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Abstract 

Process migration has been added to the 
DEMOS/MP operating system. A process can be moved 
during its execution, and continue on another processor, 
with continuous access to all its resources. Messages are 
correctly delivered to the proeess's new location, and mes- 
sage paths are quickly updated to take advantage of the 
process's new location. No centralized algorithms are 
necessary to move a process. 

A number of characteristics of DEMOS/NIP allowed 
process migration to be implemented efficiently and with 
no changes to system services. Among these characteris- 
tics are the uniform and location independent communi- 

• cation interface, and the fact that  the kernel can partici- 
pate in message send and receive operations in the same 
manner as a normal process. 
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1. Introduct ion 

Process migration has been discussed in the operat- 
ing system literature, and has been among the design 
goals for a number of systems [Finkel 80][Rashid & 
Robertson 81]. Theoretical and modeling studies of dis- 
t r ibuted systems have suggested that  performance gains 
are achievable using relocation of processes [Stone 77, 
Stone & Bokhari 78, Bokhari 79, Robinson 79, Arora & 
Rana  80]. Process migration has also been proposed as a 
tool for building fault tolerant systems [Rennels 80]. 
Nonetheless, process migration has proved to be a 
difficult feature to implement in operating systems. 

As described here, process migration is the relocation 
of a process from the processor on which it is executing 
(the source processor) to another processor (the destina- 
tion processor) in a distributed {loosely-coupled) system. 
A loosely-coupled system is one in which the same copy 
of a process state cannot directly be executed by both 
processors. Rather,  a copy of the state must be moved to 
a processor before it can run the process. Process migra- 
tion i s  normally an involuntary operation that  may be 
initiated without the knowledge of the running process or 
any processes interacting with it. Ideally, all processes 
continue execution with no apparent  changes in their 
computation or communications. 

One way to improve the overall performance of a 
distributed system is to distribute the load as evenly as 
possible across the set of available resources in order to 
maximize the parallelism in the system. Such resource 
load balancing is d i~cul t  to achieve with static assign- 
ment of processes to processors. A balanced execution 
mix can be disturbed by a process that  suddenly requires 
larger amounts of some resource, or by the creation of a 
new process with unexpected resource requirements. If it  
is possible to assess the system load dynamically and to 
redistribute processes during their lifetimes, a system has 
the opportunity to achieve better  overall throughput, in 
spite of the communication and computation involved in 
moving a process to another processor [Stone 77, Bokhard 
79]. A smaller relocation cost means that  the system has 
more opportunities to improve performance. 

System performance may also be improved by reduc- 
ing inter-machine communication costs. Accesses to 
non-local resources require communication, possibly 
through intermediate processors. Moving a process closer 
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to the resource it is using most heavily may reduce 
system-wide communication traffic, if the decreased cost 
of accessing its favorite resource offsets the possible 
increased cost of accessing its less favored ones. 

A static assignment to a processor may not be best 
even from the perspective of a single program. As a pro- 
cess runs, its resource reference pattern may change, 
making it profitable to move the process in mid- 
computation. 

The mechanisms used in process migration can also 
be useful in fault recovery. Process migration provides 
the ability to stop a process, transport its state to 
another processor, and restart the process, transparently. 
If the information necessary to transport a process is 
saved in stable storage, it may be possible to "migrate" a 
process from a processor that has crashed to a working 
one. In failure modes that manifest themselves as gra- 
dual degradation of the processor or the failure of some 
but not all of the software, working processes may be 
migrated from a dying processor (like rats leaving a sink- 
ing ship) before it completely fails. 

Process migration has been proposed as a feature in 
a number of systems [Solomon & Finkel 79, Cheriton 79, 
Feldman 79, Rashid & Robertson 81], but successful 
implementations are rare. Some of the problems encoun- 
tered relate to disconnecting the process from its old 
environment and connecting it with its new one, not only 
making the new location of the process transparent to 
other processes, but performing the transition without 
affecting operations in progress. In many systems, the 
state of a process is distributed among a number of tables 
in the system making it hard to extract that information 
from the source processor and create corresponding 
entries on the destination processor. In other systems, 
the presence of a machine identifier as part of the process 
identifier used in communication makes continuous tran- 
sparent interaction with other processes impossible. In 
most systems, the fact that some parts of the system 
interact with processes in a location-dependent way has 
meant that the system is not free to move a process st  
any point in time. 

