
Specifying Graceful Degradation in Distributed Systems
Maurice P. Herlihy
Jeannette M. Wing

Department of COKtpUtef Science
Carnegie Mellon University
Pittsburgh, PA 152133890

Abstract

Distributed programs must often display graceful degradation,
reacting adaptively to changes in the environment. Under ideal
circumstances, the program’s behavior satisfies a set of
application-dependent constraints. In the presence of failures,
timing anomalies, or synchronization conflicts, however, certain
constraints may become difficult or impossible to Satisfy, and
the application designer may choose to relax them as long as
the resulting behavior is sufficiently “close” to the preferred
behavior. This paper describes the relaxation lattice method, a
new approach to specifying graceful degradation for a large
class of highly-concurrent fault-tolerant distributed programs. A
relaxation lattice is a lattice of specifications parameterized by a
set of constraints, where the stronger the set of constraints, the
more restrictive the specification. While a program is able to
satisfy its strongest set of constraints, it satisfies its preferred
specification, but if changes to the environment force it to
satisfy a weaker set, then it will permit additional “weakly
consistent” computations which are undesired but tolerated.
The use of relaxation lattices is illustrated by specifications for
programs that tolerate (1) faults, such as site crashes and
network partitions, (2) timing anomalies, such as attempting to
read a value “too soon” after it was written, and (3)
synchronization conflicts, such as choosing the oldest
“unlocked” item from a queue.

1. Overview
Distributed programs typically display more complex

behavior than their single-site counterparts because they mUSt

perform efficientfy and correctly in the presence of concurrency

and failures. brten, such programs must display graceful
degradation, reacting adaptively to changes in the environment.

Under ideal circumstances, the program’s behavior satisfies a

set of application-dependent preferred constraints. Each

constraint typically preserves a certain level of consistency, and

Permission to copy without fee all m part of this material is granted provided that the copies
are not made or distributed for direct commercial advantage. the ACM copyright notice and
the title of the publication and its date appear, and notice is given that copying is by pennis-
sion of the Association for Computing Machinery. TO copy otherwise. or to republish, cc-
quires a fee and /or specific permission.

@ 1987 ACM 0-89791-239-X/87/0008/0167 75a

each has an associated cost. In the presence of failures, timing

anomalies. or synchronization conflicts, however, certain

constraints may become difficult or impossible to satisfy, and

the application designer may choose to relax them as long as
the resulting behavior is sufficiently “close” to the preferred

behavior.

Although numerous techniques have been proposed for

implementing graceful degradation in the presence of

concurrency and failures, the resulting behavior has proved

difficult to specify using existing techniques. In this paper, we

propose the rekuation lattjce method, a new approach to

specifying graceful degradation for a large class of highly-

concurrent fault-tolerant distributed programs. This method
incorporates sets of Constraints into specifications. AS with the
usual correspondence between specifications and
implementations (i.e., programs), the less constraining the
specification, the greater the number of possible
implementations.

Our specifications have the following advantages:

l They are high-level in that the user is not swamped by
superfluous ‘implementation details. Our axiomatic
Specifications require users only to describe desired
behavior. not prescribe a model for achieving it.

l They capture graceful degradation, showing explicitly
how changes in the environment correspond to changes
in observable behavior,

l They are concerned only with functional behavior, yet
they provide a natural interface to the probabilistic and
queuing models commonly used to describe the
occurrence of failures and synchronization conflicts

l They serve as a guide to designers. Given an initial set
of constraints, a designer need only decide which
subsets represent acceptable and/or meaningful aberrant

behaviors.
The relaxation lattice method is applicable to a Variety of

domains, such as replicated databases and transaction-based

sysfems, each of which has bred its own set of specialized
techniques and algorithms satisfying domain-specific
properties. As we illustrate in several exampfes, our approach
provides a unified and general framework for evafuatfng and

comparing such techniques, specifying system behaviors, and

characterizing the essential trade-offs between the Costs of

167

Preserving consistency properties and the costs of relaxing
them.

In Section 2, we introduce the basic specifmtion method.
We present eXi=NiIpleS illustrating how the method is used for
replicated data in Section 3 and for atomic data in Section 4. In
SeCtiOn 5 we Close with some remarks, and a discussion of
related work.

2. Model
The basic containers for data are called O&@&T. Each

object has a type. which defines a set of possible v&es and a
Set of Primitive operations that provide the only means to create
and manipulate objects of that type. For example, a file might
provide Read and Write operations, and a FIFO queue might
provide Enq and Req operations. A computation is modeled as
a history, which is a finite sequence of executions of operations
on objects; here, we focus on individual object subhistories of a
computation.

For an operation (execution) in a history, we write
op(args’)/efm(res*), where op is an operation name, ags’ is a
Sequence of argument values, term is a termination condition
name, and fes* is a sequence of result values. The operation
name and argument values constitute the inv~fjon, and the
termination condition and result values constitute the response.
We use “Ok” for normal termination and write “inv@)” for the
invocation of operation p.

We assume that operations on objects can be executed
atomically; that is, an operation either takes place completely or
not at alt, and operations appear to take place instantaneously
with respect to one another. Atomic operations can be
implemented by a variety of well-known techniques, including

the two-phase locking and two-phase commitment PrOtOCOlS
[7. 111, or atomic broadcast protocols p, 41.

2.1. Simple Object Automate
We model an object by a Simph ob@cf automaton, an

automaton that accepts certain sequences of operations. A
simple object automaton is a four-tUple <STATE, So OP. 6>,
where STATE is the object’s set of states, so E STATE is its initial
state, OP is a set of operations (the automaton’s input alphabet),
and 6: STATE x OP 4 2sTATE is a partial tfanSitiOn function.

The domain of the transition function can be extended to
histories, 6’: STATE x OP’ -+ 2flA?

qs, A) = s

6’(S, H . P) = Us* E ~*(~,H)%‘s P)
where “.” denotes concatenation, and “A” denotes the empty
history. We use 6’(H) as shorthand for s’(S,, H). A history H is
accepted by an automaton if 6’(H) + 0. We call L(A), the
language accepted by automaton A, the behavior of A.

