
Specifying Graceful Degradation in Distributed Systems 
Maurice P. Herlihy 
Jeannette M. Wing 

Department of COKtpUtef Science 
Carnegie Mellon University 
Pittsburgh, PA 152133890 

Abstract 

Distributed programs must often display graceful degradation, 
reacting adaptively to changes in the environment. Under ideal 
circumstances, the program’s behavior satisfies a set of 
application-dependent constraints. In the presence of failures, 
timing anomalies, or synchronization conflicts, however, certain 
constraints may become difficult or impossible to Satisfy, and 
the application designer may choose to relax them as long as 
the resulting behavior is sufficiently “close” to the preferred 
behavior. This paper describes the relaxation lattice method, a 
new approach to specifying graceful degradation for a large 
class of highly-concurrent fault-tolerant distributed programs. A 
relaxation lattice is a lattice of specifications parameterized by a 
set of constraints, where the stronger the set of constraints, the 
more restrictive the specification. While a program is able to 
satisfy its strongest set of constraints, it satisfies its preferred 
specification, but if changes to the environment force it to 
satisfy a weaker set, then it will permit additional “weakly 
consistent” computations which are undesired but tolerated. 
The use of relaxation lattices is illustrated by specifications for 
programs that tolerate (1) faults, such as site crashes and 
network partitions, (2) timing anomalies, such as attempting to 
read a value “too soon” after it was written, and (3) 
synchronization conflicts, such as choosing the oldest 
“unlocked” item from a queue. 

1. Overview 
Distributed programs typically display more complex 

behavior than their single-site counterparts because they mUSt 

perform efficientfy and correctly in the presence of concurrency 

and failures. brten, such programs must display graceful 
degradation, reacting adaptively to changes in the environment. 

Under ideal circumstances, the program’s behavior satisfies a 

set of application-dependent preferred constraints. Each 

constraint typically preserves a certain level of consistency, and 
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each has an associated cost. In the presence of failures, timing 

anomalies. or synchronization conflicts, however, certain 

constraints may become difficult or impossible to satisfy, and 

the application designer may choose to relax them as long as 
the resulting behavior is sufficiently “close” to the preferred 

behavior. 

Although numerous techniques have been proposed for 

implementing graceful degradation in the presence of 

concurrency and failures, the resulting behavior has proved 

difficult to specify using existing techniques. In this paper, we 

propose the rekuation lattjce method, a new approach to 

specifying graceful degradation for a large class of highly- 

concurrent fault-tolerant distributed programs. This method 
incorporates sets of Constraints into specifications. AS with the 
usual correspondence between specifications and 
implementations (i.e., programs), the less constraining the 
specification, the greater the number of possible 
implementations. 

Our specifications have the following advantages: 

l They are high-level in that the user is not swamped by 
superfluous ‘implementation details. Our axiomatic 
Specifications require users only to describe desired 
behavior. not prescribe a model for achieving it. 

l They capture graceful degradation, showing explicitly 
how changes in the environment correspond to changes 
in observable behavior, 

l They are concerned only with functional behavior, yet 
they provide a natural interface to the probabilistic and 
queuing models commonly used to describe the 
occurrence of failures and synchronization conflicts 

l They serve as a guide to designers. Given an initial set 
of constraints, a designer need only decide which 
subsets represent acceptable and/or meaningful aberrant 

behaviors. 
The relaxation lattice method is applicable to a Variety of 

domains, such as replicated databases and transaction-based 

sysfems, each of which has bred its own set of specialized 
techniques and algorithms satisfying domain-specific 
properties. As we illustrate in several exampfes, our approach 
provides a unified and general framework for evafuatfng and 

comparing such techniques, specifying system behaviors, and 

characterizing the essential trade-offs between the Costs of 
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Preserving consistency properties and the costs of relaxing 
them. 

In Section 2, we introduce the basic specifmtion method. 
We present eXi=NiIpleS illustrating how the method is used for 
replicated data in Section 3 and for atomic data in Section 4. In 
SeCtiOn 5 we Close with some remarks, and a discussion of 
related work. 

2. Model 
The basic containers for data are called O&@&T. Each 

object has a type. which defines a set of possible v&es and a 
Set of Primitive operations that provide the only means to create 
and manipulate objects of that type. For example, a file might 
provide Read and Write operations, and a FIFO queue might 
provide Enq and Req operations. A computation is modeled as 
a history, which is a finite sequence of executions of operations 
on objects; here, we focus on individual object subhistories of a 
computation. 

For an operation (execution) in a history, we write 
op(args’)/efm(res*), where op is an operation name, ags’ is a 
Sequence of argument values, term is a termination condition 
name, and fes* is a sequence of result values. The operation 
name and argument values constitute the inv~fjon, and the 
termination condition and result values constitute the response. 
We use “Ok” for normal termination and write “inv@)” for the 
invocation of operation p. 

We assume that operations on objects can be executed 
atomically; that is, an operation either takes place completely or 
not at alt, and operations appear to take place instantaneously 
with respect to one another. Atomic operations can be 
implemented by a variety of well-known techniques, including 

the two-phase locking and two-phase commitment PrOtOCOlS 
[7. 111, or atomic broadcast protocols p, 41. 

2.1. Simple Object Automate 
We model an object by a Simph ob@cf automaton, an 

automaton that accepts certain sequences of operations. A 
simple object automaton is a four-tUple <STATE, So OP. 6>, 
where STATE is the object’s set of states, so E STATE is its initial 
state, OP is a set of operations (the automaton’s input alphabet), 
and 6: STATE x OP 4 2sTATE is a partial tfanSitiOn function. 

The domain of the transition function can be extended to 
histories, 6’: STATE x OP’ -+ 2flA? 

qs, A) = s 

6’(S, H . P) = Us* E ~*(~,H)%‘s P) 
where “.” denotes concatenation, and “A” denotes the empty 
history. We use 6’(H) as shorthand for s’(S,, H). A history H is 
accepted by an automaton if 6’(H) + 0. We call L(A), the 
language accepted by automaton A, the behavior of A. 