In the next section, we will discuss some of the 
structure of DEMOS/MP, which eliminates these impedi- 
ments to process migration. In subsequent sections, we 
will describe how a process is moved, how the communi- 
cation system makes the migration transparent, and the 
costs involved in moving a process. 

2. The Environment: DEMOS/MP 
Process migration was added to the DEMOS/MP 

[Powell, Miller, & Presotto 83] operating system. 
DEMOS/MP is a version of the DEMOS operating system 
[Baskett, Howard, & Montague 77, Powell 77] the seman- 
tics of which have been extended to operate in a distri- 
buted environment. DEMOS/MP has all of the facilities 
of the original uni-processor implementation, allowing 
users to access the multi-processor system in the same 
manner as the uni-processor system. 

DEMOS/MP is currently in operation on a network 
of Z8000 microprocessors, as well as in simulation mode 
on a DEC VAX running UNIX. Though the processor, 
I/O, and memory hardware of these two implementations 
are quite different, essentially the same software runs on 
both systems. Software can be built and tested using 
UNIX and subsequently compiled and run in native mode 
on the microprocessors. 

2.1. DEMOS/MP Communications 
DEMOS/MP is a message-based operating system, 

with communication as the most basic mechanism. A 
kernel implements the primitive objects of the system: 
executing processes, messages, including inter-processor 
messages, and message paths, called links. Most of the 
system functions are implemented in server processes, 
which are accessed through the communication mechan- 
ism. 

All interactions between one process and another or 
between a process and the system are via 
communication-oriented kernel calls. Most system ser- 
vices are provided by system processes that are accessed 
by message communication. The kernel implements the 
message operations and a few special services. Messages 
are sent to the kernel to access all services except mes- 
sage communication itself. 

A copy of the kernel resides on each processor. 
Although each kernel independently maintains its own 
resources (CPU, real memory, and I /O ports), all kernels 
cooperate in providing a location-transparent, reliable, 
interprocess message facility. In fact, different modules of 
the kernel on the same processor, as well as kernels on 
different processors, use the message mechanism to com- 
municate with each other. 

In DEMOS/MP, messages are sent using links to 
specify the receiver of the message. Links can be thought 
of as buffered, one-way message channels, but are essen- 
tially protected global process addresses accessed via a 
local name space. Links may be created, duplicated, 
passed to other processes, or destroyed. Links are mani- 
pulated much like capabilities; that is, the kernel partici- 
pates in all link operations, but the conceptual control of 
a link is vested in the process that the link addresses 
(which is always the process that created it). Addresses 
in links are context-independent; if a link is passed to a 
different process, it will still point to the same destination 
process. A link may also point to a kernel. Messages 
may be sent to or by.a  kernel in the same manner as a 
process. 

The most important part of a link is the message 
process address (see Figure 2-1). This is the field that 
specifies to which process messages sent over that link are 
delivered. The address has two components. The first is 
a system-wide, unique, process identifier. It consists of 
the identifier of the processor on which the process was 
created, and- a unique local identifier generated by that 
machine. The second is the last known location of the 
process. During the lifetime of a link, the first com- 
ponent of its address never changes; the second, however, 
may. 
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2.2. Special Kernel Communications 
A link attribute, called D E L I V E R  T O K E R N E L ,  

causes the link to reference the kernel of the processor on 
which a particular process resides. Except for the 
DELIVERTOKERNEL flag, a link with this attribute 

looks the same as a link to the process to which it points. 
Links with the DELIVERTOKERNEL attribute used to 
cause the kernel to manipulate the process in ways that 
system processes cannot do directly. 

A message sent over a DELIVERTOKERNEL link 
follows the normal routing to the process. However, on 
arrival at the destination process's message queue, the 
message is received by the kernel on that processor. A 
link with the DELIVERTOKERNEL attribute allows the 
system to address control functions to a process without 
worrying about which processor the process is on (or is 
moving to). 