2.2. Relaxation Lattices
Let A be a set of simple object automata having the same

Set Of states, the same initial state, and the same operations,
but (Possibly) different transition functions. We say that A is a
lattice of automate if the set (L(A) 1 A E A} is a tattice under
reverse inclusion (i.e., the smallest language is at the top). We
call the language of the automaton at the top of the lattice the
pfefeffed behavior of the lattice.

A relaxation lattice is given by a set of constraints C, a lattice
of automata A, and a lattice homomorphism,

$12~+ A.

For now. we leave a relaxation lattice’s set of constraints
uninterpreted since the meaning of such constraints is domain-
dependent. In later examples we will see that constraints for
replicated objects are of a different nature from those for atomic
objects. For now, it suffices to think of each constraint as an
assertion to be satisfied. We orient the lattice 2c so that the
largest (intuitively, the strongest) set of constraints lies at the
top, and 4(c) is the preferred behavior of A. In general, Q is

defined over a sublattice of 2=.
A relaxation lattice is thus a lattice of simple object automata

parameterized by a set of constraints, where the stronger the
set of constraints, the smaller the language accepted.
Informally, a relaxation lattice describes an object’s conditional
behavior. If the environment is such that the object satisfies
constraints C E C. then the object will behave like the simple
object g(C), accepting the language L(R$(C)). While an object is
able to satisfy its strongest set of constraints, it will accept only
histories from its preferred behavior. If changes to the
environment force the object to satisfy a weaker set, then it will
accept additional “weakly consistent” histories, which are
undesired but tolerated.

The relaxation method is appropriate for modeling the
behavior of objects for which there is a meaningful cost
associated with moving up the relaxation lattice. The higher
one goes in the lattice, the higher the price paid for the more
preferred behavior. In the examples to follow, we use
constraints to model the cost of tolerating (1) faults, such as site
crashes and network partitions, (2) timing anomalies, such as
attempting to read a value “too soon“ after it was written, and
(3) synchronization conflicts, such as choosing the oldest
“unlocked” item from a queue.

2.3. The Environment
The environment determines which behavior, preferred or

otherwise, an object exhibits. The environment itself can be
represented by an automaton .c2’, c, EVENT, SE>. where inpUt

events in EVENT model changes in the current set of constraints
(state), and k: 2=x EVENT + 2’is the transition function (note
that SE maps to a single state, not a set of states as for object
automata). Let A be a lattice of automata, where each A in A is
given by the tuple <STATE, s, oP, +. The Sets EVENT and OP
may be disjoint, as in the replicated priority queue example of
Section 3.3, or they may be overlapping, as in the bank account
and atomic queue examples of Sections 3.4 and 4.2. Let

168

4: 2c 4 A be the lattice homomorphism.
The environment and the lattice can be combined into a

single automaton that accepts interleaved events and

operations:

~2’ x STATE. (c&j, EVENT u OP, 6>

Let EVENTOP be EVENT u OP. The transition function 6: Zc x
STATE x EVENTOP -+ 2=x ZSTATE is defined by two components,
6,: ec x EVENTOP -+ 2’. which defines the effects on the
environment state, and 6,: 2’ x STATE x EVENTOP + fiSTATE,

which defines the effects on the lattice state:

6,(c. p) = if p E EVENT then 8& p) else c

&#. s. p) = if p E 0P A A = I$@, (c. p)) then $!,(s, p) else (s}
When the (combined) automaton accepts an event, it changes
the environment state. When the automaton accepts an
operation, it changes the object state, choosing the transition
function indicated by the current environment. If the input is
both an event and an operation, the environment changes
before the transition function is selected. In this paper, we will
focus our attention on the lattice A, using informal descriptions
to characterize the environment.

For many applications, an additional probabilistic model
(141 would be used to characterize the likelihood that certain

sets of constraints would be satisfied. Indeed, a strength of the
relaxation method approach is that it can specify functional
behavior independently of probabilistic behavior, while still
providing a clean interface between the two domains.

2.4. Specification Language
In our examples, we will use the Larch Specification

Language [12] to specify both STATE and 6 of a simpte object
automaton. A state in STATE is a mapping between an object
and its value, hence it is convenient to represent an object’s
possible states as a set of values. We use a Larch Paif, which
denotes a first-order theory, to speciv an object’s values. In a
trait, the set of operators and their signatures following
Introduces defines a vocabulary of terms to denote values.
For example, from the Bag trait of Figure 2-1, emp and ins(emp,
5) denote two different bag (multiset) values. The set of
equational axioms following the constralns clause defines a
meaning for the terms, more precisely, an equivalence relation
on the terms, and hence on the values they denote. For
example, from Bag, one could prove that del(ins(ins(emp, 3). 3),
3) = ins(emp, 3). The generated by clause of Bag asserts that

emp and ins are sufficient operators to generate alt values of
bags. Formally, it introduces an inductive rule of inference that
allows one to prove properties of all terms of sort 6.

Bag: trait
Introduces

emp: + B
ins: 8, E + B
del: B, E --f B
isEmp: B --+ Boo1
isln: 6, E + Bool

constraIns B so that for all [b: B, 8, el : E]
B generated by [emp, ins]

del(emp, e) = emp
del(ins(b, e). el) = If e = el then b

else ins(del(b, el), e)
isEmp(emp) = true
isEmp(ins(b, e)) = false
isln(emp, e) = false
isln(ins(b, e), el) = (e = el) v isln(b, el)

Figure 2-1: Bag Trait

EnWWkO
ensures b’ = ins(b, e)

DeWWe)
requires Y isEmp(b)
ensures isln(b, e) A b’ = del(b, e)

Flgure 2-2: Bag Interfaces

Larch provides three ways of reusing traits: a trait T can
Include. Import, or assume another trait Tl . If Tl is included,
then T extends the theory denoted by Tl by adding more
operators and equations explicitly in T. For example, FifoQ of
Figure 2-3 includes Bag and adds two operators, first and rest,
and two equations to those of Bag. From FifoQ, one could
show that rirst(ins(ins(emp, 3), 3)) = 3. If Ti is imported, then T
must be a conservative extension of the theory of Tl, i.e., T
cannot place further constraints on the operators of Ti. All
traits implicitly import the Boolean trait, thereby giving meaning
to “true” and “false” as they appear in the Bag trait. If Tl is
assumed, then T may use Tl’s operators with their meaning as
given in Tl; a further use of T is required to discharge the
assumption of Tl’s theory. For example, a trait for priority
queues (q.v, Section 3.3) might assume the existence of a total
ordering on the items inserted in the queue. With any of the

FifoQ: Walt
includes Bag with [Q for B]
Introduces

first: Q 9 E
rest: Q + E

constratns Q so that for all [q: Q, e: E]
first(ins(q, e)) = If isEmp(q) then e else first(q)
rest(ins(q, e)) = If isEmp(q) then emp else rest(q)

Figure 2-3: FIFO Queue Trait

Enq WW
ensures q’ = ins(q, e)

~WWW)
requlres Y isEmp(q)
ensures q’ = rest(q) A e = first(q)

Figure 2-4: FIFO Queue Interfaces

three kinds of reuse, a with clause allows renaming of Operator
and sort identifiers.