2.2. Relaxation Lattices 
Let A be a set of simple object automata having the same 

Set Of states, the same initial state, and the same operations, 
but (Possibly) different transition functions. We say that A is a 
lattice of automate if the set (L(A) 1 A E A} is a tattice under 
reverse inclusion (i.e., the smallest language is at the top). We 
call the language of the automaton at the top of the lattice the 
pfefeffed behavior of the lattice. 

A relaxation lattice is given by a set of constraints C, a lattice 
of automata A, and a lattice homomorphism, 

$12~+ A. 

For now. we leave a relaxation lattice’s set of constraints 
uninterpreted since the meaning of such constraints is domain- 
dependent. In later examples we will see that constraints for 
replicated objects are of a different nature from those for atomic 
objects. For now, it suffices to think of each constraint as an 
assertion to be satisfied. We orient the lattice 2c so that the 
largest (intuitively, the strongest) set of constraints lies at the 
top, and 4(c) is the preferred behavior of A. In general, Q is 

defined over a sublattice of 2=. 
A relaxation lattice is thus a lattice of simple object automata 

parameterized by a set of constraints, where the stronger the 
set of constraints, the smaller the language accepted. 
Informally, a relaxation lattice describes an object’s conditional 
behavior. If the environment is such that the object satisfies 
constraints C E C. then the object will behave like the simple 
object g(C), accepting the language L(R$(C)). While an object is 
able to satisfy its strongest set of constraints, it will accept only 
histories from its preferred behavior. If changes to the 
environment force the object to satisfy a weaker set, then it will 
accept additional “weakly consistent” histories, which are 
undesired but tolerated. 

The relaxation method is appropriate for modeling the 
behavior of objects for which there is a meaningful cost 
associated with moving up the relaxation lattice. The higher 
one goes in the lattice, the higher the price paid for the more 
preferred behavior. In the examples to follow, we use 
constraints to model the cost of tolerating (1) faults, such as site 
crashes and network partitions, (2) timing anomalies, such as 
attempting to read a value “too soon“ after it was written, and 
(3) synchronization conflicts, such as choosing the oldest 
“unlocked” item from a queue. 

2.3. The Environment 
The environment determines which behavior, preferred or 

otherwise, an object exhibits. The environment itself can be 
represented by an automaton .c2’, c, EVENT, SE>. where inpUt 

events in EVENT model changes in the current set of constraints 
(state), and k: 2=x EVENT + 2’is the transition function (note 
that SE maps to a single state, not a set of states as for object 
automata). Let A be a lattice of automata, where each A in A is 
given by the tuple <STATE, s, oP, +. The Sets EVENT and OP 
may be disjoint, as in the replicated priority queue example of 
Section 3.3, or they may be overlapping, as in the bank account 
and atomic queue examples of Sections 3.4 and 4.2. Let 
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4: 2c 4 A be the lattice homomorphism. 
The environment and the lattice can be combined into a 

single automaton that accepts interleaved events and 

operations: 

~2’ x STATE. (c&j, EVENT u OP, 6> 

Let EVENTOP be EVENT u OP. The transition function 6: Zc x 
STATE x EVENTOP -+ 2=x ZSTATE is defined by two components, 
6,: ec x EVENTOP -+ 2’. which defines the effects on the 
environment state, and 6,: 2’ x STATE x EVENTOP + fiSTATE, 

which defines the effects on the lattice state: 

6,(c. p) = if p E EVENT then 8& p) else c 

&#. s. p) = if p E 0P A A = I$@, (c. p)) then $!,(s, p) else (s} 
When the (combined) automaton accepts an event, it changes 
the environment state. When the automaton accepts an 
operation, it changes the object state, choosing the transition 
function indicated by the current environment. If the input is 
both an event and an operation, the environment changes 
before the transition function is selected. In this paper, we will 
focus our attention on the lattice A, using informal descriptions 
to characterize the environment. 

For many applications, an additional probabilistic model 
(141 would be used to characterize the likelihood that certain 

sets of constraints would be satisfied. Indeed, a strength of the 
relaxation method approach is that it can specify functional 
behavior independently of probabilistic behavior, while still 
providing a clean interface between the two domains. 

2.4. Specification Language 
In our examples, we will use the Larch Specification 

Language [12] to specify both STATE and 6 of a simpte object 
automaton. A state in STATE is a mapping between an object 
and its value, hence it is convenient to represent an object’s 
possible states as a set of values. We use a Larch Paif, which 
denotes a first-order theory, to speciv an object’s values. In a 
trait, the set of operators and their signatures following 
Introduces defines a vocabulary of terms to denote values. 
For example, from the Bag trait of Figure 2-1, emp and ins(emp, 
5) denote two different bag (multiset) values. The set of 
equational axioms following the constralns clause defines a 
meaning for the terms, more precisely, an equivalence relation 
on the terms, and hence on the values they denote. For 
example, from Bag, one could prove that del(ins(ins(emp, 3). 3), 
3) = ins(emp, 3). The generated by clause of Bag asserts that 

emp and ins are sufficient operators to generate alt values of 
bags. Formally, it introduces an inductive rule of inference that 
allows one to prove properties of all terms of sort 6. 

