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and candor rarely encountered in a sin-
gle work, the authors describe an evo-
lutionary past drawn from their vast
experience and project an enticing and
compelling vision of HPC’s future. 

Yet, the underlying assumptions im-
plicit in their treatment, particularly
those related to terminology and dom-
inant trends, conflict with our own ex-
perience, common practices, and shared
view of HPC’s future directions. Taken
from our vantage points of the Top500
list,2 the Lawrence Berkeley National
Laboratory NERSC computer center,
Beowulf-class computing,3 and research
in petaflops-scale computing architec-
tures,4 we offer an alternate perspective
on several key issues in the form of a
constructive counterpoint.

A New Path
Terminology and taxonomies are sub-
jective, with common usage dictating
practical utility. Yet, in spite of its im-
perfections, technical nomenclature
can be a powerful tool for describing,
distinguishing, and delineating among
related concepts, entities, and pro-
cesses. Bell and Gray incorporate a
fundamental assumption throughout
their reasoning, which, although de-
fensible and advocated by notable re-
searchers,5 corrupts the terminology’s

power as a tool to represent and differ-
entiate. Specifically, their paper implies
that essentially every parallel system
employing replicated resources is a
cluster. In this well-intentioned effort
to provide a unifying principle,
though, the authors have eliminated a
powerful concept even as they in-
tended to reinforce it. The concept of
the commodity cluster has driven an
important trend in parallel processing
over the past decade, delivering un-
precedented performance-to-cost and
providing exceptional flexibility and
technology tracking. By expanding the
scope of the term, they’ve deprived this
important term of its seminal meaning
and implication. 

One objective of this article is to re-
store the strength and value of the term
“cluster” by degeneralizing its applica-
bility to a restricted subset of parallel
computers. We’ll further consider this
class in conjunction with its comple-
menting terms constellation, Beowulf class,
and massively parallel processing systems
(MPPs), based on the classification used
by the Top500 list, which has tracked
the HPC field for more than a decade.

As Bell and Gray convincingly artic-
ulate, the impact of Moore’s law and
the economy of scale of mass-market
computing components in easily inte-

grated ensembles will have a signifi-
cant, even dominant, impact on the
evolution of high-performance systems
in the near future. The Top500 list al-
ready clearly reflects this trend with
the vast majority of all systems repre-
sented on the list being products of
some form of clustering. Moreover, as
Bell and Gray point out, Beowulf-class
clusters are having a significant impact
on medium-to-high-scale systems
throughout the science and technical
computing arena as well as in the com-
mercial sector. Also referred to as
Linux clusters or PC clusters, Beowulfs
are perhaps more widely used than any
other type of parallel computer be-
cause of their low cost, flexibility, and
accessibility. Indeed, among the top 10
systems on the most recent list (No-
vember 2004 at www.top500.org), five
are commodity clusters, three of which
are Linux clusters, not unlike the orig-
inal Beowulf-class systems, and two are
constellations. 

One consequence of the progress an-
ticipated beyond what Bell and Gray
envisioned is the form and content of
future computer centers, which will
evolve as available technologies and
system architecture classes advance. In-
stead of becoming obsolete, the com-
puter center’s role will likely grow in
importance, evolving to meet the chal-
lenges of new architectures, program-
ming models, mass storage, and acces-
sibility via the Grid. The emergence of
Beowulf and other commodity clusters
will definitely alter the mix of resources
that will comprise a medium-to-large-
sized computer center, but the respon-
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sibilities and services that necessitate
building such facilities will continue to
be critical, especially to the high-end
computing and large data archive com-
munities. Already we see in the US De-
partment of Energy and the US Na-
tional Science Foundation sector the
development of new and larger com-
puting centers to house the next gener-
ation of high-end systems, including
very large Beowulf clusters. The com-
puter centers of the future will be
charged with the administration, man-
agement, and training associated with
bringing these major resources to bear

on mission-critical applications.
This article, while congratulating

Bell and Gray in opening up this line of
discourse, offers a constructive expan-
sion on their original themes and seeks
to correct specific areas of their
premise with which we take exception.
The long-term future of HPC archi-
tectures will involve innovative struc-
tures that support new paradigms of
execution models, which in turn will
greatly enhance efficiency in terms of
performance, cost, space, and power
while enabling scalability to tens or
hundreds of petaflops. The conceptual
framework offered here implies the
directions of such developments and
resonates with recent advances being
pursued by the computer architecture
research community.