This mechanism has simplified a number of problems 
associated with moving a process. It is often the case 
that some part of the system needs to manipulate the 
state of a process, for example, the process manager may 
wish to suspend a process. Using a link with the 
DELIVERTOKERNEL attribute, the process manager 
can send a message to the process's kernel asking that the 
process be stopped. If the process is temporarily unavail- 
able to receive the message (for instance, it is in transit 
during process migration}, the message is held and for- 
warded for delivery when normal message receiving can 
continue. 

In addition to providing a message path, a link may 
also provide access to a memory area in another process. 
When a process creates a link, it may specify in the link 
read or write access to some part of its address space. 
The process holding the link mag use kernel calls to 
transfer data to or from the data area defined by the 
link. This is the mechanism for large data transfers, such 
as file accesses or data transfer in process migration. The 
kernel implements the data move operation by sending a 
sequence of messages containing the data to be 
transferred. These messages are sent over a DELIVER- 
TOKERNEL link to the kernel of process containing the 
data area. Using DELIVERTOKERNEL links allows the 
data to be read from or written to the kernel of the 
remote process without the kernel that  instigated the 
operation being aware of the process's location. 
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C o m p o n e n t s  of a DEMOS/MP p roces s  
Figure  2-2 

The inter-machine communication of DEMOS/MP 
provides reliable delivery of messages. The fundamental 
guarantee is that any message sent will eventually be 
delivered. 

A DEMOS/Wfl ~ process is shown in Figure 2-2. A 
process consists of the program being executed, along 
with the program's data, stack, and state. The state con- 
sists of the execution status, dispatch information, incom- 
ing message queue, memory tables, and the process's link 
table. Links are the only connections a process has to 
the operating system, system resources, and other 
processes. Thus, a process's link table provides a com- 
plete encapsulation of the execution of the process. 

2.3. DEMOS/MP System Processes 
DEMOS/MP sys tem processes are those processes 

assumed to be present at all times. User processes are 
created dynamically to perform computation, usually at 
the request of some user. A system process will often be 
a server process, that  is, most other processes will be able 
to ask it to perform some functions on their behalf. The 
system processes being used in DEMOS/MP are the 
switchboard, process manager, memory scheduler, file sys- 
tem (actually, four processes), and command interpreter. 
The switchboard is a server that  distributes links by 
name. It is used by the system and user processes to 

connect arbitrary processes together. An example of the 
system process structure is shown in Figure 2-3. 

The process and memory managers handle all the 
high-level scheduling decisions for processes. These 
processes allocate and keep track of usage for system 
resources such as the CPU, real memory, etc. They con- 
trol processes by sending messages to kernels to manipu- 
late process states. For example, although the kernel 
implements the mechanisms of migrating a process, the 
process manager makes the decision of when and to 
where to migrate a process. 
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The file system is the same as that implemented for 
the uni-processor DEMOS [Powell 77], with the added 
freedom that the file system processes can be located on 
different processors. The command interpreter allows 
interactive access to DEMOS/MP programs. 

One of our test examples of process migration runs 
the above processes. It migrates a file system process 
while several user processes are performing I/O. This is 
more difficult than moving a user process would be, as we 
shall see below. 

fL4. T h e  LonK and  S h o r t  o f  Links  

It is important to consider all the places where links 
to a process might be stored when that process is moved, 
since they contain information specifying the location of 
the process. Although a link is not useful after the pro- 
cess that it addresses terminates, some links last for rela- 
tively long periods of time. For example, a request link, 
which represents a service such as process management, 
or a resource link, which represents an object such as an 
open file, may exist for as long as the system is up, if 
they are held by a system process. Other links, such as 
reply links, have short lifetimes, since they are used only 
once to respond to requests. 

Links may be either in some process's link table or 
in a message that is enroute to a process. Once a link is 
given out, it may be passed to other processes without 
the knowledge of  the process that created the link (the 
process to which the link points). There is no way short 
of a complete system search of finding all links that point 
to a process. The mechanism for handling messages dur- 
ing and after a process is migrated must provide a way 
for messages to be directed to the new location, despite 
out-of-date links. Moreover, for performance reasons, it 
should eventually bring these links up-to-date. 