We use Larch interfaces to describe transition functions for
simple object automata. For example. interfaces for the Enq
and Deq operations for FIFO queues are shown in Figure 2-4.

169

The object’s identifier, e.g., 9, is an implicit argument and return
formal of each operation. A requires clause states the
precondition that must hold when an operation is invoked. An
omitted requires clause is interpreted as equivalent to requires
true. An ensures clause states the postcondition that the
operation must establish upon termination. An unprimed
argument formal, e.g., Q, in a predicate stands for the value of
the object when the operation begins. A return formal or a
primed argument formal, e.g., q’, stands for the value of the
object at the end of the operation. For an object x. the absence
of the assertion x’ = x in the postcondition states that the
object’s value may change.

For an operation, p, of a simple object automaton, A, we
write p.prep, and p.postA for the pre- and postconditions of p.
The transition function 6 for A is defined such that

(v s, s’ E STATE) s’ E 6(s, p) iff p.pre,(s) /\ p.post,& s’).

We use the vocabulary of traits to write the assertions in the
pre- and postconditions of an object’s operations; we use the

meaning of equality to reason about its values. Hence, the
meaning of ins and = in Enq’s postcondition is given by the
FifoQ trait. Notice that the berms that denote values for FIFO
queues and for bags are generated by the same trait operators,
emp and ins, but their operations, Enq and Deq, differ. We will
be revisiting these two specifications in later examples.

3. First Example Domain: Replicated Objects
A replicated object is one that is stored redundantly at

multiple sites in a distributed system. Replication can enhance
the availability, reliability, and accessibility of data. A replication
method is a technique for managing replicated objects. A
widely-accepted correctness criterion for replication methods is
one-copy s&ializabiMy [l], which states that the functional
behavior of a replicated object should be identical to the
functional behavior of an analogous single-site object. That is,
except for availability, replication should be transparent.
Although one-copy serializability is a natural and attractive
correctness property, a number of researchers [3,8, 181 have
investigated weaker notions of correctness. The motivation
behind these efforts is the perception that strict one-copy
serializability is sometimes too expensive in terms of
availability, the likelihood the operation execution will succeed,
and in terms of latency, the duration the caller must wait for the
operation to complete.

In this section we outline how specifications based on
relaxation lattices can express the behavior of a number of
“weakly consistent” replication methods from the literature
without sacrificing one-copy serializability as the basic
correctness condition. Each of the weakly consistent methods
is based on the observation that availability and latency costs
can be reduced by performing updates at a small number of
sites, relaying updates to be propagated asynchronously,
perhaps as inaccessible sites rejoin the system. This technique
gives rise to transient inconsistencies which are tolerated

because the-resulting behavior is considered sufficiently “close”
to the preferred behavior.

3.1. Constraints on Replicated Objects
We begin with an informal review of quorum consensus to

motivate the kinds of constraints that are meahingful for
replicated objects. (A more complete discussion appears
elsewhere 1131.) A replicated object’s state is represented as a
log, which is a seuuence of enfries, where an entry is the
timestamped record of an operation. Timestamps are
generated by logical clocks [16]. For example, the following is CI
schematic representation of a queue replicated among three
sites: Sl , S2, and S3.

Is1 IS2 Is3 I
I I --

1~01 Enq(x)/Ok() 1 ID1 Enq(x)/OkO 1 k . . . -- .,
193 Enq(y)/Ok() 1:03 Enq(y)lOk()

2.92 Enq(z)/Ok() 2:02 fna(zYOk0

A missing entry is denoted by an empty space. The queue’s
current value is ins(ins(ins(emp,x),y),z), which can be
reconstructed by merging the entries in timestamp order,
discarding duplicates.

A client executes an operation in three steps:
1. The client merges the logs from an initial quorum of

sites for the invocation to construct a view representing
a subhistory of the object’s current history.

2. The client chooses a response consistent with the view,
and appends the new entry to the view.

3. The client sends the updated view to a final quorum of
sites for the operation. Each site in the final quorum
merges the view with its resident log.

A quorum for an operation is any set of sites that includes both
an initial and a final quorum for that operation. A quorum

assignment associates each operation with its initial and final
quorums.

An object’s quorum assignment determines the availability of
its operations, and the constraints governing quorum
assignment are the fundamental constraints governing the
availability realizable by quorum consensus replication. These
constraints take the form of requirerhents that certain initial and
final quorums intersect. In the replicated queue example, a
client executing a Deq can tell which item to dequeue only if i! is
able to observe the effects of earlier Enq and Deq operations,
thus each initial quorum for Deq must intersect each final

quorum for both Enq and Deq. In general, a replicated object’s
behavior is detemlined by its quorum intersection relation Q
between invocations and operations: inv(p) Q q if each initial
quorum for the invocation of the operation p has a non-empty
intersection with each final quorum for the operation q.

3.2. Quorum Consensus Automata
Given a simple object automaton A and a quorum

intersection relation 0. the quorum consensus protocol
implements the following quorum consensus automaton

170

QCA(A,Q).

Definltlon 1: G is a Q-closed subhistory of H if
whenever it contains an operation p it also contains every
earlier operation q of H such that inv(p) Q q

Definition 2: G is a Q-view of H for an operation p if (1)
G includes every operation 9 such that h(p) 0 q, and (2)
G is Q-closed.