Commodity Clusters
Bell and Gray, in conjunction with their

distinguished colleagues, see an impor-
tant unifying principle emerging in
HPC’s evolution: the integration of
highly replicated components (many of
which were designed and fabricated for
more general markets) as the driving
force for a convergent architecture.
They call this architecture a cluster and
distinguish it only from the minority set
of vector supercomputers (such as
NEC SX-6 and Cray X1) that exploit
vectors in custom processor architec-
ture designs. This convergent architec-
ture model of the evolution of super-
computer design is compelling, readily

apparent, and wrong. We respectfully
assert an alternate perspective that is
rich in detail and has value in its ability
as an enabling framework for reasoning
about computing structures and meth-
ods. In particular, we assert that the
term “cluster” is best employed not as a
synonym for essentially the universal
set of parallel computer system organi-
zations, but rather as a specific class of
such systems. Therefore we state that
NOT everything is a cluster.

We limit the scope of the definition
of a cluster to a parallel computer sys-
tem comprising an integrated collec-
tion of independent nodes, each of
which is a system in its own right, ca-
pable of independent operation and
derived from products developed and
marketed for other stand-alone pur-
poses. A commodity cluster is a cluster
in which both the network and the
compute nodes are commercial prod-

ucts available for procurement and in-
dependent application by organizations
(end users or separate vendors) other
than the original equipment manufac-
turer. Beowulf-class clusters and work-
station clusters were once two distinct
system types, but with the blurring or
outright elimination of any meaningful
differences in capability between PCs
and workstations, the differentiation
between these two types of clusters has
also largely lost any meaning. This is
particularly true with the wide usage of
Linux as the base node operating sys-
tem, a strategy originally pioneered by
Beowulf-class clusters.

The Top500 list represents two
broad classes of clusters: cluster-NOW
and constellation systems. Both are
commodity cluster systems distin-
guished by the dominant level of par-
allelism. Although more complex sys-
tem structures are possible (such as
super clusters), commodity clusters
usually comprise two levels of paral-
lelism. The first is the number of nodes
connected by the global communica-
tions network, in which a node con-
tains all the cluster’s processor and
memory resources. The second is the
number of processors in each node,
usually configured as a symmetric mul-
tiprocessor (SMP). If a commodity
cluster has more nodes than micro-
processors in any one of its nodes, the
dominant mode of parallelism is at the
first level (the cluster-NOW category).
If a node has more microprocessors
than there are nodes in the commodity
cluster, the dominant mode of paral-
lelism is at the second level (a constel-
lation). This distinction is not arbi-
trary: it can have a serious impact on
cluster programming. A cluster-NOW
system, for example, is programmed al-
most exclusively with the message-
passing interface (MPI), whereas a con-
stellation is likely to be programmed at
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The term ‘cluster’ is best employed not as a synonym

for essentially the universal set of parallel computer

system organizations, but rather as a specific class.
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least in part with OpenMP, by using a
threaded model. Very often, a constel-
lation is space-shared and not time-
shared, with each user getting his or
her own node; space-sharing a cluster-
NOW system means allocating some
number of nodes to a particular user.

The critical distinction between our
usage of the term cluster and that pro-
posed by Bell and Gray is that in our
narrower definition, all constituent
top-level components of the system are
commodity with no significant cost to
the full cluster system’s fabrication
other than that of installation and net-
work integration. Developing a cluster
as part of a market line requires no
hardware development investment
other than in packaging, which might
be little more than cosmetic. 

It is this very low cost of develop-
ment and exploitation of economy of
scale that distinguish commodity clus-
ters from all other forms of scalable
parallel systems; it’s also this important
distinction that we want to retain in
our revised definition of a cluster.
However, accepting Bell and Gray’s
broader interpretation means sacrific-
ing commodity clusters’ crucial bene-
fit: exceptional performance-to-cost,
invulnerability to specific vendor deci-
sions, flexibility in configuration and
expansion, rapid tracking of technol-
ogy advances, direct use of a wide
range of available (often open-source)
software, portability between clusters,
and a wide array of component choices.
Moreover, commodity clusters provide
scaling from the very small (a few
nodes) to the very large (approaching
10,000 processors). 