Moving a user process will usually be simple. The 
only processes likely to have links to a user process are 
system processes. Such links may be used to send only 
one message, so the out-of-date link will no longer exist 
after forwarding the reply message to the new location of 
the user process. 

Moving a system process (or, more precisely, a 
server process), is more difficult, since many processes 
may have links to it, and such links may last a long time, 
being duplicated and passed to other processes. In fact, 
the server process may not know how many copies of 
links there are to it (it is possible, but optional, for a pro- 
cess to keep track of how many, but not where they are). 
Since such links may be used for many messages, perfor- 
mance considerations will require a method for updating 
these links. 

8. M o v i n g  a Prote in  

Most of the low-level mechanisms required to mani- 
pulate the process state and move data between kernels 
were available in the version of DEMOS/MP that existed 
when this effort began. Process migration was 

implemented by using those facilities to move the process, 
and adding the mechanisms for forwarding messages and 
updating links. 

8.1. T h e  M e c h a n i s m  
A process is moved between two processors called 

the source processor and the destination processor. A 
request to the kernel to move a process is made by the 
process manager system process. In the absence of an 
authentic workload for our test cases, the decision to 
move a particular process and the choice of destination 
were arbitrary. However, adding a decision rule for when 
and to where to move a process will be easy. The process 
manager and memory scheduler already monitor system 
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activity for memory and cpu scheduling, and can use the 
same information to make process migration decisions. 
Information on the communications load is also available. 
It is of course possible for a process to request its own 
migration. This request can be thought of as one more 
piece of information that  the process manager can use in 
making migration decisions. Designing an efficient and 
effective decision rule is still an open research topic. 

There are several features of a decision rule that  we 
have considered in our implementation. The migration 
scheme depends on the ability to evaluate the resource 
use patterns of processes. This function is normally 
available in the accounting or performance monitoring 
part  of the system. There must also be a way to assess 
the load on individual processors. This function is often 
available in systems with load-limiting schedulers, which 
activate or deactivate processes based on "overall system 
load. The three features not usually available are the 
means to collect the above information in one place, an 
strategy for improving the operation of the system con- 
sidering the appropriate costs, and a hysteresis mechan- 
ism to keep from incurring the cost of migration more 
often than justified by the gains. 

Information used to determine when and where to 
move a process involves the state of machine on which 
the process currently resides, and machines to where the 
process could move. Processor loading and memory 
demand for each machine is required. 

More difficult is integrating the communications cost 
incurred by a process. Processes cooperating in a compu- 
tation may exhibit a great deal of parallelism, and there- 
fore should be on different machines. However, 
separating them could increase the latency of communica- 
tion beyond the savings accrued by parallel execution. 
Collection of the communication da ta  is beyond the abil- 
i ty of most current systems. 

Once the decision has been made to migrate k pro- 
cess, the following steps are performed (shown in figure 
3-1). 

1. Remove the process from execution: 

The process is marked as "in migration". If it had 
been ready, it is removed from the run queue. No 
change is made to the recorded state of the process 
{whether it is suspended, running, waiting for mes- 
sage, etc.), since the process will (at least initially) be 
in the same state when it reaches its the destination 
processor. Messages arriving for the migrating pro- 
cess, including DELIVERTOKERNEL messages, will 
be placed on its message queue. 

2. Ask destination kernel to move process: 

A message is sent to the kernel on the destination 
processor, asking it to migrate the process to its 
machine. This message contains information about 
the size and location of the the process's resident 
state, swappable state, and code. The next part of 
the migration, up to the forwarding of messages 
(Step 6), will be controlled by the destination proces- 
sor kernel. 

3. Allocate a process state on the destination processor: 

An empty process state is created on the destination 
processor. This process state is similar to that  allo- 
cated during process creation, except that  the newly 
allocated process state has the same proeesa identifier 
as the the migrating process. Resources such as vir- 
tual memory swap space are reserved at this time. 

4. Transfer the process state: 

Using the move da ta  facility, the destination kernel 
copies the migrating process's state into the empty 
process state. 

