototype

A prototype of ISIS has been operational since January 1985.
Performance is reported for a duster of SUN 2/50 workstations inter-
connected by a 10-Mbit etheruet (Table 1). Our approach was to
evaluate the performance of the ~mlmunlcation primitives, and then
to measure the response time for some simple resilient objects. The
indexed sequential file, built from a resilient directory and a resilient
file, illustrates the overhead assodated with neslin 8.

Although our figures are for lightly loaded ISIS systems, the
multi-process structure of the system still incurred substantial schedul-
ing and interprocess communication overhead. Also, the perfor-
mar ts of IPC co~ectious is suboptimal, primarily because the SUN
version of UNIX does not yet support changes to the IFC buffer size.

The first set of figures addresses performance of the version
store and lock manager. These show that while the version store is
very fast in its in-core partial recovery mode, it degrades in the disk.
based "stable" storage mode. This argues in favor of log-based
recovery from total failures (the default), since stable storage is
thereby avoided.

The broadcast primitives are dominated by underlyin 8
message-passing costs, but otherwise depe~Id primarily on the number
of phases required. In the initial implementation of the primitives,
all run in two phases (although the message is delivered during the
first one for OBCAST and the second for GBCAST), hence all the
primitives give similar performance. The/mency figure measures the
time from message transmission to remote delivery. Turnaround
measures the delay from transmission to reception of a reply from
the remote task that received the message, and throughput measures
the rate at which a single task can issue broadcasts without waiting
for acknowledgements, in messages per second. The effective
throughput is 3 to 5 times higher than this, because concurrent update
permits multiple update messages to be piggybacked on a single
packet (notice that the effective throughput decreases more slowly
• than the true throughput as the number of sites increases: while wait-
ing for acknowledgments, there is time to generate more amcorrent
update messages, hence the degree of piggybacking rises). We also
measured the system throughput, which is the maximum number of
BCAST or OBCAST protocols that can be started per second at a site
in a steady state (this figure could be improved by tuning the UNIX
scheduling policy). Note that the cost of the protocols rises linearly

with the number of destinations. The throughput figures indicate that
substantial system loads could be accommodated.

Turning to the resilient objects themselves, note the dramatic
performanca improveraent performance achieved when using con-
current update. These tests measured the average cost per operation
for a transaction doing 25 operations of the designated type. Con-
currency control overhead is higher for the first operation than for
subsequent ones, which the system recognizes as being "covered" by
previously acquired locks. The amortized cost is therefore low, per-
mitring rates of 10-12 operations per-second even when updating was
being done (again, assuming an otherwise idle system). The fact that
concurrent update does better than synchronous update even in the
singie-site case is because concurrent update is also used to maintain
message routing tables in the type managers. Note that nesting does
not introduce any substantial overhead. Within the system, mint
time is spent sending and receiving messages and in the object itself,
executing the requested operation.

The main observation to draw from the above is that when
using concurrent update, the performance of a resilient object acce~.
bie from multiple sites is not far from that of a fault-intolerant
single-site object of the same type (the ISIS figures in the latter case
are in line with those reported for other systems supporting non-
replicated objects). Moreover, overall performan~ will be much
higher in read-intensive settings, provided that requests arrive ran-
domly at the different components, since reads can be done locally by
any component. Thus, ISIS is able to provide powerful dgstributed
services at suprisingly low cost -- at worst, a k-redh'ent object per.
forms nearly as well as a single-site instantiation of the underlying
abstract type, and at best its overall performance could exceed that of
a single-site object by a factor of k + l . Althou~ that this is not
suprising, in view of the way that concurrent update works, it is ce~.
tainly encouraging. If an effort were made to tune the ISIS prototype
and the objects themselves, performance could probably be doubled.
under UNIX, and further improved by moving to a more streamlined
operating system.