Most of these benefits come from
the specific attribute that the con-
stituent components are off the shelf
with no specialty parts. This single
property has made commodity clusters
the dominant training environment for

parallel programmers, yet the defini-
tion Bell and Gray propose would ob-
scure, even eliminate, this seminal
quality. We propose to retain it, and
thus offer the following definition for
a commodity cluster: a parallel com-
puter exclusively comprising commod-
ity computing subsystems and com-
mercial networks such that the
computing nodes are developed and
employed in stand-alone configura-
tions for broad (even mass) commercial
markets, and the networks are dedi-
cated to the private use of the cluster
(non-worldly).

HPC System Taxonomy
Current HPC system architectures
aren’t well characterized by the notion
that only two architecture classes—
Cray-style vector supercomputers and
parallel clusters—exist. The first class
perhaps refers only to the SX NEC
product line, the remaining Cray T90s,
and the new Cray X1 line. What Bell
and Gray consider to fall under the sec-
ond category is more accurately repre-
sented by several distinct classes of par-
allel computing systems presenting less
of a monoculture than might first ap-
pear, including

• multicomputers or multiprocessors,
• SMPs,
• distributed shared memory (DSM),
• distributed memory,
• tightly integrated MPP,
• commodity clusters, including (but

not restricted to) Beowulf-class sys-
tems, and

• constellations (also a subclass of
clusters).

In most cases, these terms have com-
mon meaning within the literature.
However, Bell and Gray observe that
while constituting the common lexi-
con, this set of terms is not very useful

in providing a general or coherent ter-
minology to consider alternatives or to
represent new architectures when they
come into being. 

Distinguishing the 
Properties of Parallel Systems
Supercomputers differ from more
broadly commercialized systems in sev-
eral ways that could help determine the
seminal parameters or dimensions that
distinguish among different classes of
systems.

Performance. Although the ultimate
measure of the effectiveness of a given
system’s execution is its response time
or time to completion for a given appli-
cation, other imperfect measures at-
tempt to correlate with this fundamen-
tal metric. Mips and Gflops are among
these metrics, but they represent the
dependent variable or the resulting
value derived from other system struc-
tures and characteristics. Except as the
primary driver for the highest levels of
performance, performance need not be
part of the classification scheme. 

Parallelism. Hardware and soft-
ware parallelism determine the
amount of concurrent work and there-
fore achievable peak performance.
The semantics of parallelism, includ-
ing its granularity and the hardware
mechanisms that support parallel exe-
cution, determine the effectively ex-
ploitable amount of it. Classes of ar-
chitecture can be distinguished by the
kinds of parallelism they use.

Control. The hardware support
mechanisms incorporated in an archi-
tecture to efficiently control the sys-
tem can significantly change the sys-
tem’s operation and performance and
distinguish among classes of systems.
An SIMD computer and a cluster dif-
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fer dramatically in their hardware sup-
port for system-wide parallel execu-
tion. The amount of overhead in the
critical time path for controlling par-
allel actions thus largely depends on
the hardware control mechanisms (or
lack thereof).

Latency management. The wait
for remote access and service strongly
factors into a supercomputer’s effi-
ciency and scaling. It includes the long
distances that messages have to travel,
the delays when contending for shared
resources such as network bandwidth,
and the service times for actions such
as assembling and interpreting mes-
sages. Latency management includes
pipelining vectors, multithreading,
avoidance via explicit locality manage-
ment, caching, and message-driven
computing. How a system manages la-
tency is an important distinguishing
characteristic.

Namespace distribution. From an
abstract viewpoint, a system comprises
a collection of namespaces and actions
that can be performed on named enti-
ties. Shared-memory systems versus
distributed-memory systems are one
such division. Names of I/O ports or
channels (including whether they’re lo-
cal to part of the system or globally ac-
cessible) is another. Process ID (again
local or global) is also a discriminator,
as is whether processor nodes consti-
tute an explicit namespace or are sim-
ply a pool of anonymous resources.
Logical namespaces can thus charac-
terize a system, at least in part.