5. Transfer the program: 

Using the move da ta  facility, the destination kernel 
copies the memory (code, data, and stack) of the 
process into the destination process. Since the ker- 
nel move data  operation handles reading or writing 
of swapped out memory and allocation of new vir- 
tual memory, this step will cause definition of 
memory to take place, if necessary. Control is 
returned to the source kernel. 

6. Forward pending messages: 

Upon being notified that  the process is established 
on the new processor, the source kernel resends all 
messages that  were in the queue when the migration 
started, or that  have arrived since the migration 
started. Before giving them back to the communica- 
tion system, the source kernel changes the location 
part  of the process address to reflect the new loca- 
tion of the process. 

7. Clean-up process's state: 

On the source processor, all state for the process is 
removed and space for memory and tables is 
reclaimed. A [orwarding address is left on the source 
processor to forward messages to the process at its 
new location. The forwarding address is a degen- 
erate process state, whose only contents are the (last 
known) machine to which the process was migrated. 
The normal message delivery system tries to find a 
process when a message arrives for it. When it 
encounters a forwarding address, it  takes the actions 
described in the next section. The source kernel has 
completed its work and control is returned to the 
destination kernel. 

8. Restar t  the process: 

The process is restarted in whatever state it was in 
before being migrated. Messages may now arrive for 
the process, although the only part of the system 
that  knows the new location of the process is the 
source processor kernel. The destination kernel has 
completed its work. 
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At this point, the process has been migrated. The 
links from the migrated process to the rest of the system 
are all still valid, since links are context-independent. 
Links created by the process after it has moved will point 
to the process at its new location. The only problem is 
what to do with'messages sent on links that still point to 
the old location. 

3.2. A Note on A u t o n o m y  and In te rdomain  
Migration 

The DEMOS/MP kernels trust each other, and thus 
are not completely autonomous. Moreover, for practical 
purposes, all DEMOS/MP processors are identical and 
provide the same services. This makes process migration 
particularly useful in our environment. However, the 
process migration mechanism could work even if the ker- 
nels were autonomous and had different resources. 

The crucial questions for autonomous processors are 
"Is the process willing to be movedP' and "Will the desti- 
nation machine accept it?" Any policy to decide which 
process to migrate could take into account the former 
question. The second question can be addressed during 
the migration. Note that the destination machine actu- 
ally performs most of the steps. In particular, in Step 2, 
the source machine asks the destination machine to 
accept the process. If the destination machine refuses, 
the process cannot be migrated. 

It is also possible to migrate processes between 
domains. By domain, we mean that the destination pro- 
cessor belongs to a collection of machines under a 
different administrative control than the source processor, 
and may be suspicious of the source processor and the 
incoming process. The destination processor may simply 
refuse to accept any migrations not fitting its criteria. 
The source processor, once rebuffed, has the option of 
looking elsewhere. 

'].'he source and destination kernels must, of course, 
be able to communicate with each other in order to 
accomplish the migration, and the destination machine 
must be able to handle messages sent over the links held 
by the process. Since the ability to send and receive mes- 
sages over links is all a DEMOS process expects of its 
environment, so long as that continues to be provided, 
the process can continue to run. 

4. Message Forwarding 
Since DEMOS/MP guarantees message delivery, in 

moving a process it must be ensured that all pending, 
enroute, and future messages arrive at the process's new 
location. There are three cases to consider: messages sent 
but not received before the process finished moving, mes- 
sages sent after the process is moved using an old link, 
and messages sent using a link created after the process 
moved. 

Messages in the first category were in process's mes- 
sage queue on the source machine, waiting for the process 
to receive them, when the process restarted on the desti- 
nation machine. These messages are forwarded immedi- 
ately as part of the migration procedure. 

Messages in the middle category are forwarded as 
they arrive. After the process has been moved, a for- 
warding address is left at the source processor pointing 
toward the destination processor. When a message is 
received at a given machine, if the receiver is a forward- 
ing address, then the machine address of the message is 
updated and the message is resubmitted to the message 
delivery system (see Figure 4-1). As a byproduct of for- 
warding, an attempt may be made to fix up the link of 
the sending process (See next section). 

