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Abstract* 

The Domain Name System (DNS) provides name 
service for the DARPA Internet. It is one of the largest 
name services in operation today, serves a highly 
diverse community of hosts, users, and networks, and 
uses a unique combination of hierarchies, caching, and 
datagram access. 

This paper examines the ideas behind the initial design 
of the DNS in 1983, discusses the evolution of these 
ideas into the current implementations and usages, notes 
conspicuous surprises, successes and shortcomings, and 
attempts to predict its future evolution. 

1. Introduction 

The genesis of the DNS was the observation, circa 
1982, that the HOSTS.TXT system for publishing the 
mapping between host names and addresses was 
encountering or headed for problems. HOSTS.TXT is 
the name of a simple text file, which is centrally 
maintained on a host at the SRI Network Information 
Center (SRI-NIC) and distributed to all hosts in the 
Internet via direct and indirect file transfers. 
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The problems were that the file, and hence the costs of 
its distribution, were becoming too large, and that the 
centralized control of updating did not fit the trend 
toward more distributed management of the Internet. 

Simple growth was one cause of these problems; an- 
other was the evolution of the community using 
HOSTS.TXT from the NCP-based original ARPANET 
to the IP/TCP-based Internet. The research 
ARPANET's role had changed from being a single 
network connecting large timesharing systems to being 
one of the several long-haul backbone networks linking 
local networks which were in turn populated with 
workstations. The number of hosts changed from the 
number of timesharing systems (roughly organizations) 
to the number of workstations (roughly users). This 
increase was directly reflected in the size of 
HOSTS.TXT, the rate of change in HOSTS.TXT, and 
the number of transfers of the file, leading to a much 
larger than linear increase in total resource use for 
distributing the file. Since organizations were being 
forced into management of local network addresses, 
gateways, etc., by the technology anyway, it was quite 
logical to want to partition the database and allow local 
control of local name and address spaces. A distributed 
naming system seemed in order. 

Existing distributed naming systems included the 
DARPA Internet's IEN116 lIEN 116] and the XEROX 
Grapevine [Birrell 82] and Clearinghouse systems 
[Oppen 83]. The IENl l6  services seemed excessively 
limited and host specific, and IEN116 did not provide 
much benefit to justify the costs of renovation. The 
XEROX system was then, and may still be, the most 
sophisticated name service in existence, but it was not 
clear that its heavy use of replication, light use of 
caching, and fixed number of hierarchy levels were 
appropriate for the heterogeneous and often chaotic 
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style of the DARPA Internet. Importing the XEROX 
design would also have meant importing supporting 
elements of its protocol architecture. For these reasons, 
a new design was begun. 

isolated PCs. In general, we wanted to avoid any 
constraints on the system due to outside 
influences and permit as many different 
implementation structures as possible. 

The initial design of the DNS was specified in [RFC 
882, RFC 883]. The outward appearance is a 
hierarchical name space with typed data at the nodes. 
Control of the database is also delegated in a 
hierarchical fashion. The intent was that the data types 
be extensible, with the addition of new data types 
continuing indefinitely as new applications were added. 
Although the system has been modified and refined in 
several areas [RFC 973, RFC 974], the current 
specifications [RFC 1034, RFC 1035] and usage are 
quite similar to the original definitions. 

Drawing an exact line between experimental use and 
production status is difficult, but 1985 saw some hosts 
use the DNS as their sole means of accessing naming 
information. While the DNS has not replaced the 
HOSTS.TXT mechanism in many older hosts, it is the 
standard mechanism for hosts, particularly those based 
on Berkeley UNIX, that track progress in network and 
operating system design. 

2. DNS Design 

The base design assumptions for the DNS were that it 
must: 

O provide at least all of the same information as 
HOSTS.TXT. 

O Allow the database to be maintained in a 
distributed manner. 

O Have no obvious size limits for names, name 
components, data associated with a name, etc. 

O Interoperate across the DARPA Internet and in as 
many other environments as possible. 

C) Provide tolerable performance. 

Derivative constraints included the following: 

0 The cost of implementing the system could only 
be justified if it provided extensible services. In 
particular, the system should be independent of 
network topology, and capable of encapsulating 
other name spaces. 