Reliance on commodity. In recent
years, the economics of system imple-
mentation has dominated develop-
ment. Some people consider the de-
gree to which the system architecture
exploits commodity components, sub-
systems, or systems as building blocks

for very large structures to be an es-
sential attribute in determining a sys-
tem concept’s likely success or failure.
Beowulf clusters exclusively comprise
commodity components, systems, and
networks; the SX-6 employs custom
vector processor architectures, moth-
erboards, and networks, but uses com-
modity memory chips. Commodity
components might be cheaper because
of their economy of scale, but they
could lack many functional attributes
essential for efficient scalable super-
computing.

A Framework for Characterizing
Parallel Architectures
We suggest a naming schema that de-
lineates parallel computing systems ac-
cording to key dimensions of system
attributes rather than the random
terms with which we’re all familiar.
Our rationale is to demonstrate that al-
ternative naming methods are possible,
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Is There Light at the End of the Tunnel?

By Dan Reed, Renaissance Computing Institute (RENCI)

F rom the beginning of the digital age, supercomputers
have been time machines that let researchers peer into

the future, both intellectually and temporally. Intellectually,
supercomputers help researchers bring to life models of
complex phenomena when economics or other constraints
preclude experimentation. Computational cosmology,
which tests competing theories of the universe’s origins by
computationally evolving cosmological models, is one such
example. Given our inability to conduct cosmological ex-
periments (we can’t create variants of the current universe
and observe its evolution), computational simulation is the
only feasible way to conduct experiments. 

Temporally, supercomputers reduce the time to solution
by enabling scientists to evaluate larger or more complex
models than would be possible on conventional systems.
Although this might seem prosaic, the practical difference
between obtaining results in hours, rather than weeks or
years, is substantial—it qualitatively changes the range of
experiments we can conduct. Climate-change studies that
simulate thousands of Earth years, for example, are only
feasible if the time to simulate a climactic year is small.
Moreover, conducting parameter studies (for example, to
assess sensitivity to different conditions such as the rate of

fluorocarbon or CO2 emissions) is only possible if the time
required for each simulation is small.

Hence, the supercomputing challenge has always been
to deliver the highest possible performance to applications,
subject to economic, political, and engineering constraints.
Fueled by weapons research and national security con-
cerns, US government supercomputing needs substantively
influenced the commercial market until the 1980s. With the
explosive growth of personal computing and the end of the
Cold War, supercomputing is now a much smaller fraction
of the overall computing market, with concomitantly less
economic influence. This economic milieu has had pro-
found effects on all aspects of supercomputing—research
and development, marketing, procurement, and operation.
Most notably, the explosive growth of clustered systems,
based on commodity building blocks, has reshaped the
computing market.

Although this democratization of supercomputing has
had many salutatory effects, including the growth of com-
modity clusters across laboratories and universities, it isn’t
without its negatives. Not all algorithms map efficiently to
the predominant cluster-programming model of loosely
coupled, message-based communication. Hence, some re-
searchers and their applications have suffered due to lack of
access to more tightly coupled supercomputing systems.
Second, an excessive focus on peak performance at low
cost, which favors commodity clusters, has limited research
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rather than to impose a specific new
method on the community. For exam-
ple, as Bell and Gray make clear, the
term MPP, although used pervasively
throughout the history of the Top500
list, is confusing, misleading, and pro-
vides little specification of system type.
The notion of it has been abused, con-
fused, and ironically derived from a dif-
ferent type of system than that to
which it is ordinarily applied. (The
original MPP was an SIMD-class com-
puter, which is a separate classification
of the Top500 list.)

Every strategy, including ours, re-
flects the critical sensitivities of its time.
Here, we emphasize four dominant di-
mensions for characterizing parallel
computing systems:

• clustering,
• namespace,
• parallelism, and 
• latency and locality management.

Any system can be clustered with like
systems to yield a larger ensemble sys-
tem, but doing so doesn’t mean that all
the attributes of the constituent uni-
form systems are conveyed unmodified
to the aggregate system. The impor-
tant factor here is a synthesis of exist-
ing stand-alone subsystems developed
for a different, presumably larger, mar-
ket and user workload. The alterna-
tive, a monolithic system, is not a
product of clustering,  but a structure
of highly replicated basic components.
Other appropriate designators, per-
haps those that reflect a specific hier-
archy, could exist—how would we rep-
resent a supercluster (a cluster of
clusters), for example?