The (quorum consensus) automaton’s operations are
identical to those of A, and the automaton’s state is simply the
history it has accepted so far. The transition function is defined
in terms of Q and the pre- and postconditions of A’s operations
as follows: Let H be the automaton’s current state. There
exists G. a Q-view of H for p, s in 6’(G), and s’in 6+(G . p) such
that:

requires p.preA(s)
ensures p.post,(s, s’) A H’ = H . p

Informally, G corresponds to the view constructed by merging
the Logs from an initial quorum for p. The view must satisfy the
precondition for p, and the result of appending p to the view
must satisfy the postcondition. If the pre- and postconditions
are satisfied, the operation is recorded at a final quorum.

The standard notion of one-copy serializability is extended to
typed objects as follows: QCA(A,Q) is one-copy serializable if
L(QCA(A,Q)) = L(A). Quorum consensus replication
guarantees one-copy serializability if and only if the quorum
intersection relation 0 satisfies the following condition:

Definition 3: Q is a serial dependency relation for A if,
for all histories G and H in L(A) such that G is a Q-view of
Hforp,G.pc L(A)tiH.pe L(A).

Let Q be a minima/ serial dependency relation, meaning that

no R c Q guarantees one-copy serializability. L(QCA(A.Q)) E
L(QCA(A,R)), since every history accepted by the foner is
accepted by the latter, thus the set {QCA(A,R) j R E Q} is a
lattice of automata, and the lattice homomorphism O(R) =
QCA(A,R) defines a relaxation lattice. As illustrated in the next
two sections, these relaxed automata typically provide higher
availability (because they impose fewer restrictions on
quorums), at the cost of more complex behavior (because they
accept histories not in L(A)).

Additional flexibility can be achieved by adding a third
parameter to a quorum consensus automaton: an evaluation
function q: STATE x OP’ + 2SfATE that is required to agree with
the transition function 6’ on histories in L(A). Informally, q is an
extension of 6’ that allows us to assign an application-specific
meaning to histories not in L(A). The automaton QCA(A.Q.n) is
defined identically to QCA(A,Q) except that n replaces 6’ in the
above requires and ensures clauses. If Q is a serial
dependency relation for L(A), then L(A) = L(QCA(A,Q)) =
L(QCA(A,Q,n)). The set {QCA(A.R,q) j R c Q} is also a lattice
of automata, although different choices of n may produce
different lattices.

3.3. Example 1: A Real-Time Priority Queue
Consider an urban taxicab company, whose CUStOmerS

make telephone requests to dispatchers. The dispatchers
assign priorities to requests and enqueue them in a priority
queue. Whenever a taxicab is idle, the driver dequeues the
highest priority pending request. Figures 3-1 and 3-2 describe
the preferred behavior of a priority queue automaton.

Because the availability of the priority queue is critical, it iS
replicated at several sites throughout the city. We assume Sites
can crash, and that communication is unreliable (e.g., packet
radio). Thus, the events in EVENT of the environment
automaton (Section 2.3) include site crashes and
communication failures, which can cause the priority queue to
exhibit undesired behavior. Notice that these crash and failure
events are disjoint from the Enq and Deq operations of the
priority queue automaton.

The following set of constraints is necessary and Sufficient
for a one-copy serializable implementation of a replicated

PQueue: Walt
assumes TotalOrder with [E for Tj
% > denotes the total order relation
Includes Bag wlth (PQ for B]
Introduces

best: PO -+ E
constralns [best] so that for all [q: PQ, e: E]

best(ins(q, e)) = If k:;;(q)

etSe If e > best(q)
then e
else best(q)

Figure 3-f : Priority Queue Trait

EWWW
ensures q’ = ins(q, e)

DeWWe)
requlres Y isEmp(q)
ensures e = best(q) A q’ = del(q, e)

Figure 3-2: Priority Queue Interfaces

priority queue 1131.

Ql Each initial Deq quorum intersects each final Enq
quorum.

Q2 Each initial Deq quorum intersects each final Deq
quorum.

Constraint C?, implies that the availability of Enq and Deq
can be traded off: if one operation’s quorums are made smaller
(rendering that operation more available), then the quorums for
the other operation must be made larger to preserve the
intersection property (rendering that operation iess available). If
quorums are established by voting [lo], then Q2 implies each
Deq quorum must encompass a majority of votes.

Although such a replicated queue is more available than a
single-site queue, it is still possible that a dispatcher or cab
driver might be unable to locate a quorum for an operation. The
taxicab application is subject to “soft” real-time constraints -

171

cusfomefs are unlikely to wait until crashed sites recover or
communication links are restored. Under such circumstances,
it seems sensible to settle for behavior that is reasonably
“close,” for the purposes of the application, to the preferred
behavior.

Since an OperStiOn’S availability is determined by its Set of

quorums, and since those quorums are determined by the
intersection constraints given above, it is natural to enquire how
the queue would behave if we were to relax the constraints on
quorum intersection, permitting the dispatchers and drivers to
enqueue and dequeue requests from all available sites. This
relaxed behavior can be specified as a relaxation lattice,
{QCA(PQ,Q,@[Q s (Q,, Q,}) where q is the following
evaluation function’:

rl(N = emp

rl(H . Enq(e)/Ok()) = ins(n(H),e)

rl(H e DeqOKWe)) = delWl),e)
Although q agrees with the priority queue’s transition function
on legal priority queue histories, it is defined for arbitrary
sequences of Enq and Deq operations, not just for legal priority
queue histories. This particular choice of rl implies that each
driver will dequeue the highest-priority request that appears not
to have been served. Visually, the lattice of constraints looks
like:

Henceforth, for notational convenience we write Q, (Q,) for the
set (Q,} (IQ,}). We now discuss in turn each of the degraded
behaviors corresponding to the three elements of the lattice:
Q,, 0,. and 0.

If we relax the constraint that Deq quorums must intersect.
then requests may be serviced multiple times (i.e., by
dispatching multiple taxicabs to the same customer), but
customers are serviced in turn: no unserviced higher-priority
request will ever be passed over in favor of an unserviced
lower-priority request. More precisely, we cfaim the automaton
QCA(PQ,Q,.q) is a one-copy-serializable implementation of the
multi-prior&~ queue automaton MPQ shown in Figure 3-3. This
automaton’s state is a two-component record: the present
component is a bag of items (requests) that have been

enqueued but not dequeued. and the absent component is a
bag of previously enqueued items that have been dequeued.
The MPQ automaton’s transition function is as follows: Enq
inserts an item in present, and Deq either transfers the best
item from present to absent and returns it. or it returns an item
from absent whose priority is greater than that of any item in

present.