O In order to be universally acceptable, the system 
should avoid trying to force a single OS, 
architecture, or organizational style onto its users. 
This idea applied all the way from concerns about 
case sensitivity to the idea that the system should 
be useful for both large timeshared hosts and 

The HOSTS.TXT emulation requirement was not 
particularly severe, but it did cause an early 
examination of schemes for storing data other than 
name-to-address mappings. A hierarchical name space 
seemed the obvious and minimal solution for the 
distribution and size requirements. The interoperability 
and performance constraints implied that the system 
would have to allow database information to be 
buffered between the client and the source of the data, 
since access to the source might not be possible or 
timely. 

The initial DNS design assumed the necessity of 
striking a balance between a very lean service and a 
completely general distributed database. A lean service 
was desirable because it would result in more 
implementation efforts and early availability. A general 
design would amortize the cost of introduction across 
more applications, provide greater functionality, and 
increase the number of environments in which the DNS 
would eventually be used. The "leanness" criterion led 
to a conscious decision to omit many of the functions 
one might expect in a state-of-the-art database. In 
particular, dynamic update of the database with the 
related atomicity, voting, and backup considerations 
was omitted. The intent was to add these eventually, but 
it was believed that a system that included these features 
would be viewed as too complex to be accepted by the 
community. 

2.1 The architecture 

The active components of the DNS are of two major 
types: name servers and resolvers. Name servers are 
repositories of information, and answer queries using 
whatever information they possess. Resolvers interface 
to client programs, and embody the algorithms 
necessary to find a name server that has the information 
sought by the client. 

These functions may be combined or separated to suit 
the needs of the environment. In many cases, it is useful 
to centralize the resolver function in one or more 
special name servers for an organization. This structure 
shares the use of cached information, and also allows 
less capable hosts, such as PCs, to rely on the resolving 
services of special servers without needing a resolver in 
the PC. 
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2.2 The name space 

The DNS internal name space is a variable-depth tree 
where each node in the tree has an associated label. The 
domain name of  a node is the concatenation of  all labels 
on the path from the node to the root of  the tree. Labels 
are variable-length strings of  octets, and each octet in a 
label can be any 8-bit value. The zero length label is 
reserved for the root. Name space searching operations 
(for operations defined at present) are done in a 
case-insensitive manner (assuming ASCII). Thus the 
labels "Paul", "paul", and "PAUL", would match each 
other. This matching rule effectively prohibits the 
creation of  brother nodes with labels having equivalent 
spelling but different case. The rational for this system 
is that it allows the sources of  information to specify its 
canonical case, but frees users from having to deal with 
case. Labels are limited to 63 octets and names are 
restricted to 256 octets total as an aid to 
implementation, but this limit could be easily changed if 
the need arose. 

The DNS specification avoids defining a standard 
printing rule for the internal name format in order to 
encourage DNS use to encode existing structured 
names. Configuration files in the domain system 
represent names as character strings separated by dots, 
but applications are free to do otherwise. For example, 
host names use the internal DNS rules, so 
VENERA.ISI .EDU is a name with four labels (the null 
name of  the root is usually omitted). Mailbox names, 
stated as USER@DOMAIN (or more generally as local- 
part@organization) encode the text to the left of  the 
"@" in a single label (perhaps including ".") and use the 
dot-delimiting DNS configuration file rule for the part 
following the @. Similar encodings could be developed 
for file names, etc. 

The DNS also decouples the structure of  the tree from 
any implicit semantics. This is not done to keep names 
free of  all implicit semantics, but to leave the choices 
for these implicit semantics wide open for the 
application. Thus the name of  a host might have more 
or fewer labels than the name of  a user, and the tree is 
not organized by network or other grouping. Particular 
sections of  the name space have very strong implicit 
semantics associated with a name, particularly when the 
DNS encapsulates an existing name space or is used to 
provide inverse mappings (e.g. IN-ADDR.ARPA, the 
IP addresses to host name section of  the domain space), 
but the default assumption is that the only way to tell 
definitely what a name represents is to look at the data 
associated with the name. 

The recommended name space structure for hosts, 
users, and other typical applications is one that mirrors 

the structure of  the organization controlling the local 
domain. This is convenient since the DNS features for 
distributing control of  the database is most efficient 
when it parallels the tree structure. An administrative 
decision [RFC 920] was made to make the top levels 
correspond to country codes or broad organization types 
(for example EDU for educational, MIL for military, 
UK for Great Britain). 