7. Future research

The ISIS project is now entering its tlfird year. Two major
problems are receiving attention: intercounection of 1515 dusters and
the resulting partitionin 8 issues, and an investigation of the limits of
concurrency in systerus subject to ordering-based correctness con-
straints [Joseph]. On a more pragmatic level, we are examining uses
for ISIS in hlgh-level programming tools, which might constitute the
interface to a new generation of operating system services. Also
being studied are facilities for dealing with real-time events, repli-
cated processing (as opposed to replicated data), arid demand-based
data migration within k-resilient objects replicated at more than k + l
sites. We would also like to build some sort of application system
using ISIS as its base, for example a critical care system for medical
environments [Binnan-c]. F'mally, we confront the problem of
integrating ISIS more fully into an operating system. ISIS provides a
type of service and exhibits a collection of support requirements
which are very different from those seen in other distributed systems.
Design of an operating system that is good at providing both conven-
tional and fault-tolerant services thus remains an open problem.

8. Conclusions

This paper presented an overview of the ISIS project and
reviewed the techniques it uses to obtain fault-tolerant implementa-
tions from abstract type specifications. The go6d perforraazme of a
prototype supports our belief that the approach will be viable in
diverse situations. Moreover, a novel communication architecture
leads to a simple system structure within which correctness arguments
are straightforward despite the preseuse of failures and concurrency.

We believe that, along with other systems for fault-tolerant
software development, ISIS represents the be~nning of a new genera-
tion of very high-level operating systems facilities. Much as virtual
memory changed the engineering of very large systems in a funda.
mental way, these facilities will fundamentally change the way that
distributed software is developed, and will thereby eatable research in

84

GENERAL PERFORMANCE
Site-to-site message
Process-to-process message
RPC to object, same site
Version stack:

(volatile)

(stable)

Lock manager
Failure detector
GBCAST

COMMUNICATION PRIMITIVES
OBCAST

BCAST

Write lock

RESILIENT OBJECTS*
Resilient fde

Resilient directory

Resilient stack

Indexed seq. file

*Partial recovery mode.

COMPONENT TESTED SUN 2/S0
Delay to reception 40ha
Delay to reception 10ms
Delay until task starts 30ms
BEGIN / COMM1T 19ms
BEGIN / READ / COMMIT 20ms
BEGIN / WRITE / COMMIT 23ms
BEGIN /COMMIT 467ms

/ READ / COMMIT 493mt
BEGIN~WRITE~COMMIT 880ms
Acquire local lock 0.7ha
Ttmeout n.a.
Delay until delivered n.a.

7sees 7secs
2 s e m 3secs

l a l t e 3 altts 6sRm
Latency 10ha 49ms 60ms
Tuma, ound 18ms 165na 360rm
Throughput (one task) 10 / sec 6 / sec 3.5 / sec
Effective Throughput 35 / sec 24 / sec 17 / sec
System Throughput > 100 / sec 18 / see 10 / see
Latency 10ha 180ha 240ms
Turnaround 20ms 180ha 360ms
SystemThroughlmt > 100 / sec 2 0 / s e c 1 2 / s e c
Delay to acquisition 30ms 220ha 400tin

READ 13 / sec 11 / sec 11 / sec
WRITE (syndlronous) 4.2 / sec 1.27 / sec ,75 / sec
WRITE (concurrent) 12.5 / sec 11 / sec 9 / sec
BIND (synchronous) 2.9 1 sec .9 1 sec .57 1 sec
BIND (concurrent) 6.3 / sec 6.3 / sec 5 / sec
LOOKUP (read only) 11 / sec 10 / sec 11 / sec
PUSH (synchronous) 2.7 / sec I.I / sec .52 / sec
PUSH (conctLrrent) 9.2 / sec 9.3 / sec 9.6 / sec
POP (synchronous) 3.3 / sec 1.7 / sec 1.0 / sec
POP (concurrent) 9.2 / sec 10.5 / sec 8.9 / sec
INSERT (synchronom) 1.6 / sec .52 / sec .3 / sec
INSERT (concurrent) 3.8 / sec 5. I sec 2.3 / sec
LOOKUP 9.5 / sec 9,5 / sec 9.5 / sec

Table 1: Performance in the ISIS Prototype

areas for whidt existing programming methodologies are inadequate,
As the complexity and sheer" size of distributed systems continues to
grow, facilities of this sort will be indispensable.

9. Acknewltdgemeat

Wally Deitridh Amr El Abbadi, Tommy Joseph, Thomas
Raeuchle, and Pat Stephenson all made many contributions to the
work reported here. We are also grateful to Dale Skeen, who
founded the project with us in 1981, and to Fred ~ ¢ i d e r for his
careful reading of a prior version of this paper.