Namespace indicates how far a sin-
gle namespace is shared across a sys-
tem. Although many possible name-
spaces exist (such as variables, process
IDs, I/O ports, and so on), user vari-
ables illustrate the concept here. A dis-

tributed namespace is one in which one
node’s variables aren’t directly visible to
another, whereas a shared namespace is
one in which all variables in all nodes
are visible to all other nodes. Cache co-
herence adds to the shared namespace
attribute by providing hardware sup-
port for managing copies. This illus-
trates that we can combine multiple at-
tributes (lexically concatenated) to
provide a complex descriptive. 

Parallelism reflects the forms of ac-
tion concurrency that the hardware ar-
chitecture can exploit and support.
Conventional distributed-memory
MPPs (old usage) are limited to com-
municating sequential processes (such
as message passing), whereas vector
computers exploit fine-grained vectors
and pipelining. This property field ex-
poses the means by which the overhead
of managing parallel resources and
concurrent tasks is supported and
therefore made efficient. 

into new architectures, programming models, and system
software. The result has been the emergence of a supercom-
puting monoculture composed predominantly of commod-
ity clusters and small symmetric multiprocessors (SMPs).

In an earlier article, Gordon Bell and Jim Gray1 describe
the reasons for this monoculture’s emergence, and they
comment on some of its possible implications for super-
computing centers, community access to supercomputing,
and distributed, peer-to-peer computing via computational
Grids. In the main text of the article presented here, the au-
thors disagree with many, though not all, of Bell and Gray’s
premises and extrapolations. In particular, they argue that
Bell and Gray have defined clusters more broadly than the
commonly accepted definition (that is, a computing system
built largely or entirely from separately purchasable com-
modity components). They also suggest that economies of
scale will continue to make supercomputing centers an at-
tractive mechanism for serving the research computing
needs of the very highest end national users.

Both articles argue strongly that we have substantially un-
derinvested the research needed to develop a new genera-
tion of architectures, programming systems, and algorithms.
The result is a paucity of new approaches to managing the
increasing disparity between processor speeds and memory
access times (the so-called von Neumann bottleneck).

These and other developments have stimulated a re-
examination of current policies and approaches to super-

computing. In the US, the White House Office of Science
and Technology Policy (OSTP), in coordination with the
National Science and Technology Council, commissioned
the creation of the interagency High-End Computing Revi-
talization Task Force (HECRTF). The interagency HECRTF
was charged with developing a five-year plan to guide fu-
ture US investments in high-end computing; the Comput-
ing Research Association (CRA) recently published a work-
shop report from US research community discussions,2 and
the interagency HECRTF report itself recently appeared.5

Researchers in every discipline at the HECRTF workshop
cited the difficulty in achieving high, sustained perfor-
mance (relative to peak) on complex applications to reach
new, important scientific thresholds. They also made com-
pelling cases for sustained computing performance of 50 to
100 times beyond that currently available. A complemen-
tary set of workshops,3,4 commissioned by individual re-
search agencies, reached similar conclusions. The result is a
renewed debate about research strategies and investment
in high-end computing.

In the 1990s, the US High-Performance Computing and
Communications (HPCC) program supported the develop-
ment of several new computer systems. In retrospect, we
didn’t learn the critical lesson of 1970s vector computing:
the need for long-term, balanced investment in both hard-
ware and software. Achieving high performance for com-

continued on p. 56
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Latency and locality management
defines the mechanisms and methods
incorporated to tolerate latency effects.
Caches, pipelining, prefetching, multi-
threading, and message-driven com-
puting mechanisms are among the pos-
sible mechanisms that avoid or hide
access latencies. The more flexible and
less sensitive to application attributes
such as temporal and spatial locality,
the greater the overall execution effi-
ciency that is likely to be achieved.

Queuing models use a method of a
few descriptors separated by slashes to
describe a broad range of queue system

types. We consider here a similar syntax,
using four fields to represent parallel ar-
chitecture classes, but we extend such
nomenclature to let multiple designa-
tors in any given field permit a richer
description space. We suggest the fields
and examples for each as follows:

• Clustering: c for commodity cluster
or m for monolithic system.

• Naming: d for distributed, s for
shared, or c for cache-coherent.

• Parallelism: t for multithreading, v
for vector, c for communicating se-
quential processes or message pass-

ing, s for systolic, w for very long in-
struction word (VLIW), h for pro-
ducer or consumer, p for parallel
processes, and so on.