Bag: trait 
Introduces 

emp: + B 
ins: 8, E + B 
del: B, E --f B 
isEmp: B --+ Boo1 
isln: 6, E + Bool 

constraIns B so that for all [b: B, 8, el : E] 
B generated by [ emp, ins ] 

del(emp, e) = emp 
del(ins(b, e). el) = If e = el then b 

else ins(del(b, el), e) 
isEmp(emp) = true 
isEmp(ins(b, e)) = false 
isln(emp, e) = false 
isln(ins(b, e), el) = (e = el) v isln(b, el) 

Figure 2-1: Bag Trait 

EnWWkO 
ensures b’ = ins(b, e) 

DeWWe) 
requires Y isEmp(b) 
ensures isln(b, e) A b’ = del(b, e) 

Flgure 2-2: Bag Interfaces 

Larch provides three ways of reusing traits: a trait T can 
Include. Import, or assume another trait Tl . If Tl is included, 
then T extends the theory denoted by Tl by adding more 
operators and equations explicitly in T. For example, FifoQ of 
Figure 2-3 includes Bag and adds two operators, first and rest, 
and two equations to those of Bag. From FifoQ, one could 
show that rirst(ins(ins(emp, 3), 3)) = 3. If Ti is imported, then T 
must be a conservative extension of the theory of Tl, i.e., T 
cannot place further constraints on the operators of Ti. All 
traits implicitly import the Boolean trait, thereby giving meaning 
to “true” and “false” as they appear in the Bag trait. If Tl is 
assumed, then T may use Tl’s operators with their meaning as 
given in Tl; a further use of T is required to discharge the 
assumption of Tl’s theory. For example, a trait for priority 
queues (q.v, Section 3.3) might assume the existence of a total 
ordering on the items inserted in the queue. With any of the 

FifoQ: Walt 
includes Bag with [Q for B] 
Introduces 

first: Q 9 E 
rest: Q + E 

constratns Q so that for all [q: Q, e: E] 
first(ins(q, e)) = If isEmp(q) then e else first(q) 
rest(ins(q, e)) = If isEmp(q) then emp else rest(q) 

Figure 2-3: FIFO Queue Trait 

Enq WW 
ensures q’ = ins(q, e) 

~WWW) 
requlres Y isEmp(q) 
ensures q’ = rest(q) A e = first(q) 

Figure 2-4: FIFO Queue Interfaces 

three kinds of reuse, a with clause allows renaming of Operator 
and sort identifiers. 

We use Larch interfaces to describe transition functions for 
simple object automata. For example. interfaces for the Enq 
and Deq operations for FIFO queues are shown in Figure 2-4. 
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The object’s identifier, e.g., 9, is an implicit argument and return 
formal of each operation. A requires clause states the 
precondition that must hold when an operation is invoked. An 
omitted requires clause is interpreted as equivalent to requires 
true. An ensures clause states the postcondition that the 
operation must establish upon termination. An unprimed 
argument formal, e.g., Q, in a predicate stands for the value of 
the object when the operation begins. A return formal or a 
primed argument formal, e.g., q’, stands for the value of the 
object at the end of the operation. For an object x. the absence 
of the assertion x’ = x in the postcondition states that the 
object’s value may change. 

For an operation, p, of a simple object automaton, A, we 
write p.prep, and p.postA for the pre- and postconditions of p. 
The transition function 6 for A is defined such that 

(v s, s’ E STATE) s’ E 6(s, p) iff p.pre,(s) /\ p.post,& s’). 

We use the vocabulary of traits to write the assertions in the 
pre- and postconditions of an object’s operations; we use the 

meaning of equality to reason about its values. Hence, the 
meaning of ins and = in Enq’s postcondition is given by the 
FifoQ trait. Notice that the berms that denote values for FIFO 
queues and for bags are generated by the same trait operators, 
emp and ins, but their operations, Enq and Deq, differ. We will 
be revisiting these two specifications in later examples. 

3. First Example Domain: Replicated Objects 
A replicated object is one that is stored redundantly at 

multiple sites in a distributed system. Replication can enhance 
the availability, reliability, and accessibility of data. A replication 
method is a technique for managing replicated objects. A 
widely-accepted correctness criterion for replication methods is 
one-copy s&ializabiMy [l], which states that the functional 
behavior of a replicated object should be identical to the 
functional behavior of an analogous single-site object. That is, 
except for availability, replication should be transparent. 
Although one-copy serializability is a natural and attractive 
correctness property, a number of researchers [3,8, 181 have 
investigated weaker notions of correctness. The motivation 
behind these efforts is the perception that strict one-copy 
serializability is sometimes too expensive in terms of 
availability, the likelihood the operation execution will succeed, 
and in terms of latency, the duration the caller must wait for the 
operation to complete. 

In this section we outline how specifications based on 
relaxation lattices can express the behavior of a number of 
“weakly consistent” replication methods from the literature 
without sacrificing one-copy serializability as the basic 
correctness condition. Each of the weakly consistent methods 
is based on the observation that availability and latency costs 
can be reduced by performing updates at a small number of 
sites, relaying updates to be propagated asynchronously, 
perhaps as inaccessible sites rejoin the system. This technique 
gives rise to transient inconsistencies which are tolerated 

because the-resulting behavior is considered sufficiently “close” 
to the preferred behavior. 

3.1. Constraints on Replicated Objects 
We begin with an informal review of quorum consensus to 

motivate the kinds of constraints that are meahingful for 
replicated objects. (A more complete discussion appears 
elsewhere 1131.) A replicated object’s state is represented as a 
log, which is a seuuence of enfries, where an entry is the 
timestamped record of an operation. Timestamps are 
generated by logical clocks [16]. For example, the following is CI 
schematic representation of a queue replicated among three 
sites: Sl , S2, and S3. 

Is1 IS2 Is3 I 
I I -- 

1~01 Enq(x)/Ok() 1 ID1 Enq(x)/OkO 1 k . . . -- ., 
193 Enq(y)/Ok() 1:03 Enq(y)lOk() 

2.92 Enq(z)/Ok() 2:02 fna(zYOk0 

A missing entry is denoted by an empty space. The queue’s 
current value is ins(ins(ins(emp,x),y),z), which can be 
reconstructed by merging the entries in timestamp order, 
discarding duplicates. 

A client executes an operation in three steps: 
1. The client merges the logs from an initial quorum of 

sites for the invocation to construct a view representing 
a subhistory of the object’s current history. 