‘q(H) is shorthand for q(sa H).

Theorem 4: L(QCA(PQ,Q, ,q)) = L(MPQ).

Proof: We first show that f$XA(PQ,Q,,q)) 5; L(MPQ).
Q, is a serial dependency relation for MPQ (Definition 3).
hence L(QCA(MPQ,Q,)) = L(MPQ). and so it suffices to
show that L(QCA(PQ,Q, ,TI)) E L(QCA(MPQ,Q,)).

Let 6 be the transition function for MPQ. The
postconditions of multi-priority queue’s interfaces
completely determine the new value of the queue. Thus
for all H in L(MPQ), 6’(H) is a singleton set, and we
simplify our notation by treating 6’ as a function from
histories to MPc;) values, rather than sets of MPQ values.
Define a: MPQ + PQ to be the (value) homomorphism
defined by projecting on the first component of fhe MPQ
value: a(m) 3 mpresent.

If p is Enq or Deq, it is easy to check that:

p.prep&@‘O-VN =j p.preM&WW))

p.postp&WOW 2 p.wfMp&W)
We argue inductively that a(6’(H)) = q(H) for all histories H
in L(MPQ). The base case is immediate:

a(F(h)) = q(A) = emp.
Assume the result for all non-empty histories. Let H’ =
H . Enq(e)/Ok(), m = 6’(H), and m’ = S’(H’). By the Enq
postcondition for MPQ, m’.present = ins(m.present,e),
hence a(?Y(H’)) = ins(a(S’(H)),e). By the induction
hypothesis, q(H) = a@‘(H)), hence q(H’) = a(&*(H’)). If H’
= H . Deq()/Ok(e), the same argument holds with de/
replacing ins. Thus, by substitution:

p.prepo(q(H)) * p.preMpo(S(H))

p.postpa(fl(H)) :p.pos,,p&YH))

which is enough to show that L(QCA(PQ,Ql,rl)) s
L(MPQ). Note that the preconditions for both Enq’s are
true, and Deq.preMpo is true, thus making the first
implication for p = Deq trivially true.

TO show that L(MPQ) s r(QCA(PQ,Q,,tl)), we alSO
argue by induction. Let H be a history in L(MPQ) and

L(QCA(PQ.Q,,q)) such that H . p is in L(MPQ). If p is
Enq(x)/Ok() for some x, H . p is clearly in
r(QCA(PQ,Q,.tl)). Suppose p is Deq()/Ok(x). If x is in
present. choose a view that includes all Deq operations. If
x is in absent, choose a view that includes all Deq
operations except earlier Deq’s for x. +

If we relax the constraint that Enq and Deq quorums must
intersect, then requests may be serviced out of order, but no
request will be serviced more than once. More precisely, the
automaton QCA(PQ,Q& is a one-copy serializable
implementation of the out-of-order priority queue automaton
OPQ given in Figure 3-4. The behavior of an OPQ is just a bag
(Figures 2-l and 2-2). Enq inserts an item in the bag and Deq
removes an item, although not necessarily the best one. The
argument that r(QCA(PQ,Q,.rl)) = L(OPQ) is similar to that
given for Theorem 4, and is omitted.

Finally, if we relax both constraints Q, and Q,, the result is a
degenerate priority queue (Figure 3-5) tihich permits clients to
be serviced multiple times and out of order. The automaton’s
set of states is given by the Bag trait of Figure 2-l. although its
behavior is slightly different: Enq inserts an item in the bag,

172

and Deq returns (but does not necessarily remove) some item Ew@YW~
in the bag. ensures q’ = ins(q, e)

When designing a relaxation lattice, the exact way in which
the evaluation function q should extend the transition function

6’ is application dependent. For example, we might equally
well have chosen an evaluation function q’ that deletes higher-
priority requests that had been skipped over in favor of lower-
priority requests. The resulting lattice would produce a different
set of relaxed behaviors: unlike QCA(PC!,Q,,-rl),
QCA(PQ,Q2,q’) never services requests out of order, but it
could ignore certain requests.

Finally, we illustrate (informally) how a model of probabilistic
behavior fits in our relaxation lattice method. The likelihood the
queue will Satisfy a particular quorum intersection relation would
be given by an independent probabilistic model taking into
account estimates of crashes and communication failures. As a
simplistic example, suppose the environment is such that each
queue operation satisfies Q, with independent probability 0.9,
and Deq operations are certain to satisfy Q,. The likelihood a
Deq will fail to return an item whose priority is within the top n is

DeWWe)
requires Y isEmp(q)
ensures isln(q, e)

Figure 3-5: Degenerate Priority Queue

3.4. Example 2: A Repllcated Bank Account
Constraints on quorum intersection can be used to model

the effects of timing anomalies as well as faults. The cost
incurred in attaining a more preferred behavior is the amount of
time one is willing to wait for certain operations to complete.
For example, consider a bank with a system of automatic teller
machines (ATM). Customers’ accounts are replicated at
multiple branch offices. Each account provides Credit and
Debit operations, where Debit returns an exception if the
balance would become negative. The following is a necessary
and sufficient set of constraints on quorum intersection for the
account data type:

(0.1)“.

Every initial Debit quorum intersects every final Credit
quorum.

MPQueue: tralt
assumes TotalOrder wlth [E for q
% 5 denotes the total order relation
Includes Bag wlth [Q for B],

MPQ record of [present: Q, absent: 01
Introduces

best: Q 3 E
constrains [best]

so that for all [pq, PQ, q: Q, e: El
best(ins(q, e)) = If ;Ip,(q)

else If e > best(q)
then e
else best(q)

A2 Every initial Debit quorum intersects every final Debit
quorum.