• Latency: c for caches, v for vectors, t
for multithreaded, m for processor in
memory, p for parcel or message-dri-
ven split-transaction, f for prefetch-
ing, and a for explicit allocation.

Admittedly, we could probably add
other designations to this list: for ex-
ample, the Earth Simulator would be
m/s/v/v, the Tera MTA (multithreaded
architecture) would be m/s/t/t, the SGI
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plex applications requires a judicious match of computer
architecture, system software, and software development
tools. Most researchers in high-end computing believe the
key reasons for our current difficulties in achieving high
performance on complex scientific applications can be
traced to inadequate research investment in software and
the use of processor and memory architectures that aren’t
well matched to scientific applications. 

Today, scientific applications are developed with crude
software tools (compared to those used in the commercial
sector). Low-level programming, based on message-pass-
ing libraries, means that application developers must pro-
vide deep knowledge of application software behavior and
its interaction with the underlying computing hardware.
This is a tremendous intellectual burden that, unless recti-
fied, will continue to limit the usability of high-end com-
puting systems, restricting effective access to a small cadre
of researchers. We need only look at the development his-
tory of Microsoft Windows to recognize the importance of
an iterated cycle of development, deployment, and feed-
back to develop an effective, widely used product. High-
quality research software isn’t cheap: it is labor intensive,
and its successful creation requires the opportunity to in-
corporate the lessons learned from previous versions. 

Hence, we must begin a coordinated research and de-
velopment effort to create high-end systems that are bet-
ter matched to the characteristics of scientific applica-
tions. This will require a broad program of basic research
into computer architectures, system software, program-
ming models, software tools, and algorithms. In addition,
we must fund the design and construction of large-scale
prototypes of next-generation high-end systems that in-
cludes balanced exploration of new hardware and soft-
ware models, driven by scientific application require-
ments. After experimental assessment and community

feedback, the most promising efforts should then transi-
tion to even larger-scale testing and vendor product cre-
ation, and new prototyping efforts should be launched.
This critical cycle of prototyping, assessment, and com-
mercialization must be a long-term, sustaining invest-
ment, not a one-time crash program.
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Origin would be m/c/p/c, and Red
Storm would be m/d/c/a. The commu-
nity would have to work out the precise
codification in greater detail and accu-
racy, so clearer guidelines are needed
for such a representation schema to be
established or to foster community ac-
ceptance. Here, we simply suggest a
strategy for addressing this challenge.
The basic concept permits the system
to be described by its attributes rather
than as a collection of terms not neces-
sarily making up a coordinated lexicon.
MPP, for example, could mean a dis-
tributed-memory system, a large
shared-memory system with or with-
out cache coherence, a large vector sys-
tem, and so on: it covers too many cat-
egories and hides too many salient
differences to be a useful tool for de-
scription. On this point, we have come
to agree with Bell and Gray.

Traversing the 
Trans-Petaflops 
Performance Regime
Clusters, as Bell and Gray suggest,
could have a long life as an architecture
principle because many workloads can
tolerate their limitations and benefit
from their economy of scale. It’s also
quite probable that sometime between
2009 and 2012, one or more commod-
ity clusters will exhibit a peak perfor-
mance of 1 Pflops or greater. That said,
the evolution of high-end computing
isn’t likely to lead ultimately to the
convergent cluster architecture Bell
and Gray predict, but rather to a new
class of parallel architectures that re-
spond to the opportunities and chal-
lenges presented by the technology
trends that drive it. 

The memory wall, or von Neumann
bottleneck (among other terms), repre-
sents the disparity between processor
clock rates and memory cycle times as
well as system-wide remote access laten-

cies. By the end of the decade, with no
changes in structure, it will take at least
10 times as long (measured in processor
cycles) to touch every word once in a
given memory chip due to the increase
in memory densities and processor clock
speeds. Without methods for tolerating
latency, computations will suffer a 1,000-
cycle critical time delay for access to re-
mote memory, perhaps even longer. 

If no changes to HPC system archi-
tecture occur, we’ll have to configure
the most expensive parts of the sys-
tem—the I/O bandwidth and memory
bandwidth—via ever larger and expen-
sive caches to optimize for the least ex-
pensive component, the arithmetic
logic unit. Fortunately, new architec-

tures will be able to exploit between
one and two orders of magnitude more
Arithmetic Logic Units (ALUs) for a
given scale system than is possible to-
day. Such architecture classes include
multicore system on a chip (SOC),
processor in memory (PIM), stream-
ing, and vector. 