2. The client chooses a response consistent with the view, 
and appends the new entry to the view. 

3. The client sends the updated view to a final quorum of 
sites for the operation. Each site in the final quorum 
merges the view with its resident log. 

A quorum for an operation is any set of sites that includes both 
an initial and a final quorum for that operation. A quorum 

assignment associates each operation with its initial and final 
quorums. 

An object’s quorum assignment determines the availability of 
its operations, and the constraints governing quorum 
assignment are the fundamental constraints governing the 
availability realizable by quorum consensus replication. These 
constraints take the form of requirerhents that certain initial and 
final quorums intersect. In the replicated queue example, a 
client executing a Deq can tell which item to dequeue only if i! is 
able to observe the effects of earlier Enq and Deq operations, 
thus each initial quorum for Deq must intersect each final 

quorum for both Enq and Deq. In general, a replicated object’s 
behavior is detemlined by its quorum intersection relation Q 
between invocations and operations: inv(p) Q q if each initial 
quorum for the invocation of the operation p has a non-empty 
intersection with each final quorum for the operation q. 

3.2. Quorum Consensus Automata 
Given a simple object automaton A and a quorum 

intersection relation 0. the quorum consensus protocol 
implements the following quorum consensus automaton 
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QCA(A,Q). 

Definltlon 1: G is a Q-closed subhistory of H if 
whenever it contains an operation p it also contains every 
earlier operation q of H such that inv(p) Q q 

Definition 2: G is a Q-view of H for an operation p if (1) 
G includes every operation 9 such that h(p) 0 q, and (2) 
G is Q-closed. 

The (quorum consensus) automaton’s operations are 
identical to those of A, and the automaton’s state is simply the 
history it has accepted so far. The transition function is defined 
in terms of Q and the pre- and postconditions of A’s operations 
as follows: Let H be the automaton’s current state. There 
exists G. a Q-view of H for p, s in 6’(G), and s’in 6+(G . p) such 
that: 

requires p.preA(s) 
ensures p.post,(s, s’) A H’ = H . p 

Informally, G corresponds to the view constructed by merging 
the Logs from an initial quorum for p. The view must satisfy the 
precondition for p, and the result of appending p to the view 
must satisfy the postcondition. If the pre- and postconditions 
are satisfied, the operation is recorded at a final quorum. 

The standard notion of one-copy serializability is extended to 
typed objects as follows: QCA(A,Q) is one-copy serializable if 
L(QCA(A,Q)) = L(A). Quorum consensus replication 
guarantees one-copy serializability if and only if the quorum 
intersection relation 0 satisfies the following condition: 

Definition 3: Q is a serial dependency relation for A if, 
for all histories G and H in L(A) such that G is a Q-view of 
Hforp,G.pc L(A)tiH.pe L(A). 

Let Q be a minima/ serial dependency relation, meaning that 

no R c Q guarantees one-copy serializability. L(QCA(A.Q)) E 
L(QCA(A,R)), since every history accepted by the foner is 
accepted by the latter, thus the set {QCA(A,R) j R E Q} is a 
lattice of automata, and the lattice homomorphism O(R) = 
QCA(A,R) defines a relaxation lattice. As illustrated in the next 
two sections, these relaxed automata typically provide higher 
availability (because they impose fewer restrictions on 
quorums), at the cost of more complex behavior (because they 
accept histories not in L(A)). 

Additional flexibility can be achieved by adding a third 
parameter to a quorum consensus automaton: an evaluation 
function q: STATE x OP’ + 2SfATE that is required to agree with 
the transition function 6’ on histories in L(A). Informally, q is an 
extension of 6’ that allows us to assign an application-specific 
meaning to histories not in L(A). The automaton QCA(A.Q.n) is 
defined identically to QCA(A,Q) except that n replaces 6’ in the 
above requires and ensures clauses. If Q is a serial 
dependency relation for L(A), then L(A) = L(QCA(A,Q)) = 
L(QCA(A,Q,n)). The set {QCA(A.R,q) j R c Q} is also a lattice 
of automata, although different choices of n may produce 
different lattices. 

3.3. Example 1: A Real-Time Priority Queue 
Consider an urban taxicab company, whose CUStOmerS 

make telephone requests to dispatchers. The dispatchers 
assign priorities to requests and enqueue them in a priority 
queue. Whenever a taxicab is idle, the driver dequeues the 
highest priority pending request. Figures 3-1 and 3-2 describe 
the preferred behavior of a priority queue automaton. 

Because the availability of the priority queue is critical, it iS 
replicated at several sites throughout the city. We assume Sites 
can crash, and that communication is unreliable (e.g., packet 
radio). Thus, the events in EVENT of the environment 
automaton (Section 2.3) include site crashes and 
communication failures, which can cause the priority queue to 
exhibit undesired behavior. Notice that these crash and failure 
events are disjoint from the Enq and Deq operations of the 
priority queue automaton. 

The following set of constraints is necessary and Sufficient 
for a one-copy serializable implementation of a replicated 

PQueue: Walt 
assumes TotalOrder with [E for Tj 
% > denotes the total order relation 
Includes Bag wlth (PQ for B] 
Introduces 

best: PO -+ E 
constralns [best] so that for all [q: PQ, e: E] 

best(ins(q, e)) = If k:;;(q) 

etSe If e > best(q) 
then e 
else best(q) 

Figure 3-f : Priority Queue Trait 

EWWW 
ensures q’ = ins(q, e) 

DeWWe) 
requlres Y isEmp(q) 
ensures e = best(q) A q’ = del(q, e) 

Figure 3-2: Priority Queue Interfaces 

priority queue 1131. 

Ql Each initial Deq quorum intersects each final Enq 
quorum. 

Q2 Each initial Deq quorum intersects each final Deq 
quorum. 

Constraint C?, implies that the availability of Enq and Deq 
can be traded off: if one operation’s quorums are made smaller 
(rendering that operation more available), then the quorums for 
the other operation must be made larger to preserve the 
intersection property (rendering that operation iess available). If 
quorums are established by voting [lo], then Q2 implies each 
Deq quorum must encompass a majority of votes. 