The larger an operation’s quorums, the longer it takes to

ensures q’.present = ins(q.present. e)

execute that operation. Rather than forcing customers to wait
for all the updates to complete, the bank’s ATM’s might be
reprogrammed to announce success as soon as any update is
complete, assuming that the remaining updates can be
performed in the background. This strategy is equivalent to
allowing the operations’ final quorums to grow asynchronously,
and as long as updates to the same account do not occur too
close together, the bank account will satisfy both constraints A,
and A,. A similar approach is taken in Locus [18] and
Grapevine [3].

Deq O/We)
ensures

(isln(q.absent, e) A e > best(q.present)) v
(e = best(q.present) h
q’absent = ins(q.absent, e) A
q’.present = del(q.present, e))

Nevertheless, the bank naturally wishes to preserve the
semantic consistency property that no account can be
overdrawn, although it is not averse to bouncing checks
spuriously. To preserve this property, the account object may
relax constraint A,, but not A*- the relaxation lattice is defined
over a sublattice of 21A,* A2). In other words, Debit operations
must access a majority of sites, while Credit operations may be
propagated when it is convenient to do so. Here, Credit
quorums effectively grow in time. The environment events that
cause constraint A, to be violated are “premature” debits
executed before the effects of earlier credits have had time to
propagate. The probability that an ATM performing a debit
would fail to observe an earlier credit would diminish in time.

Figure 3-3: Multi-Priority Queue

OPQ: trait
Includes Bag

ensures q’ = ins(q, e)

requires 1 isEmp(q)
ensures isln(q, e) A q’ = del(q. e)

Flgure 3-4: Out-of-Order Prioriv Queue

DegenPQ: trait
Includes Bag

Note that unlike the priority queue example, the object’s set of
operations and the environment’s set of events are not disjoint.

4. Second Example Domain: Atomic Objects
A widely-accepted technique for preserving consistency in

the presence of failures and concurrency is to organize

173

computations as sequential processes called transactions.
Transactions are atomic, that is, serializable and recoverable.
Seriaializabifity means the execution of one transaction never
appears to overlap (or contain) the execution of another, and
recoverability means that a transaction either succeeds
completely or has no effect. A transaction’s effects become
permanent when it commifs, its effects are discarded if it aborts,
and a transaction that has neither committed or aborted is
active.

Atomicity is the basic correctness condition for objects
accessed by multiple transactions. Although atomicity, like one-
copy serializability, is a simple and appealing correctness
condition, several researchers have suggested that weaker
notions of correctness are necessary to support an adequate
level of concurrency [9, 191. In this section, we show how
specifications based on relaxation lattices can capture the
behavior of highly concurrent distributed applications without
replacing atomicity with ad hoc notions of correctness. Our
approach extends and formalizes that of Liskov and Weihi
[17,20], who have proposed that concurrency can be

enhanced by introducing non-determinism into specifications of
atomic objects. We believe that relaxation lattices are simpler
and easier to use than techniques that require discarding
atomicity, yet they have more expressive power than
techniques that use non-determinism to mask anomalous
behavior.

4.1. Atomic Object Automata
Let A be a simple object automaton. A schedule for A is a

history of operations of the form cp P>, where p is either an
operation of A, commit, or abort, and P is a transaction
identifier. A schedule is’ we//-formed if (1) no transaction has
executed both a commit operation and an abort operation, and

(2) no transaction executes any operation after a commit or
abort operation.

Informally, a schedule for A is serializable if it is equivalent to
a history for A in which transactions execute serially. More
precisely, if H is a schedule for A, let HIP denote the history of
operations of A executed by P In H.

Deflnltlon 5: A schedule is serializable if there exists a
total order < on transactions whose identifiers appear in H
such that HIP, HIP, is in L(A), where P, ,..., P, are the
transactions in H in the order c.

Let perm(H) be the subschedule of H consisting of operations of
committed transactions.

Definition 6: H is atomic if perm(H) is serializable.

Most techniques for implementing atomicity are on-line: the
scheduler does not know in advance which transactions will
commit and which will abort.

Deflnltlon 7: A schedule H is on-line atomic if the result
of appending commit operations for any subset of active
transactions is atomic.

An atomic object automaton Atomic(A) is an automaton that
accepts schedules of the simple object automaton A such that
every schedule in L(Atomic(A)) is well-formed and on-line
atomic.

All known techniques for implementing atomicity permit only
a subset of the well-formed on-line atomic schedules. To make
our eXafI@es as explicit as possible, we make the further
assumption that all schedules in L(Atomic(A)) are hybrid atomic
[21]: transactions Je serializable in the order they commit.

This property is guaranteed by a number of atomicity
mechanisms in common use, including strict two-phase locking
[7]. Our examples can easily be adapted to other atomicity
properties.

4.2. Relaxing FIFO Queues
Consider a printing service In which a collection of clients

spool files to be printed by a collection of printers. Client
transactions spool their files on a single queue, and each printer
controller executes transactions in which it dequeues the next
file to be printed, prints it, and commits. Ideally. the spooling

queue should be FIFO: files should be dequeued for printing in
the order they were enqueued. Nevertheless, because the
queue fs shared among multiple clients and printer COntrOlleG

concurrency is important. Although clients can enqueue files
without interference, the FIFO ordering cannot be guaranteed if
two controllers are allowed to dequeue files concurrently, thus
one dequeuing transaction must be detayed until the other
commits or aborts. Such behavior is clearly ill-suited to the
application; it is enough that the queue be “approximately”
FIFO. In particular, the queue should be FIFO as long as
transactions execute serially.

We can use relaxation lattices to formulate two alternative
“gracefully degrading” queue specifications. In each case, the
extent to which the queue departs from FIFO behavior depends
on the level of concurrency. Suppose a transaction executing a
Deq observes that a concurrent transaction has tentatively
dequeued the item at the head of the queue. Instead of waiting
for the concurrent dequeuer to commit or abort, an
implementation might permit a dequeuing transaction to
proceed in one of two ways:

. Optimistically assuming the earlier dequeuer will commit,
the transaction skips the first item and returns the next
undequeued item in the queue.

. Pessimistically assuming the earlier dequeuer will abort.
the transaction ignores the pending dequeue and returns
that same item.

As long as dequeuing transactions execute serially, each Of
these alternative implementations yields a FIFO queue. If
dequeuing transactions overlap, however, the first

implementation permits files to be printed out of order, but each
file is printed only once, while the second permits files to be
printed multiple times, but files are always printed in the order
they were enqueued. Rather than viewing these

174

implementations as “weakly consistent” FIFO queues, we view
each as an atomic object automaton distinct from the FIFO
queue.