2.3 Data attached to names 

Since the DNS should not constrain the data that 
applications can attach to a name, it can' t  fix the data's 
format completely. Yet the DNS did need to specify 
some primitives for data structuring so that replies to 
queries could be limited to relevant information, and so 
the DNS could use its own services to keep track of  
servers, server addresses, etc. Data for each name in the 
DNS is organized as a set of  resource records (RRs); 
each RR carries a well-known type and class field, 
followed by applications data. Multiple values of  the 
same type are represented as separate RRs. 

Types are meant to represent abstract resources or 
functions, for example, host addresses and mailboxes. 
About 15 are currently defined. The class field is meant 
to divide the database orthogonally from type, and 
specifies the protocol family or instance. The DARPA 
Internet has a class, and we imagined that classes might 
be allocated to CHAOS, ISO, XNS or similar protocol 
families. We also hoped to try setting up 
function-specific classes that would be independent of  
protocol (e.g. a universal mail registry). Three classes 
are allocated at present: DARPA Internet, CHAOS, and 
Hessiod. 

The decision to use multiple RRs of  a single type rather 
than including multiple values in a single RR differed 
from that used in the XEROX system, and was not a 
clear choice. The space efficiency of  the single RR with 
multiple values was attractive, but the multiple RR 
option cut down the maximum RR size. This appeared 
to promise simpler dynamic update protocols, and also 
seemed suited to use in a limited-size datagram 
environment (i.e. a response could carry only those 
items that fit in a maximum size packet without regard 
to partial RR transport). 

2.4 Database distribution 

The DNS provides two major mechanisms for 
transferring data from its ultimate source to ultimate 
destination: zones and caching. Zones are sections of  
the system-wide database which are controlled by a 
specific organization. The organization controlling a 
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zone is responsible for distributing current copies of the 
zones to multiple servers which make the zones 
available to clients throughout the Internet. Zone 
transfers are typically initiated by changes to the data in 
the zone. Caching is a mechanism whereby data 
acquired in response to a client's request can be locally 
stored against future requests by the same or other 
client. 

Note that the intent is that both of  these mechanisms be 
invisible to the user who should see a single database 
without obvious boundaries. 

Zones 

A zone is a complete description of  a contiguous section 
of  the total tree name space, together with some 
"pointer" information to other contiguous zones. Since 
zone divisions can be made between any two connected 
nodes in the total name space, a zone could be a single 
node or the whole tree, but is typically a simple subtree. 

From an organization's point of view, it gets control of  
a zone of  the name space by persuading a parent 
organization to delegate a subzone consisting of  a single 
node. The parent organization does this by inserting 
RRs in its zone which mark a zone division. The new 
zone can then be grown to arbitrary size and further 
delegated without involving the parent, although the 
parent always retains control of  the initial delegation. 
For example, the ISI.EDU zone was created by 
persuading the owner of  the EDU domain to mark a 
zone boundary between EDU and ISI.EDU. 

The responsibilities of  the organization include the 
maintenance of  the zone's data and providing redundant 
servers for the zone. The typical zone is maintained in a 
text form called a master file by some system 
administrator and loaded into one master server. The 
redundant servers are either manually reloaded, or use 
an automatic zone refresh algorithm which is part of the 
DNS protocol. The refresh algorithm queries a serial 
number in the master's zone data, then copies the zone 
only if the serial number has increased. Zone transfers 
require TCP for reliability. 

A particular name server can support any number of  
zones which may or may not be contiguous. The name 
server for a zone need not be part of  that zone. This 
scheme allows almost arbitrary distribution, but is most 
efficient when the database is distributed in parallel 
with the name hierarchy. When a server answers from 
zone data, as opposed to cached data, it marks the 
answer as being authoritative. 

A goal behind this scheme is that an organization 
should be able to have a domain, even if it lacks the 

communication or host resources for supporting the 
domain's name service. One method is that 
organizations with resources for a single server can 
form buddy systems with another organization of  
similar means. This can be especially desirable to 
clients when the organizations are far apart (in network 
terms), since it makes the data available from separated 
sites. Another way is that servers agree to provide name 
service for large communities such as CSNET and 
UUCP, and receive master files via mail or FTP from 
their subscribers. 

Caching 

In addition to the planned distribution of  data via zone 
transfers, the DNS resolvers and combined name 
server/resolver programs also cache responses for use 
by later queries. The mechanism for controlling caching 
is a time-to-live (TTL) field attached to each RR. This 
field, in units of  seconds, represents the length of time 
that the response can be reused. A zero TTL suppresses 
caching. The administrator defines TTL values for each 
RR as part of  the zone definition; a low TTL is 
desirable in that it minimizes periods of  transient 
inconsistency, while a high TTL minimizes traffic and 
allows caching to mask periods of  server unavailability 
due to network or host problems. Software components 
are required to behave as if they continuously 
decremented TTLs of  data in caches. The recommended 
TTL value for host names is two days. 