The last case, messages sent using links created after 
the process has moved, is trivial. Links created after the 
process is moved will contain the same process identifier, 
and the last known machine identifier in the process 
address will be that of the new machine. 

P r o c e s s o r  I 
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Simply forwarding messages is a sufficient mechan- 
ism to insure correct operation of the process and 
processes communicating with it after it has moved. 
However, the motivation for process migration is often to 

improve message performance. Routing messages 
through another processor (with the forwarding address) 
can defeat possible performance gains and, in many eases, 
degrade performance. The next sect~.on discusses 
methods for updating links to reduce the cost of forward* 
ing. 

An alternative to message forwarding is to return 
messages to their senders as not deliverable. This 
method does not require any process state to be left 
behind on the source processor. The kernel sending the 
message will receive a response that indicates that the 
process does not exist on the destination machine. Nor- 
really this means that the process the link points to has 
terminated; in this case, it may mean the process has 
migrated. The sending kernel can attempt to find the 
new location of the process, perhaps by notifying the pro- 
eess manager or some system-wide name service, or can 
notify the sending process that the link is no longer 
usable, forcing it to take recovery action. The disadvan- 
tage of this scheme is that, even if the kernel could 
redirect the message without impacting the sending pro- 
eess, more of the system would be involved in message 
forwarding and would have to be aware of process migra- 
tion. This method also violates the transparency of com- 
munications fundamental to DEMOS/MP. 

When the forwarding address is no longer needed, it 
would be desirable to remove it. The optimum time to 
remove it is when all linRs that point to the migrated 
process's old location have been updated. This typically 
would require a mechanism that makes use of reference 
counts. An alternative is .to remove the forwarding 
address when the process dies. This can be accomplished 
by means of pointers backwards along the path of migra- 
tion. 

The forwarding address is compact. In the current 
implementation, it uses 8 bytes of storage. As a result of 
the negligible impact on system resources, we have not 
found it necessary to remove forwarding addresses. 
Given a long running system, however, some form of gar- 
bage collection will eventually have to be used. 

It is possible for the processor that is holding for- 
warding address to crash. Since forwarding addresses are 
(degenerate) processes, the same recovery mechanism that 
works for processes works for forwarding addresses. Pro- 
cees migration assumes that reliable message delivery is 
provided by some lower level mechanism, for example, 
published communicatior~s [Powell & Presotto 83]. 

6. Updat ing  Links 

By updatinf links, we mean updating the process 
address of the link. Recall that a process address con- 
tains both a unique identifier and a machine location. 
The unique identifier is not changed, but the machine 
location is updated to specify the new machine. 

As mentioned above, for performance reasons, it is 
important to update links that address a process that has 
been migrated. These links may belong to processes that 
are resident on the same or different processors, and 
processes may have more than one link to a given process 
(including to themselves). Links may also be contained 
in messages in transit. It is therefore impractical to 
search the whole system for links that may point to a 
particular process. 

Since race conditions nlight allow some messages to 
be in transit while the process is being moved, the mes- 
sage forwarding mechanism is required. As long as it is 
available, it can also be used for forwarding messages 
that are sent using links that have not yet been updated 
to reflect the new location of the process. 

The following scheme allows links to be updated as 
they are used, rather than all at once: As it forwards the 
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message, the forwarding machine sends another special 
message to the kernel of the process that  sent the original 
message (see Figure 5-1). This special message contains 
the process identifier of the sender of the message, the 
process identifier of the intended receiver (the migrated 
process), and the new location of the receiver. All links 
in the sending process's link table that  point to the 
migrated process are then updated to point to the new 
location. 

Movement of a process should cause only a small 
perturbation to message communication performance. If 
the process that  has moved is a user process, there will 
usually be few links that  point to it. The links will tend 
to be either reply links, which will generate only one mes- 
sage and thus not need to be fixed up, or links from other 
user processes with which it is communicating, which will 
quickly be updated during the first few message 
exchanges. As a general rule, system processes do not 
retain non-reply links to user processes. 