Although such a replicated queue is more available than a 
single-site queue, it is still possible that a dispatcher or cab 
driver might be unable to locate a quorum for an operation. The 
taxicab application is subject to “soft” real-time constraints - 
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cusfomefs are unlikely to wait until crashed sites recover or 
communication links are restored. Under such circumstances, 
it seems sensible to settle for behavior that is reasonably 
“close,” for the purposes of the application, to the preferred 
behavior. 

Since an OperStiOn’S availability is determined by its Set of 

quorums, and since those quorums are determined by the 
intersection constraints given above, it is natural to enquire how 
the queue would behave if we were to relax the constraints on 
quorum intersection, permitting the dispatchers and drivers to 
enqueue and dequeue requests from all available sites. This 
relaxed behavior can be specified as a relaxation lattice, 
{QCA(PQ,Q,@[ Q s (Q,, Q,} ) where q is the following 
evaluation function’: 

rl(N = emp 

rl(H . Enq(e)/Ok()) = ins(n(H),e) 

rl(H e DeqOKWe)) = delWl),e) 
Although q agrees with the priority queue’s transition function 
on legal priority queue histories, it is defined for arbitrary 
sequences of Enq and Deq operations, not just for legal priority 
queue histories. This particular choice of rl implies that each 
driver will dequeue the highest-priority request that appears not 
to have been served. Visually, the lattice of constraints looks 
like: 

Henceforth, for notational convenience we write Q, (Q,) for the 
set (Q,} (IQ,}). We now discuss in turn each of the degraded 
behaviors corresponding to the three elements of the lattice: 
Q,, 0,. and 0. 

If we relax the constraint that Deq quorums must intersect. 
then requests may be serviced multiple times (i.e., by 
dispatching multiple taxicabs to the same customer), but 
customers are serviced in turn: no unserviced higher-priority 
request will ever be passed over in favor of an unserviced 
lower-priority request. More precisely, we cfaim the automaton 
QCA(PQ,Q,.q) is a one-copy-serializable implementation of the 
multi-prior&~ queue automaton MPQ shown in Figure 3-3. This 
automaton’s state is a two-component record: the present 
component is a bag of items (requests) that have been 

enqueued but not dequeued. and the absent component is a 
bag of previously enqueued items that have been dequeued. 
The MPQ automaton’s transition function is as follows: Enq 
inserts an item in present, and Deq either transfers the best 
item from present to absent and returns it. or it returns an item 
from absent whose priority is greater than that of any item in 

present. 

‘q(H) is shorthand for q(sa H). 

Theorem 4: L(QCA(PQ,Q, ,q)) = L(MPQ). 

Proof: We first show that f$XA(PQ,Q,,q)) 5; L(MPQ). 
Q, is a serial dependency relation for MPQ (Definition 3). 
hence L(QCA(MPQ,Q,)) = L(MPQ). and so it suffices to 
show that L(QCA(PQ,Q, ,TI)) E L(QCA(MPQ,Q,)). 

Let 6 be the transition function for MPQ. The 
postconditions of multi-priority queue’s interfaces 
completely determine the new value of the queue. Thus 
for all H in L(MPQ), 6’(H) is a singleton set, and we 
simplify our notation by treating 6’ as a function from 
histories to MPc;) values, rather than sets of MPQ values. 
Define a: MPQ + PQ to be the (value) homomorphism 
defined by projecting on the first component of fhe MPQ 
value: a(m) 3 mpresent. 

If p is Enq or Deq, it is easy to check that: 

p.prep&@‘O-VN =j p.preM&WW)) 

p.postp&WOW 2 p.wfMp&W) 
We argue inductively that a(6’(H)) = q(H) for all histories H 
in L(MPQ). The base case is immediate: 

a(F(h)) = q(A) = emp. 
Assume the result for all non-empty histories. Let H’ = 
H . Enq(e)/Ok(), m = 6’(H), and m’ = S’(H’). By the Enq 
postcondition for MPQ, m’.present = ins(m.present,e), 
hence a(?Y(H’)) = ins(a(S’(H)),e). By the induction 
hypothesis, q(H) = a@‘(H)), hence q(H’) = a(&*(H’)). If H’ 
= H . Deq()/Ok(e), the same argument holds with de/ 
replacing ins. Thus, by substitution: 

p.prepo(q(H)) * p.preMpo(S(H)) 

p.postpa(fl(H)) :p.pos,,p&YH)) 

which is enough to show that L(QCA(PQ,Ql,rl)) s 
L(MPQ). Note that the preconditions for both Enq’s are 
true, and Deq.preMpo is true, thus making the first 
implication for p = Deq trivially true. 

TO show that L(MPQ) s r(QCA(PQ,Q,,tl)), we alSO 
argue by induction. Let H be a history in L(MPQ) and 

L(QCA(PQ.Q,,q)) such that H . p is in L(MPQ). If p is 
Enq(x)/Ok() for some x, H . p is clearly in 
r(QCA(PQ,Q,.tl)). Suppose p is Deq()/Ok(x). If x is in 
present. choose a view that includes all Deq operations. If 
x is in absent, choose a view that includes all Deq 
operations except earlier Deq’s for x. + 

If we relax the constraint that Enq and Deq quorums must 
intersect, then requests may be serviced out of order, but no 
request will be serviced more than once. More precisely, the 
automaton QCA(PQ,Q& is a one-copy serializable 
implementation of the out-of-order priority queue automaton 
OPQ given in Figure 3-4. The behavior of an OPQ is just a bag 
(Figures 2-l and 2-2). Enq inserts an item in the bag and Deq 
removes an item, although not necessarily the best one. The 
argument that r(QCA(PQ,Q,.rl)) = L(OPQ) is similar to that 
given for Theorem 4, and is omitted. 