Our intent is that cached answers be as good as answers 
from an authoritative server, excepting changes made 
within the TTL period. However, all components of  the 
DNS prefer authoritative information to cached 
information when both are available locally. 

3. Current Implementation Status 

The DNS is in use throughout the DARPA Internet. 
[RFC 1031] catalogs a dozen implementations or ports, 
ranging from the ubiquitous support provided as part of 
Berkeley UNIX, through implementations for 
IBM-PCs, Macintoshes, LISP machines, and fuzzballs 
[Mills 88]. Although the HOSTS.TXT mechanism is 
still used by older hosts, the DNS is the recommended 
mechanism. Hosts available through HOSTS.TXT form 
an ever-dwindling subset of  all hosts; a recent 
measurement [Stahl 87] showed approximately 5,500 
host names in the present HOSTS.TXT, while over 
20,000 host names were available via the DNS. 

The current domain name space is partitioned into 
roughly 30 top level domains. Although a top level 
domain is reserved for each country (approximately 25 
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in use, e.g. US, UK), the majority of hosts and 
subdomains are named under six top level domains 
named for organization types (e.g. educational is EDU, 
commercial is COM). Some hosts claim multiple names 
in different domains, though usually one name is 
primary and others are aliases. The SRI-NIC manages 
the zones for all of the non-country, top-level domains, 
and delegates lower domains to individual universities, 
companies, and other organizations who wish to 
manage their own name space. 

The delegation of subdomains by the SRI-NIC has 
grown steadily. In February of 1987, roughly 300 
domains were delegated. As of March 1988, over 650 
domains are delegated. Approximately 400 represent 
normal name spaces controlled by organizations other 
than the SRI-NIC, while 250 of these delegated 
domains represent network address spaces (i.e. parts of 
IN-ADDR.ARPA) no longer controlled by the NIC. 

Two good examples of contemporary DNS use are the 
so called "root servers" which are the redundant name 
servers that support the top levels of the domain name 
space, and the Berkeley subdomain, which is one of the 
domains delegated by the SRI-NIC in the EDU domain. 

3.1 Root servers 

The basic search algorithm for the DNS allows a 
resolver to search "downward" from domains that it can 
access already. Resolvers are typically configured with 
"hints" pointing at servers for the root node and the top 
of the local domain. Thus if a resolver can access any 
root server it can access all of the domain space, and if 
the resolver is in a network partitioned from the rest of 
the Internet, it can at least access local names. 

Although a resolver accesses root servers less as the 
resolver builds up cached information about servers for 
lower domains, the availability of root servers is an 
important robustness issue, and root server activity 
monitoring provides insights into DNS usage. 

Since access to the root and other top level zones is so 
important, the root domain, together with other 
top-level domains managed by the SRI-NIC, is 
supported by seven redundant name servers. These root 
servers are scattered across the major long haul 
backbone networks of the Internet, and are also 
redundant in that three are TOPS-20 systems running 
JEEVES and four are UNIX systems running BIND. 

The typical traffic at each root server is on the order of 
a query per second, with correspondingly higher rates 
when other root servers are down or otherwise 
unavailable. While the broad trend in query rate has 
generally been upward, day-to-day and month-to-month 

comparisons of load are driven more by changes in 
implementation algorithms and timeout tuning than 
growth in client population. For example, one bad 
release of popular domain software drove averages to 
over five times the normal load for extended periods. At 
present, we estimate that 50% of all root server traffic 
could be eliminated by improvements in various 
resolver implementations to use less aggressive 
retransmission and better caching. 

The number of clients which access root servers can be 
estimated based on measurement tools on the TOPS-20 
version. These root servers keep track of the first 200 
clients after root server initialization, and the first 200 
clients typically account for 90% or more of all queries 
at any single server. Coordinated measurements at the 
three TOPS-20 root servers typically show 
approximately 350 distinct clients in the 600 entries. 
The number of clients is falling as more organizations 
adopt strategies that concentrate queries and caching for 
accesses outside of the local organization. 