The worst case will be when the moving process is a 
server process. In this case, there may be many links to 
the process that  need to be fixed up. Generally, links to 
servers are used for more than a few message exchanges, 
so the overhead of fixing up Such a link is traded off 
against the savings of the cost to forward many messages. 
Moreover, the likelihood of server processes migrating is 
lower than for user processes. Servers are often tied to 
unmovable resources and usually present predictable 
loads that  allow them to be properly located, reducing 
the need to move them. 

8. Cost  of  Migration 
The cost of moving a process dictates how frequently 

we are willing to move the process. These costs manifest 
themselves in two areas; the actual cost in moving the 
process and its related state, and the incremental costs 
incurred in updating message paths. 

The cost of the actual transfer of the process and its 
state can be separated into state transfer cost and admin- 
istrative cost. The s tate  transfer cost includes the mes- 
sages that  contain the process's code, data, state, and 
message queue. DEMOS/MP uses the da ta  move facility 
to transfer large blocks of data. This facility is designed 
to minimize network overhead by sending larger packets 

(and increasing effective network throughput). The pack- 
ets are sent to the receiving kernel in a continuous 
stream. The receiving kernel acknowledges each packet 
(but the sending kernel does not have to wait for the ack- 
nowledgement to send the next packet). Three da ta  
moves are involved in moving a process. These are for 
the program (code and data), the non-swappable 
(resident) state, and the swappable state. The non- 
swappable state uses about 250 bytes, and the swappable 
state uses about 600 bytes (depending on the size of the 
link table). For  non-trivial processes, the size of the pro- 
gram and da ta  overshadow the size of the system infor- 
mation. 

In addition, each message that  is pending in the 
queue for the migrating process must be forwarded to the 
destination machine. The cost for each of these messages 

is the same ~Ls for any other inter-machine message. 

The administrative cost includes the message 
exchanges that  are used to initiate and orchestrate the 
task of moving a process. These costs depend on the 
internal structures of the system on which it is being 
implemented. The current DEMOS/MP implementation 
uses 9 such messages, each message being in the 6-12 byte 
range. These messages use the standard inter-machine 
message facility. 

The incremental costs for process migration are 
incurred when a link needs to be updated. Each message 
that  goes through a forwarding address generates two 
additional messages. The first is the actual message 
being forwarded to its new destination, and the second is 
the update message back to the sender. This will occur 
for each message sent on a given link until the update 
message reaches the sending process. In current exam- 
pies, the worst case observed was two messages sent over 
a link before it was updated. Typically, the link is 
updated after the first message. 

The movement of a process involves a small number 
of short, control messages, and a large number of block 
da ta  transfers. The cost of migrating a process depends 
on the efficiency of both of these types of communica- 
tions. 

Y. C o n e l u s l o n  

Process migration has proven to be a reasonable 
facility to implement in a communication-based distri- 
buted operating system. Less than one person-month of 

time was required to implement and test the m~chanism 
in the current version of DEMOS/MP. 

A number of DEMOS/MP design features have made 
the implementation of process migration possible. 
DEMOS/MP provides a complete encapsulation of a pro- 
cuss, with the only method of access to services and 
resources being through links. There is no uncontrolled 
sharing of memory and all contact with the operating sys- 
tem, I /O,  and other processes is made through a process's 
links. DEMOS/MP has a concise process state represen- 
tation. There is no process state hidden in the various 
functional modules of the operating system. On the 
other hand, the system servers each maintain their own 
states, thus no resource state (except for links) is in the 
process state. Once a process is taken out of execution, it  
is a simple mat ter  to copy its s tate to another processor. 
The location transparency and context independence of 
links make it possibb for both the moved process and 
processes communicating with it to be isolated from the 
change in venue. 

The DELIVERTOKERNEL link at t r ibute  allows 
control operations to be performed without concern for 
where the process is located. Thus control can follow a 
process through disturbances in its execution. 

The mechanism for moving a process has been imple- 
mented, but  there is not yet a strategy routine that  actu- 
ally decides when to move a process. The literature con- 
tains a few studies of metrics to use for processor and 
message traffic load optimization. Our continuing work 
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involves implementing process load balancing algorithms, 
and developing facilities for the measurement and 
analysis of the performance of communications in distri- 
buted programs. 
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