I0. lleCertmza

{Bartlml

{aa'amin!

[alrmaa-al

[Blrmaa-bl

Bartlett, J. A NonStop Kernel Proc 8th $OSP, Dec. 1981.

Bermtein, P., Goodman, N. Concurrency control algorithms for
rel:~icated datalmse systems. ACM Compuaa8 $urvO's 13, 2 (June
1981), 185-222.
B/rman, g., et. a/. Implemmting fault-tolerant distributed objects.
IEEE 78E-11, 6, (June 1985), 502-508.
Eirman, "K., Joseph, T. Relialte coaxtaunication in an unreliat~.e
envlronramt. Deot. o~ Computor Science, Cornel1 Univ., TR 85-
694, Aug. 1985.

[Bl.rman-cl

[mrrel]

[eortl

t~orrl

[Cooperl

CDietrichl

[Gawlick]

[Grayl

[Joseph-a]
[Joseph-b]

[Lampsonl

~rnportl

llrrnan, K. eta/. MDDI: A new database system for medical ap#i-
cations. In Proc. IF.FEE Conrputers and Cardlologg' (Sept.1994), 309-
312.

Birre~A., Nelson, B. In~lementing remote procedure cars. ACM
TOCS 2, 1 (Feb 1984), 39-59.
Borg, A. er. al. A message system supt.xa~n8 fault-tolerance. Proc.
9th SOSP, Bretron Woods, NH (OcL 1983), 90-99.
Borr, A. Robustness to crash in a distributed database: Anon-shared
manxx'y multi-processor approach. Tandem Computers, Inc., 1984.

Coc, per, E. Replicated distributed programs. Ph.D. dissertation,
Computer Science Department, Univ. of Califm'nia, Berkeley (May
1985).

Dietrich, W. Ph.D. dissertation, forthcoming.
CCyawlick, D. Processing "hot SlXXS" in high pea'formance systems.
Amdahl Corp., Sunnyvale, 1984.
C~'ay, J. Notes on database operating systems. Lecture notes in com-
puter science 60, C.~x3d and I-Iaru'narmis, eds., Sprlnger-Verlag 1978.

Joseph, T. Ph.D. dissertation, forthcoming.
Jcseph, T., Birman, K. Low cost management of replicated data in
fault-tolerant distributed systems. To appear, ACM TOC$.

Lampson, B., Redell, D. Experience with processes and rnonitors in
MESA. CACM 23, 2 (Feb. 1980), 105-117.
Lamport, L. Time, clocks, and the ordering of events in a distri-
buted system. CACM 21, 7, July 1978, .558-565.

85

[l,azowska] Laz~vska, E. er a/The architecture of the EDEN syster~ /'roe. &h
SOSP, Dec. 1981, 148-159.

[Llskav.al Liskov, B., Z~lles, S.N. Program~ng with abstracz data types.
$IGPLAN~ttces 12, 2 (Apr. 1974), 50-59.

[Llskov-bi Liskov, B., Scheifler, K t3uardiam and a~om: Linguistic sup~m
f~" robust, distributed l:go~ams. ACM TOPlAS 5, 3 (July 1983),
381-404.

[Mou] Moss, E. Nested u'ax~acziom: An ~ to reliable, disuibuted
computing. Ph.D. thesis, MIT Dept of EECS, TR 260, April 1981.

[Pspadimitrou] Papadin~trou, CC The seriaiizabiliry ~ cancurrenz database utx:l.ate~.
JACM 7,6, 4 (OcL 1979), 631-653.

[Pope.k] Popek, O. eta/. Locus: A network ~r&nspa~emt, high reliahility dis-
tributed systera. Proc. 8th SOS, a, Dec. 1981, 169-177.

~ . . h l e] Raeucble, T. Ph.D. dissertatim, forthcctaing.

[schncltnltl Schlicfin 8, R, Schneider, F. Falt-stqp processors: An approach to
designing fault-tde~az~tt distributed c~xnlxt.ting systems. ACM FOCS
I, 3, August 1983, 222-238.

[$keen4] Skeen, D. Deterrc~ning the last process to fail. ACM 70CS 3, I,
Feb, 1985, 15-30.

[Skeea-b] Skeen, D. Areliable broadcast prtxcccL Unpublished.

~6