The clients appear to use static priorities for selecting 
which root server to use, and failure of a particular root 
server results in an immediate increase in traffic at other 
servers. The vast majority of queries are four types: all 
information (25 to 40%), host name to address 
mappings (30--40%), address to host mappings (10 to 
15%), and new style mail information called MX (less 
than 10%). Again, these numbers vary widely as new 
software distributions spread. The root servers refer 10- 
15% of all queries to servers for lower level domains. 

3.2 Berkeley 

UNIX support for the DNS was provided by the 
University of California, Berkeley, partially as research 
in distributed systems, and partially out of necessity due 
to growth in the campus network [Dunlap 86a, Dunlap 
86b]. The result is the Berkeley Internet Name Domain 
(BIND) server. Berkeley serves as an example of a 
large delegated domain, though it is certainly more 
sophisticated and has more experience than most. 

With BIND, Berkeley became the first organization on 
the DARPA Internet to bring up machines with all their 
network applications solely dependent on DNS for 
doing network host and address resolution. Berkeley 
started to install machines on campus dependent on the 
name server in the spring of 1985. In the fall of 1985, 
the two mail gateways to the DARPA Internet were 
converted to depend on the DNS, this meant the entire 
campus had to adopt domain-style mail addresses. 

Educating even the sophisticated Berkeley user 
community on the new form of addressing turned out to 
be a major task. The single biggest objection from the 
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user community was due to mail addresses which 
became obsolete, closely followed by the initial lack of 
shorthands and search rules in the initial 
implementation. 

While the DNS transition was painful, the need was 
clear, as shown in the following table which gives the 
number of hosts, subnets, and finally subdomains in use 
at Berkeley over the last three years. For example, from 
January 1986 to February 1987, Berkeley added 735 
hosts in 250 working days, an average of three new 
hosts each working day. 

Date Hosts Subnets Subdomains 

January 1986 267 14 

February 1987 1002 44 

March 1988 1991 86 

Note that Berkeley has recently divided its domain into 
multiple zones for administrative convenience. 

4. Surprises 

Operation of the DNS has revealed several issues that 
came as surprises to the developers, but on reflection 
seem quite unsurprising. 

4.1 Refinement of semantics 

The main role of the DNS is to act as a repository for 
information, and the initial assumption was that the 
form and content of that information was 
well-understood. This turned out to be a bad 
assumption. Even existing common concepts such as IP 
host addresses were sources of problems; we knew that 
we would have to support multiple addresses for a 
single host, but we were drawn into long discussions of 
whether the addresses attached to a host name should be 
ordered, and if so, by what metric. 

4.2 Performance 

The performance of the underlying network was much 
worse than the original design expected. Growth in the 
number of networks overtaxed gateway mechanisms for 
keeping track of connectivity, leading to lost paths and 
unidirectional paths. At the same time, growth in load 
plus the addition of many lower speed links led to 
longer delays. These problems were manifest at the root 
servers, where logs reveal many instances of repeated 
copies of the same query from the same source. Even 

though the TOPS-20 root servers take less than 100 
milliseconds to process the vast majority of queries, 
clients typically see response times of 500 milliseconds 
to 5 seconds, even for the closest root server, depending 
on their location in the Internet. The situation for 
queries to the delegated domains is often much worse, 
both because of network troubles, and because the name 
servers for these domains are often on heavily loaded 
hosts on less-central networks. Queries from the 
ARPANET to delegated domains typically take 3 to 10 
seconds during prime time, with 30 to 60 second times 
as occasional worst cases. It is interesting to note that 
these times to access a remote name server are similar 
to those seen for the XEROX homogeneous name 
service [Larson 85]. 

A related surprise was the difficulty in making 
reasonable measurements of DNS performance. We had 
planned to measure the performance of DNS 
components in order to estimate costs for future 
enhancement and growth, and to guide tuning of 
existing retransmission intervals, but the measurements 
were often swamped by unrelated effects due to 
gateway changes, new DNS software releases, and the 
like. Many of the servers perform better as their load 
increases due to fewer page faults, but this is clearly not 
a stable situation over the long term, leading to 
concerns about behavior should network performance 
improve and be able to deliver higher loads to the 
servers. 

The performance of Iookups for queries that did not 
need network access was a pleasant surprise. We were 
replacing a fairly simple host table lookup with a more 
complicated database, so even if cache access worked 
very well, we might slow existing applications down a 
great deal. However, the new mechanisms are typically 
as good or better than the old, regardless of 
implementation. The reason for this is that the old 
mechanisms were created for a much smaller database 
and were not adjusted as the size of database grew 
explosively, while the new software was based on the 
assumption of a very large database. 