Finally, if we relax both constraints Q, and Q,, the result is a 
degenerate priority queue (Figure 3-5) tihich permits clients to 
be serviced multiple times and out of order. The automaton’s 
set of states is given by the Bag trait of Figure 2-l. although its 
behavior is slightly different: Enq inserts an item in the bag, 
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and Deq returns (but does not necessarily remove) some item Ew@YW~ 
in the bag. ensures q’ = ins(q, e) 

When designing a relaxation lattice, the exact way in which 
the evaluation function q should extend the transition function 

6’ is application dependent. For example, we might equally 
well have chosen an evaluation function q’ that deletes higher- 
priority requests that had been skipped over in favor of lower- 
priority requests. The resulting lattice would produce a different 
set of relaxed behaviors: unlike QCA(PC!,Q,,-rl), 
QCA(PQ,Q2,q’) never services requests out of order, but it 
could ignore certain requests. 

Finally, we illustrate (informally) how a model of probabilistic 
behavior fits in our relaxation lattice method. The likelihood the 
queue will Satisfy a particular quorum intersection relation would 
be given by an independent probabilistic model taking into 
account estimates of crashes and communication failures. As a 
simplistic example, suppose the environment is such that each 
queue operation satisfies Q, with independent probability 0.9, 
and Deq operations are certain to satisfy Q,. The likelihood a 
Deq will fail to return an item whose priority is within the top n is 

DeWWe) 
requires Y isEmp(q) 
ensures isln(q, e) 

Figure 3-5: Degenerate Priority Queue 

3.4. Example 2: A Repllcated Bank Account 
Constraints on quorum intersection can be used to model 

the effects of timing anomalies as well as faults. The cost 
incurred in attaining a more preferred behavior is the amount of 
time one is willing to wait for certain operations to complete. 
For example, consider a bank with a system of automatic teller 
machines (ATM). Customers’ accounts are replicated at 
multiple branch offices. Each account provides Credit and 
Debit operations, where Debit returns an exception if the 
balance would become negative. The following is a necessary 
and sufficient set of constraints on quorum intersection for the 
account data type: 

(0.1)“. 

Every initial Debit quorum intersects every final Credit 
quorum. 

MPQueue: tralt 
assumes TotalOrder wlth [E for q 
% 5 denotes the total order relation 
Includes Bag wlth [Q for B], 

MPQ record of [present: Q, absent: 01 
Introduces 

best: Q 3 E 
constrains [best] 

so that for all [pq, PQ, q: Q, e: El 
best(ins(q, e)) = If ;Ip,(q) 

else If e > best(q) 
then e 
else best(q) 

A2 Every initial Debit quorum intersects every final Debit 
quorum. 

The larger an operation’s quorums, the longer it takes to 

ensures q’.present = ins(q.present. e) 

execute that operation. Rather than forcing customers to wait 
for all the updates to complete, the bank’s ATM’s might be 
reprogrammed to announce success as soon as any update is 
complete, assuming that the remaining updates can be 
performed in the background. This strategy is equivalent to 
allowing the operations’ final quorums to grow asynchronously, 
and as long as updates to the same account do not occur too 
close together, the bank account will satisfy both constraints A, 
and A,. A similar approach is taken in Locus [18] and 
Grapevine [3]. 

Deq O/We) 
ensures 

(isln(q.absent, e) A e > best(q.present)) v 
(e = best(q.present) h 
q’absent = ins(q.absent, e) A 
q’.present = del(q.present, e)) 

Nevertheless, the bank naturally wishes to preserve the 
semantic consistency property that no account can be 
overdrawn, although it is not averse to bouncing checks 
spuriously. To preserve this property, the account object may 
relax constraint A,, but not A*- the relaxation lattice is defined 
over a sublattice of 21A,* A2). In other words, Debit operations 
must access a majority of sites, while Credit operations may be 
propagated when it is convenient to do so. Here, Credit 
quorums effectively grow in time. The environment events that 
cause constraint A, to be violated are “premature” debits 
executed before the effects of earlier credits have had time to 
propagate. The probability that an ATM performing a debit 
would fail to observe an earlier credit would diminish in time. 

Figure 3-3: Multi-Priority Queue 

OPQ: trait 
Includes Bag 

ensures q’ = ins(q, e) 

requires 1 isEmp(q) 
ensures isln(q, e) A q’ = del(q. e) 

Flgure 3-4: Out-of-Order Prioriv Queue 

DegenPQ: trait 
Includes Bag 

Note that unlike the priority queue example, the object’s set of 
operations and the environment’s set of events are not disjoint. 

4. Second Example Domain: Atomic Objects 
A widely-accepted technique for preserving consistency in 

the presence of failures and concurrency is to organize 
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computations as sequential processes called transactions. 
Transactions are atomic, that is, serializable and recoverable. 
Seriaializabifity means the execution of one transaction never 
appears to overlap (or contain) the execution of another, and 
recoverability means that a transaction either succeeds 
completely or has no effect. A transaction’s effects become 
permanent when it commifs, its effects are discarded if it aborts, 
and a transaction that has neither committed or aborted is 
active. 

Atomicity is the basic correctness condition for objects 
accessed by multiple transactions. Although atomicity, like one- 
copy serializability, is a simple and appealing correctness 
condition, several researchers have suggested that weaker 
notions of correctness are necessary to support an adequate 
level of concurrency [9, 191. In this section, we show how 
specifications based on relaxation lattices can capture the 
behavior of highly concurrent distributed applications without 
replacing atomicity with ad hoc notions of correctness. Our 
approach extends and formalizes that of Liskov and Weihi 
[17,20], who have proposed that concurrency can be 

enhanced by introducing non-determinism into specifications of 
atomic objects. We believe that relaxation lattices are simpler 
and easier to use than techniques that require discarding 
atomicity, yet they have more expressive power than 
techniques that use non-determinism to mask anomalous 
behavior. 