Although Moore’s law will apply un-
abated and commodity components
will dominate system design in the
short run, Moore’s law will eventually
flat-line due to atomic and quantum ef-
fects, and conventional components
will provide low efficiency such that lit-
tle gain will be achieved for larger sys-
tems, even for larger problems. (This
is already happening, but certain em-
barrassingly parallel problems will al-
ways be the exception.) As problems
get larger, they often increase their se-
quential time scale as well (taking more

simulation time steps for the same sim-
ulated period). At some point, archi-
tecture will begin to dominate, and the
field will ultimately emancipate itself
from the narrow commercial off-the-
shelf (COTS) mentality. Although it’s
impossible to predict the future, some
possibilities are evident even now.

In one sense, we agree with Bell and
Gray. Clusters (even in our narrower
sense of the term) will indefinitely re-
main as an important part of super-
computing because no matter how
large or innovative a system is, some-
one can always assemble a larger one
through clustering—it’s like turbo
charging. As more than a decade of re-
search has shown us, though, cluster-

ing could be achieved while retaining a
user global namespace and with some
cross-system latency hiding. This isn’t
unreasonable as long as

• the logical interface to the external
world includes access to the address
management and translation mech-
anisms, and 

• the different cluster nodes can sub-
divide the namespace in a mutually
exclusive, collectively exhaustive, and
logically consistent manner. 

But to cluster in this way means that
the processing components have to
“know” about each other and their lo-
cal worlds, which is outside the scope
of current COTS processor architec-
tures and within the realm of custom
system designs.

In terms of the conventional balance

This very low cost of development and exploitation of

economy of scale distinguishes commodity clusters.
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of bytes per flops, we’ll lose the ratio of
1:1 because of the roughly 1,000-to-1
difference between the required mem-
ory and the ALUs needed to match it.
Instead, an entirely different set of
metrics and balance requirements will
drive future architectures based on
bandwidth, overhead time, and latency
tolerance. It’s possible that the concept
of the processor as we know it will dis-
appear as aggregates of finer-grained
cell-like constructs that integrate logic,
state, and data transfer merge into one
highly replicated element. Power and
reliability through active reconfigura-

tion (graceful degradation) will become
as important as optimized throughputs.
Computation will have to be abstracted
(virtualized) with respect to the under-
lying physical execution medium to let
it adapt to the constantly shifting orga-
nization. SOC, SMP on a chip, and
PIM will become important elements
that bring memory closer to logic. 

Simultaneously, Logic Intensive
Processor Architectures (LIPAs) such as
Stanford’s streaming architecture, the
University of Texas at Austin’s Trips (for
tera-op reliable intelligently adaptive
processing system) architecture, and
Cray’s Cascade architecture will exploit
large internal arrays of ALUs. New
technologies could permit systems such
as the Hybrid Technology Multi-
threaded (HTMT) architecture to
achieve far higher densities of computa-
tion, as would 3D packaging (capable of
putting 500,000 chips in a cubic meter).
For important applications, special-pur-
pose devices could still play a role, and

field-programmable gate arrays might
prove of value to make the applications
more accessible and general. High-
bandwidth optical communication, per-
haps even directly connected to the
chips, will permit bisection bandwidths
well beyond many petabits per second
across a system. The choices are so
rich—and the driving motivation so
compelling—that COTS-based systems
will go the way of the mainframe
uniprocessor at some point. Supercom-
puters and desktops just aren’t the same
thing, in spite of the fact that they both
perform calculations. 