4.3 Negative caching 

The DNS provides two negative responses to queries. 
One says that the name in question does not exist, while 
the other says that while the name in question exists, the 
requested data does not. The first might be expected if a 
name were misspelled, while the second might result if 
a query asked for the host type of a mailbox or the 
mailing list members of a host. These responses were 
expected to be rare. 
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Initial monitoring of root server activity showed a very 
high percentage (20 to 60%) of these responses. Logs 
revealed that many of these queries were generated by 
programs using old-style host names, or names from 
other mail internets (e.g. UUCP). In the latter case, 
mailers would often use a call to the name to address 
conversion routines to test whether an address was valid 
in the DARPA Internet, even though this might be 
easily determined by other means. Since few UUCP 
mail addresses are valid domain names, this resulted in 
a negative response from a root server, coupled with a 
delay for the non-local query. 

We expected that the negative responses would 
decrease, and perhaps vanish, as hosts converted their 
names to domain-name format and as we asked mail 
software maintainers to modify their programs. Even 
though these steps were taken, negative responses 
stayed in the 10-50% range, with a typical percentage 
of 25 %. 

The reason is that the corrective measures were offset 
by the spread of programs which provided shorthand 
names through a search list mechanism. The search lists 
produce a steady stream of bad names as they try 
alternatives; a mistyped name may now lead to several 
name errors rather than one. Our conclusion is that any 
naming system that relies on caching for performance 
may need caching for negative results as well. Such a 
mechanism has been added to the DNS as an optional 
feature, with impressive performance gains in cases 
where it is supported in both the involved name servers 
and resolvers. This feature will probably become 
standard in the future. 

5. Successes 

5.1 Variable depth hierarchy 

The variable-depth hierarchy is used a great deal and 
was the right choice for several reasons: 

O The spread of workstation and local network 
technology meant that organizations participating 
in the Internet were finding a need to organize 
within themselves. 

O The organizations were of vastly different size, 
and hence needed different numbers of 
organizational levels. For example, both large 
international companies and small startups are 
registered in the domain system. 

O The variable depth hierarchy makes it possible to 
encapsulate any fixed level or variable level 
system. For example, the UK's  own name service 
(NRS) and the DNS mutually encapsulate each 

other's name space. This scheme may also be 
used in the future to interoperate with the 
directory service under development by the ISO 
and CCITI'.  

Many networks that do not use the DNS protocols and 
datatypes have standardized on the DNS hierarchical 
name syntax for mail addressing [Quarterman 86]. 

5.2 Organizational structuring of names 

While the particular top-level organizational structure 
used by the current DNS is quite controversial, the 
principle that names are independent of network, 
topology, etc. is quite popular. The future structure of 
the top levels is likely to continue to be a subject of 
debate. Most proposals generate a roughly equivalent 
amount of support and condemnation. In the authors' 
opinion, the only real possibility for wholesale change 
is a political decision to change the structure of the 
domain name space to resemble the name space 
proposed for the ISO/CCITT directory service. This is 
not a technical issue as the DNS is flexible enough to 
accommodate almost any political choice. 

5.3 Datagram access 

The use of datagrams as the preferred method for 
accessing name servers was successful and probably 
was essential, given the unexpectedly bad performance 
of the DARPA Internet. The restriction to 
approximately 512 bytes of data turns out not to be a 
problem, performance is much better than that achieved 
by TCP circuits, and OS resources are not tied up. 

The only obvious drawback to datagram access is the 
need to develop and refine retransmission strategies that 
are already quite well developed for TCP. Much 
unnecessary traffic is generated by resolvers that were 
developed to the point of working, but whose authors 
lost interest before tuning, or by systems that imported 
well known versions of code but do not track tuning 
updates. 

5.4 Additional section processing 

When a name server answers a query, in addition to 
whatever information it uses to answer the question, it is 
free to include in the response any other information it 
sees fit, as long as the data fits in a single datagram. The 
idea was to allow the responding server to anticipate the 
next logical request and answer it before it was asked 
without significant added communication cost. For 
example, whenever the root servers pass back the name 
of a host, they include its address (if available), on the 

ACM SIGCOMM -118- Computer Communication Review 



assumption that the host address is needed to use other 
information. Experiments show that this feature cuts 
query traffic in half. 