4.1. Atomic Object Automata 
Let A be a simple object automaton. A schedule for A is a 

history of operations of the form cp P>, where p is either an 
operation of A, commit, or abort, and P is a transaction 
identifier. A schedule is’ we//-formed if (1) no transaction has 
executed both a commit operation and an abort operation, and 

(2) no transaction executes any operation after a commit or 
abort operation. 

Informally, a schedule for A is serializable if it is equivalent to 
a history for A in which transactions execute serially. More 
precisely, if H is a schedule for A, let HIP denote the history of 
operations of A executed by P In H. 

Deflnltlon 5: A schedule is serializable if there exists a 
total order < on transactions whose identifiers appear in H 
such that HIP, . . . . . HIP, is in L(A), where P, ,..., P, are the 
transactions in H in the order c. 

Let perm(H) be the subschedule of H consisting of operations of 
committed transactions. 

Definition 6: H is atomic if perm(H) is serializable. 

Most techniques for implementing atomicity are on-line: the 
scheduler does not know in advance which transactions will 
commit and which will abort. 

Deflnltlon 7: A schedule H is on-line atomic if the result 
of appending commit operations for any subset of active 
transactions is atomic. 

An atomic object automaton Atomic(A) is an automaton that 
accepts schedules of the simple object automaton A such that 
every schedule in L(Atomic(A)) is well-formed and on-line 
atomic. 

All known techniques for implementing atomicity permit only 
a subset of the well-formed on-line atomic schedules. To make 
our eXafI@es as explicit as possible, we make the further 
assumption that all schedules in L(Atomic(A)) are hybrid atomic 
[21]: transactions Je serializable in the order they commit. 

This property is guaranteed by a number of atomicity 
mechanisms in common use, including strict two-phase locking 
[7]. Our examples can easily be adapted to other atomicity 
properties. 

4.2. Relaxing FIFO Queues 
Consider a printing service In which a collection of clients 

spool files to be printed by a collection of printers. Client 
transactions spool their files on a single queue, and each printer 
controller executes transactions in which it dequeues the next 
file to be printed, prints it, and commits. Ideally. the spooling 

queue should be FIFO: files should be dequeued for printing in 
the order they were enqueued. Nevertheless, because the 
queue fs shared among multiple clients and printer COntrOlleG 

concurrency is important. Although clients can enqueue files 
without interference, the FIFO ordering cannot be guaranteed if 
two controllers are allowed to dequeue files concurrently, thus 
one dequeuing transaction must be detayed until the other 
commits or aborts. Such behavior is clearly ill-suited to the 
application; it is enough that the queue be “approximately” 
FIFO. In particular, the queue should be FIFO as long as 
transactions execute serially. 

We can use relaxation lattices to formulate two alternative 
“gracefully degrading” queue specifications. In each case, the 
extent to which the queue departs from FIFO behavior depends 
on the level of concurrency. Suppose a transaction executing a 
Deq observes that a concurrent transaction has tentatively 
dequeued the item at the head of the queue. Instead of waiting 
for the concurrent dequeuer to commit or abort, an 
implementation might permit a dequeuing transaction to 
proceed in one of two ways: 

. Optimistically assuming the earlier dequeuer will commit, 
the transaction skips the first item and returns the next 
undequeued item in the queue. 

. Pessimistically assuming the earlier dequeuer will abort. 
the transaction ignores the pending dequeue and returns 
that same item. 

As long as dequeuing transactions execute serially, each Of 
these alternative implementations yields a FIFO queue. If 
dequeuing transactions overlap, however, the first 

implementation permits files to be printed out of order, but each 
file is printed only once, while the second permits files to be 
printed multiple times, but files are always printed in the order 
they were enqueued. Rather than viewing these 
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implementations as “weakly consistent” FIFO queues, we view 
each as an atomic object automaton distinct from the FIFO 
queue. 

For our examples, the constraints of interest are the number 
of Deq operations executed by active transactions. Let C, 
denote the constraint that no more than k active transactions 
have executed Deq operations. The set of constraints C is (C, 1 
k 5 O}. For each of the implementations sketched above, the 
lattice homomorphism $I assigns a behavior to each element in 
the lattice of constraints 2 c. As long as no more than k 

dequeuing transactions attempt to access the queue 
concurrently, the object’s behavior will be given by an atomic 
object automaton Atomic(4$$)). While Ck iS satisfied the 
behavior of the “optimistic” implementation is 
L(Atomic(Semiqueue,J), and the behavior of the “pessimistic” 
implementation is L(Atomic(Stutteringi Queue)), where 
Semiqueuek and Stutteringi Queue are defined in the next two 
sections. 

The events that affect the environment (Section 2.3) are the 
operations that affect the number of concurrent dequeuers: the 
Deq, commit, and aborf operations. Like the bank account 
example, the object’s set of operations and the environment’s 
set of events are not disjoint. A probabilistic model of the 
environment could be expressed in terms of the distributions of 
transaction arrivals, durations, and success rates. 

4.2.1. Semlqueues 
A Semiqueuek object (Figure 4-l) is a sequence of items. 

The Enq operation inserts an item in the sequence, and the 
Deq deletes and returns one of the first k items in the queue. It 
is straightforward to show that if k is one, the object is a FIFO 

Constraints 

queue (Figures 2-3 and 2-4) and if k is n. the maximum number 
of items allowed in the queue, the object is a bag (Figures 2-l 
and 2-2). Weihl and Liskov [20] give an example 
implementation of the semiqueue data type written in Argus. 