For our examples, the constraints of interest are the number
of Deq operations executed by active transactions. Let C,
denote the constraint that no more than k active transactions
have executed Deq operations. The set of constraints C is (C, 1
k 5 O}. For each of the implementations sketched above, the
lattice homomorphism $I assigns a behavior to each element in
the lattice of constraints 2 c. As long as no more than k

dequeuing transactions attempt to access the queue
concurrently, the object’s behavior will be given by an atomic
object automaton Atomic(4$$)). While Ck iS satisfied the
behavior of the “optimistic” implementation is
L(Atomic(Semiqueue,J), and the behavior of the “pessimistic”
implementation is L(Atomic(Stutteringi Queue)), where
Semiqueuek and Stutteringi Queue are defined in the next two
sections.

The events that affect the environment (Section 2.3) are the
operations that affect the number of concurrent dequeuers: the
Deq, commit, and aborf operations. Like the bank account
example, the object’s set of operations and the environment’s
set of events are not disjoint. A probabilistic model of the
environment could be expressed in terms of the distributions of
transaction arrivals, durations, and success rates.

4.2.1. Semlqueues
A Semiqueuek object (Figure 4-l) is a sequence of items.

The Enq operation inserts an item in the sequence, and the
Deq deletes and returns one of the first k items in the queue. It
is straightforward to show that if k is one, the object is a FIFO

Constraints

queue (Figures 2-3 and 2-4) and if k is n. the maximum number
of items allowed in the queue, the object is a bag (Figures 2-l
and 2-2). Weihl and Liskov [20] give an example
implementation of the semiqueue data type written in Argus.

SemiQ: trait
imports Integer
Includes FifoQ, Set with [SetE for C]
introduces
prefix: Q, Int + SetE

constrains [prefix] so that for all [q: Q, i: Int]
pfefix(q, i) = if (i = 0 v isEmp(q)) then {}

else prefix(rest(q), i-i) u (first(q)}

ensure q’ = ins(q, e)

requlres Y isEmp(q)
ensures q’ = del(q, e) A e E prefix(q, k)

Figure 4-1: Semiqueuek

The relaxation lattice is defined as follows. The set of
constraints C is as defined above. The lattice homomorphism 4
is defined over the sublattice of nonempty elements of C +(B) =
Semiqueuek, where C, is the element of B with the lowest
index. For example, the constraint and behavior lattices for a
three-item queue are shown in Figure 4-2. Notice that I#I is a
lattice homomorphism, not an isomorphism as in the replication
example. Moreover, if the queue is unbounded, then the lattice
of behaviors is infinite.

Behavior

Semiqueue, (FIFO queue)

Semiqueues

Semiqueue, (bag)
Figure 4-2: Relaxation Lattice for a Three-Item Semiqueue

42.2. Stuttering Queues
A Stutteringi Queue object (Figure 4-3) is like a FIFO queue

except that the first item in the queue may be returned as many
as i times. The relaxation lattice is similar to that for
semiqueues: The lattice of automata is {Stutteringi Queue 1 i >

EWWW
ensures q’.items = ins(q.ltems, e)

DeWWe)
requires 7 isEmp(q.items)
ensures

q.count c j =9
0), and the lattice homomorphism I$ is defined over the (e = first(q.items) A

sublattice of nonempty elements B of C: q(B) = Stutteringi ((q’.count = q.count + 1 A q’.items = q.items)

Queue, where Ci is the element of B with the lowest index.
v (q’.count = 0 A q’.items = rest(q.items))))

The stuttering queue and semiqueue behaviors can be
combined within a single lattice: the SSqueueik behavior would Figure 4-3: Stutteringi Queue

permit any of the first k items to be returned as many as j times.
SSqueue,, is a FIFO queue. 5. Remarks and Related Work

StutQ: tralt
Imports Integer

In summary, our relaxation lattice method suggests the

Includes FifoQ following design strategy:

StQ record of [items: Q, count: Int] l Identify a set of constraints C that characterizes the
preferred behavior. This set induces a lattice 2?

175

l Not all elements in the lattice may correspond to an
intuitively meaningful behavior, let alone an acceptable
one. The homomorphism I$ detenines which elements
in the lattice of automata represent acceptable behaviors.

l Given the lattices of constraints and automata, the cost
function determines the price one must pay in moving up
the lattice of automata toward the preferred behavior.

The relaxation lattice method is a natural way to capture
graceful degradation in distributed systems. Moreover, the
method is quite flexible. In this paper, we have reviewed three

applications: a replicated priority queue, a replicated bank
account, and an atomic queue. In each case, as summarized in
Figure 5-1, the domain-specific correctness condition together
with the preferred behavior impose a set of constraints on the
implementation. These constraints impose a cost, which can
be affected by environment events. These costs can be
alleviated by relaxing the constraints, potentially producing
“degraded” behavior. These trade-offs are captured naturally
as a homomorphism between the lattice of constraints and the
corresponding lattice of behaviors.

Comness condttton Pretem?d Behavior Constraints COSt Events

One-copy serializability Priority Queue Quorum intersection Availability Failures, crashes
One-copy serializability Account Quorum intersection Latency Premature Debits
Atomicky FIFO Queue Concurrent Deq’s Concurrency Deq, commit, abort

Figure 5-l: Summary Chart

The lattice structure also permits us to compare
specifications. As in Larch, if a specification is considered to
denote a theory, i.e.. set of formulae, then specifications may
be compared by comparing the strengths of their theories [22],
where it may be necessary to introduce theory interpretations,
i.e., mappings between theories. Maibaum and others [15] use
this notion of theory interpretation to define a database view as
an interpretation between two different database specifications.
Thus, instead of using a set of constraints to induce a lattice of
behaviors under inclusion, a more general approach would
have been to start with a lattice of predicates under implication
or a lattice of theories under containment.

Nevertheless, we befleve that sets of constraints are easier
to work with than lattices of unstructured theories or
specifications. Making constraints explicit forces the designer
to compare the costs of satisfying the constraints with the
complexity of the unconstrained behavior. As illustrated by the
replication examples, generating the lattice of weaker quorum
intersection relations effectively enumerates the possible trade-
offs. Sometimes all trade-offs are acceptable, as in the taxi
queue example, and sometimes certain trade-offs are
unacceptable, as in the bank account example.