5.5 Caching 

The caching discipline of the DNS works well, and 
given the unexpectedly bad performance of the Internet, 
was essential to the success of the system. 

The only problems with caching relate to databases and 
query strategies that make it less reliable or useful. For 
example, RRs of the same type at a particular node 
should have the same TTL so that they will time out 
simultaneously, but administrators sometimes assign 
TTLs in the mistaken idea that they are assigning some 
sort of priority. Administrators also are very fond of 
picking short TTLs so that their changes take effect 
rapidly, even if changes are very rare and do not need 
the timeliness. 

A related concern is the security and reliability 
problems caused by indiscriminate caching. Several 
existing resolvers cache all information in responses 
without regard to its reasonableness. This has resulted 
in numerous instances where bad information has 
circulated and caused problems. Similar difficulties 
were encountered when one administrator reversed the 
TTL and data values, resulting in the distribution of bad 
data with a TTL of several years. While various 
measures have reduced the vulnerability to error, the 
security of the present system does depend on the 
integrity of the network addressing mechanism, and this 
is questionable in an era of local networks and PCs. 

5.6 Mail address cooperation 

Agreement between representatives of the CSNET, 
BITNET, UUCP, and DARPA Internet communities led 
to an agreement to use organizationally structured 
domain names for mail addressing and routing. While 
the transition from the messy multiply-encoded mail 
addresses of the past is far from complete, the 
possibility of cleaning up mail addresses has been 
clearly demonstrated. 

6. Shortcomings 

6.1 Type and class growth 

When the draft DNS specifications were made available 
in 1983, the one nearly unanimous criticism was that the 
type and class data specifiers, which were 8 bits in the 
draft, should be expanded to 16, or even 32 bits, to 
allow for new definitions. Over the first five years of 

DNS use, two new types have been adopted, two types 
have been dropped, and two new classes have been 
allocated. Clearly, either the demand for new types and 
classes was completely misunderstood, or the current 
DNS makes new definitions too difficult. 

While one problem is that almost all existing software 
regards types and classes as compile-time constants, and 
hence requires recompilation to deal with changes, a 
less tractable problem is that new data types and classes 
are useless until their semantics are carefully designed 
and published, applications created to use them, and a 
consensus is reached to use the new system across the 
Internet. This means that new types face a series of 
technical and political hurdles. 

A methodology or guidelines to aid in the design of new 
types of information is needed. This is more 
complicated than just listing the values of interest for an 
application, since it often involves the design of special 
name space sections, TTL selections to produce 
acceptable performance and semantics, and decisions 
whether to produce a desired binding through one 
lookup or a sequence of smaller bindings. The single 
lookup method often seems overwhelmingly attractive 
to a particular application designer despite the fact that 
it may overlap or conflict with another application's 
data. Another factor is that members of the Internet 
have different views on the proper assumptions or 
approach for a particular problem. 

Mail is an example. After much debate, the MX data 
type and system [RFC 974] defined a standard method 
for routing mail, based on the DOMAIN part or a 
LOCAL-PART@DOMAIN mail address. MX 
represented a simple addition to the DNS itself, but 
required changes to all mail servers, and its benefits 
required a "critical mass" of mailers. Numerous 
suggestions have been made to extend the DNS to 
provide mail destination registry down to the individual 
user level, and the basics of such a service are within 
our understanding, but consensus for a single plan 
remains elusive. Part of the constituency demands that 
user level mail binding be an option on top of MX, 
while others advocate a fresh start, with lots of features 
for mail forwarding, list maintenance, etc. The best 
choice seems to be one in which agent binding is always 
a choice, but that a mailer which chooses to map to the 
mailbox level can do so if the mailbox data is also 
available. 

6.2 Easy upgrading of applications 

Converting network applications to use the DNS is not a 
simple task. It would be ideal if all the applications 
converting from HOSTS.TXT could be recompiled to 
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use the DNS and have everything work, but this is 
rarely the case. 

Part of the problem is transient failure. A distributed 
naming system, by its very nature, has periods that it 
can not access particular information. Applications must 
handle this condition appropriately. Mailers looking up 
mail destinations should not discard mail due to these 
transient failures, and can not afford to wait indefinitely. 
Even if such failures are anticipated to be quite rare 
once the DNS stabilizes, we face a chicken-and-egg 
problem in converting mailers to use the new software. 