Centers in the 21st Century
Computing centers evoke images of
white lab coats and large front panels
behind layers of glass—mere mortals
had limited or indirect access. These
centers housed the largest processing
and storage facilities, cost millions of
dollars, and some even contained the
ultimate high-IQ system: the super-
computer. For batch processing, access
was through submitted decks, either
physical (punched cards) or virtual (jobs
submitted from terminals). Some of us
remember keypunch and terminal
rooms managed by the central institu-
tional computer centers of the day. As
minicomputers, workstations, and ulti-
mately PCs incrementally permeated
the computing community, the com-
puter center’s role evolved and nar-
rowed, but it retained its critical contri-
bution to large-scale computation.
However, with the cluster’s emer-
gence—particularly Beowulf-class sys-
tems—some contend that the computer

center as an institution is at its end. 
Without question, commodity clus-

ters and Beowulfs have resulted in lo-
cal sites obtaining, applying, and main-
taining systems with capabilities
ordinarily reserved for the pristine con-
ditions of the classic machine room;
this is often accomplished through
minimal upfront costs, leveraging ex-
tant talent for system support services.
For certain contexts, such as academic
environments and research laborato-
ries, this trade-off works well for sys-
tems of a few dozen to a couple of hun-
dred nodes, but beyond that, resources
are usually stressed, sometimes se-
verely, especially when such clusters are
shared among several users and appli-
cations. As few as 50 nodes can demand
a full support person. Although this
seems a little high, at some level, man-
aging a commodity cluster can become
a full-time job. 

Mass storage can be an important
part of a system’s capability, even one
assumed to be dedicated to compute-
intensive applications. Large archival
tertiary storage facilities are becoming
increasingly valuable to a full-service
scientific computing environment and
can require expert administration.
Similarly, networking of cluster sys-
tems to the external user base, either
within an administrative domain or
over the Internet, adds to the respon-
sibilities of such systems. Software up-
grades, hardware diagnosis and re-
placement, and account, job, and user
interface management all entail signif-
icant usage of time and talent in main-
taining a large cluster.

Many labs, groups, and organizations
can now acquire—within their bud-
gets—a cluster system capable of sub-
stantial performance, but they’re often
not prepared to engage the resources or
fulfill the responsibilities of maintain-
ing and managing a complex comput-

P E R S P E C T I V E S  I N  C O M P U T A T I O N A L  S C I E N C E

Commodity components might be cheaper, but they

could lack many functional attributes.
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ing facility. To address this gap, the
computer center can be redefined to
manage a large cluster for an owner or-
ganization, providing the expertise, in-
frastructure, and environment neces-
sary for maintaining continued cluster
operation. These facilities can be amor-
tized across a diversity of systems, thus
limiting the burden on any one system,
permitting rapid deployment and high
availability, avoiding the learning curve
of untrained administrators, and sim-
plifying decommissioning at the end of
the system’s life time. 

Moreover, placing a moderately
sized commodity cluster in the same
administrative facility with other com-
parable systems enables their synthesis
to form superclusters, the peak capa-
bility of which can be brought to bear
on significant user applications by
common agreement and shared proto-
cols. It also makes available large data
storage reservoirs within the computer
center that might not otherwise be ac-
cessible. Revamped computer centers
will complement the commodity clus-
ter’s strengths, extending its price-per-
formance advantage by leveraging in-
vestment in the needed administrative
facilities while providing very large on-
line data archives that anyone can ac-
cess. In all likelihood, computer centers
will remain—if not grow in impor-
tance—in response to the new trends
in cluster computing.

B ell and Gray touch on some po-
tential future directions that

might drive high-end computing
through the end of this decade and be-
yond, thus justifying investment (of
time and funding) by industry, govern-
ment sponsors, and the research com-
munity. We share much of their view,
but we want to emphasize certain dis-
tinctions. Although we agree that com-

modity clusters will play an important
role for the foreseeable future, research
in this area is still required. Packaging,
interconnection networks, and system
software, as well as latency-tolerant al-
gorithms and fault tolerance, are areas
demanding further pursuit. System
software research in particular must es-
tablish fully supportive system-wide
environments for resource manage-
ment, administration, and program-
ming, including tools for correctness
and performance debugging.

The restriction of devising systems
constrained to comprise mostly COTS
components precludes the innovation
critical to achieving high efficiency as
well as programmability and reliability.
Custom architecture is an important
opportunity to pursue, in spite of the
conventional wisdom that dismisses
specialty designs as infeasible in today’s
market climate. A new class of proces-
sor architecture intended for a role in
highly parallel systems must be simple
in design, permitting a short design cy-
cle as well as easy modeling, simula-
tion, debugging, and compilation. 

With a more strict definition of a
cluster, we envision a continued evolu-
tion of the computer center’s role—one
in which it will adapt to the new re-
quirements and opportunities of paral-
lel system classes while providing mas-
sive data archival stores.
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