Our relaxation method captures precisely the intuition behind
the informal specification method of Liskov and Weihl [ZO, 17).
Their method recognizes only two kinds of behavior: best case
(normal) and worst case (abnormal). These behaviors are the
informal counterparts of the specifications at the top and bottom
of our relaxation lattice. The use of explicit constraints adds
expressive power to our specifications by focusing attention on
intermediate behaviors, providing a natural way to capture
graceful degradation: the extent to which an object’s behavior
departs from its preferred specification is proportionate to the
gravity of the faults that affect it. For example, while Liskov and
Weihl’s method might specify only that a printer spooler
behaves either like a FIFO queue or like a bag, our method can
make stronger statements, e.g., in a system where no more
than k transactions concurrently access a semiqueue, no item

will be dequeued out of order with respect to more than k items.
Furthermore, our method allows for a clean interface to

probabilistic and queuelng models typically used to describe a
system’s reliability. Separate functional and probabilistic
models can be combined without compromising the expressive
power of either. An alternative approach is to capture both
kinds of properties in a single model, as in Durham and Shawls
analysis of a fault-tolerant parallel quicksort algorithm [S] or
Cristian’s [5] Markovian analysis of a two-disk stable storage
implementation. Our approach, however, permits functional
and probabilistic properties to be understood in isolation, which
we believe makes our specifications easier to understand, more
flexible, and more readily applicable to large and realistic
problems.

Acknowledgments
We thank the anonymous referees for their suggestions and

comments.

References

1’1 P.A. Bernstein and N. Goodman. The failure and
recovery problem for replicated databases. In Proceedings,
2nd ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing. 1983. Montreal, Quebec.

PI K.P. Birman. Replication and fault-tolerance in the ISIS
system. In Proc. 70th Symposium on Operating Systems
Principles. December, 1985. Also TR 85-668, Cornell
University Computer Science Dept.

[31 AD. Birrell, Pi. Levin, R. Needham, and M. Schroeder.
Grapevine: an exercise in distributed computing.
Communications of the ACM 25(14):260-274, April, 1982.

[41 J. Chang and N.F. Maxemchuk. Reliable broadcast
protocols. ACM Transactions on Computer Systems
2(3):251-273, August, 1984.

151 F. Cristian. A rigorous approach to fault-tolerant system
development. Technical Report RJ 4008, IBM Research
Laboratory, September, 1983.

176

161 I. Durham and M. Shaw. Specifying reliabiliv as a
software attribute. Technical Report CS-82-148, Carnegie-
Mellon University, December, 1982.

r71 K.P. Eswaran, J.N. Gray, R.A. Lorie, and I.L. Traiger.
The notion of consistency and predicate locks in a database
system. Communications of the ACM 19(11):624-633,
November, 1976.

PI M. Fischer and A. Michael. Sacrificing serializabilithy to
attain high availability of data in an unreliable network. In
Proceedings, ACM SIGACT-SIGMOD Symp. on Princip/es of
Database Systems. March, 1982.

PI H. Garcia-Molina. Using semantic knowledge for
transaction processing in a distributed database. ACM
Transactions on Database Systems 8(2):186-213, June, 1983.

[IO] D.K. Gifford. Weighted voting for replicated data. In
Proceedings of the Seventh Symposium on Operating Systems
Principles. ACM SIGOPS, December, 1979.

[l l] J. Gray. Notes on database operating systems.
Lecture Notes in Computer Science 60.
Berlin, 1978, pages 393-481.

Springer-Verlag,

1121 J.V. Guttag, J.J. Horning, and J.M. Wing. The Larch
family of specification languages. /EEE Software 2(5):24-36.
September, 1985.

1131 M.P. Herlihy. A quorum-consensus replication method
for abstract data types. ACM Transactions on Computer
Systems 4(l). February, 1986.

1141 J.G. Kemeny, J.L. Snell, A.W. Knapp. Graduate Texts
in Mathematics. Volume 40: Denumerable Markov Chains.
Springer-Verlag. New York, 1976.

[15] S. Khosla, T.S.E. Maibaum, and M. Sadler. Large
database specifications from small views. In Proceedings of
the Fifth Conference on Foundations of Software Technology
and Theoretical Compufer Science (LNCS 206), pages
246-271. Springer-Verlag, Berlin, 1985.

[16] L. Lamp&. Time, clocks, and the ordering of events in
a distributed system. Communications of the ACM
21(7):558-565, July, 1978.

[17] B.H. Uskov and W.E. Weihl. Specifications of
distributed programs. Distributed Computing t (2):102-i 18,
April, 1986.

[18] G.J. Popek, B. Walker, J. Chow, D. Edwards, C. Kline,
G. Rudisin, and G. Thiel. Locus: a network transparent

high reliability distributed system. In Proceedings, Eighth
Symposium on Operating Systems Principles. December,
1981.

1191 P.M. Schwarz and A.Z. Spector. Synchronizing shared
abstract types. ACM Transactions on COmpUfi3r SyStenX

2(3):223-250, August, 1984.

[20] W.E. Weihl and B.H. Liskov. Specification and
implementation of resilient, atomic data types. In Proc.
SIGPLAN Symposium on Programming Language Issues in
Software Systems. June, 1983.

[21] W.E. Weihl. Specification and implementation of atomic
data tyws. Technical Report TR-314. Massachusetts Institute
of Technology Laboratory for Computer Science, March, 1984.

[22] J.M. Wing. A two-tiered approach to speciwing
programs. Technical Report MIT-LCS-TR-299, MIT Laboratory
for Computer Science, June, 1983.

This research was sponsored by the Defense Advanced
Research Projects Agency (DOD), ARPA Order No. 4976,
monitored by the Air Force Avionics Laboratory Under Contract
F3361.584-K-1520. Additional support for J. Wing was
provided in part by the National Science Foundation under
grant DMC-8519254.

The views and conclusions contained in this document are
those of the authors and should not b8 interpreted as
representing the official policies, either expressed or implied, of
the Defense Advanced Research Projects Agency or the US
Government.