Another part of the problem is that access to the naming 
system needs to be integrated into the operating system 
to a much greater degree than providing system call to 
the resolver. Users need to be able to access these 
services at the shell level and specify search lists and 
defaults in a manner consistent with other system 
operations. 

6.3 Distribution of control vs. distribution of expertise 

or responsibility 

Distributing authority for a database does not distribute 
a corresponding amount of expertise. Maintainers fix 
things until they work, rather than until they work well, 
and want to use, not understand, the systems they are 
provided. Systems designers should anticipate this, and 
try to compensate by technical means. The DNS 
furnishes several examples of this principle: 

O The initial policy was that we would delegate a 
domain to any organization which filled out a 
form listing its redundant servers and other 
essentials. Instead we should have required that 
the organization demonstrate redundant servers 
with real data in them before we delegated the 
domain, and probably should have insisted that 
they be on different networks, rather than trusting 
assurances that the servers did not represent a 
single point of failure. 

O The documentation for the system used examples 
which were easily explained in the narration. 
Sample TTL values which mapped to an hour 
were always copied; text that said the values 
should be a few days was ignored. 
Documentation should always be written with the 
assumption that only the examples are read. 

O Debugging of the system was hampered by 
questions about software versions and 
parameters. These values should be accessible via 
the protocol. 

7. Conclusions 

Just as the classification of many of the previous issues 
into "successes", "surprises", and "shortcomings" is 
open to debate based on the perspective of the reader, 
so too is the question "Was the DNS a good idea?" 

Modifications to the HOSTS.TXT scheme could have 
postponed the need for a new system, and reduced the 
quantitative arguments for the DNS. The DNS has 
probably not yet reduced the community-wide 
administrative, communication, or support load. 
However, the need to distribute functionality was, we 
believe, inexorable. This need, together with the new 
functionality and opportunities for future services must 
be the key criteria for judgment. From the authors' 
perspective, they justify the DNS. 

There are a lot of choices we might make differently if 
we were starting over, but the main pieces of advice 
which would have been valuable when we were starting 
are: 

0 Caching can work in a heterogeneous 
environment, but should include features for 
caching negative responses as well. 

O It is often more difficult to remove functions from 
systems than it is to get a new function added. All 
of a community would not convert to a new 
service; instead some will stay with the old, some 
will convert to the new, and some will support 
both. This has the unfortunate effect of making all 
functions more complex as new features are 
added. 

O The most capable implementors lose interest once 
a new system delivers the level of performance 
they expect; they are not easily motivated to 
optimize their use of others' resources or provide 
easily used guidelines for the administrators that 
use the systems. Distributed software should 
include a version number and table of parameters 
which can be interrogated. If possible, systems 
should include technical means for transferring 
tuning parameters, or at least defaults, to all 
installations without requiring the attention of 
system maintainers. 

O Allowing variations in the implementation 
structure used to provide service is a great idea; 
allowing variation in the provided service causes 
problems. 

8. Directions for future work 

Although the DNS is in production use and hence 
difficult to change, other research in naming systems, 
particularly the emerging ISO X.500 directory services, 
may provide the impetus for additions: 
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C) Support for X.500 style addresses for mail, etc. 
could be constructed as a layer on top of the 
DNS, albeit without the sophisticated protection, 
update, and structuring rules of X.500. Use of the 
data description techniques from the ISO 
standards might provide a better mechanism for 
adding data types than the present data 
structuring rules, while the proven DNS 
infrastructure could speed prototyping of ISO 
applications. 

C) The value of a ubiquitous name service and 
consistent name space at all levels of the protocol 
suite and operating system seems obvious, but it 
is equally obvious that tradeoffs between 
performance, generality, and distribution require 
at least different styles of use at different levels. 
For example, a system suitable for managing file 
names on a local disk would be substantially 
different from a system for maintaining an 
internet wide mailing list. The challenge here is to 
develop an approach which, at least conceptually, 
structures the total task into layers or some other 
coherent organization. 

C) Research in naming systems has typically resulted 
in proposals for systems which could replace or 
encapsulate all other systems, or systems which 
allow translations between separate name spaces, 
data formats, etc. Both approaches have 
advantages and drawbacks. The present DNS and 
efforts to unify its name space without special 
domains for specific networks, etc. place the 
DNS in the first category. However, its success is 
universal enough to be encouraging while not 
enough to solve the user's difficulty with obscure 
encodings from other systems. Technical and/or 
political solutions to the growing complexity of 
naming will be a growing need. 
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