SemiQ: trait 
imports Integer 
Includes FifoQ, Set with [SetE for C] 
introduces 
prefix: Q, Int + SetE 

constrains [prefix] so that for all [q: Q, i: Int] 
pfefix(q, i) = if (i = 0 v isEmp(q)) then {} 

else prefix(rest(q), i-i) u (first(q)} 

ensure q’ = ins(q, e) 

requlres Y isEmp(q) 
ensures q’ = del(q, e) A e E prefix(q, k) 

Figure 4-1: Semiqueuek 

The relaxation lattice is defined as follows. The set of 
constraints C is as defined above. The lattice homomorphism 4 
is defined over the sublattice of nonempty elements of C +(B) = 
Semiqueuek, where C, is the element of B with the lowest 
index. For example, the constraint and behavior lattices for a 
three-item queue are shown in Figure 4-2. Notice that I#I is a 
lattice homomorphism, not an isomorphism as in the replication 
example. Moreover, if the queue is unbounded, then the lattice 
of behaviors is infinite. 

Behavior 

Semiqueue, (FIFO queue) 

Semiqueues 

Semiqueue, (bag) 
Figure 4-2: Relaxation Lattice for a Three-Item Semiqueue 

42.2. Stuttering Queues 
A Stutteringi Queue object (Figure 4-3) is like a FIFO queue 

except that the first item in the queue may be returned as many 
as i times. The relaxation lattice is similar to that for 
semiqueues: The lattice of automata is {Stutteringi Queue 1 i > 

EWWW 
ensures q’.items = ins(q.ltems, e) 

DeWWe) 
requires 7 isEmp(q.items) 
ensures 

q.count c j =9 
0), and the lattice homomorphism I$ is defined over the (e = first(q.items) A 

sublattice of nonempty elements B of C: q(B) = Stutteringi ((q’.count = q.count + 1 A q’.items = q.items) 

Queue, where Ci is the element of B with the lowest index. 
v (q’.count = 0 A q’.items = rest(q.items)))) 

The stuttering queue and semiqueue behaviors can be 
combined within a single lattice: the SSqueueik behavior would Figure 4-3: Stutteringi Queue 

permit any of the first k items to be returned as many as j times. 
SSqueue,, is a FIFO queue. 5. Remarks and Related Work 

StutQ: tralt 
Imports Integer 

In summary, our relaxation lattice method suggests the 

Includes FifoQ following design strategy: 

StQ record of [items: Q, count: Int] l Identify a set of constraints C that characterizes the 
preferred behavior. This set induces a lattice 2? 
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l Not all elements in the lattice may correspond to an 
intuitively meaningful behavior, let alone an acceptable 
one. The homomorphism I$ detenines which elements 
in the lattice of automata represent acceptable behaviors. 

l Given the lattices of constraints and automata, the cost 
function determines the price one must pay in moving up 
the lattice of automata toward the preferred behavior. 

The relaxation lattice method is a natural way to capture 
graceful degradation in distributed systems. Moreover, the 
method is quite flexible. In this paper, we have reviewed three 

applications: a replicated priority queue, a replicated bank 
account, and an atomic queue. In each case, as summarized in 
Figure 5-1, the domain-specific correctness condition together 
with the preferred behavior impose a set of constraints on the 
implementation. These constraints impose a cost, which can 
be affected by environment events. These costs can be 
alleviated by relaxing the constraints, potentially producing 
“degraded” behavior. These trade-offs are captured naturally 
as a homomorphism between the lattice of constraints and the 
corresponding lattice of behaviors. 

Comness condttton Pretem?d Behavior Constraints COSt Events 

One-copy serializability Priority Queue Quorum intersection Availability Failures, crashes 
One-copy serializability Account Quorum intersection Latency Premature Debits 
Atomicky FIFO Queue Concurrent Deq’s Concurrency Deq, commit, abort 

Figure 5-l: Summary Chart 

The lattice structure also permits us to compare 
specifications. As in Larch, if a specification is considered to 
denote a theory, i.e.. set of formulae, then specifications may 
be compared by comparing the strengths of their theories [22], 
where it may be necessary to introduce theory interpretations, 
i.e., mappings between theories. Maibaum and others [15] use 
this notion of theory interpretation to define a database view as 
an interpretation between two different database specifications. 
Thus, instead of using a set of constraints to induce a lattice of 
behaviors under inclusion, a more general approach would 
have been to start with a lattice of predicates under implication 
or a lattice of theories under containment. 

Nevertheless, we befleve that sets of constraints are easier 
to work with than lattices of unstructured theories or 
specifications. Making constraints explicit forces the designer 
to compare the costs of satisfying the constraints with the 
complexity of the unconstrained behavior. As illustrated by the 
replication examples, generating the lattice of weaker quorum 
intersection relations effectively enumerates the possible trade- 
offs. Sometimes all trade-offs are acceptable, as in the taxi 
queue example, and sometimes certain trade-offs are 
unacceptable, as in the bank account example. 

Our relaxation method captures precisely the intuition behind 
the informal specification method of Liskov and Weihl [ZO, 17). 
Their method recognizes only two kinds of behavior: best case 
(normal) and worst case (abnormal). These behaviors are the 
informal counterparts of the specifications at the top and bottom 
of our relaxation lattice. The use of explicit constraints adds 
expressive power to our specifications by focusing attention on 
intermediate behaviors, providing a natural way to capture 
graceful degradation: the extent to which an object’s behavior 
departs from its preferred specification is proportionate to the 
gravity of the faults that affect it. For example, while Liskov and 
Weihl’s method might specify only that a printer spooler 
behaves either like a FIFO queue or like a bag, our method can 
make stronger statements, e.g., in a system where no more 
than k transactions concurrently access a semiqueue, no item 

will be dequeued out of order with respect to more than k items. 
Furthermore, our method allows for a clean interface to 

probabilistic and queuelng models typically used to describe a 
system’s reliability. Separate functional and probabilistic 
models can be combined without compromising the expressive 
power of either. An alternative approach is to capture both 
kinds of properties in a single model, as in Durham and Shawls 
analysis of a fault-tolerant parallel quicksort algorithm [S] or 
Cristian’s [5] Markovian analysis of a two-disk stable storage 
implementation. Our approach, however, permits functional 
and probabilistic properties to be understood in isolation, which 
we believe makes our specifications easier to understand, more 
flexible, and more readily applicable to large and realistic 
problems. 
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