
P r o c e s s M i g r a t i o n i n D E M O S / 1 V I P

Michael L. Powell
Barton P. Miller

Computer Science Division
Department of Electrical Engineering and Computer Sciences

University of California
Berkeley, CA 94720

Abstract

Process migration has been added to the
DEMOS/MP operating system. A process can be moved
during its execution, and continue on another processor,
with continuous access to all its resources. Messages are
correctly delivered to the proeess's new location, and mes-
sage paths are quickly updated to take advantage of the
process's new location. No centralized algorithms are
necessary to move a process.

A number of characteristics of DEMOS/NIP allowed
process migration to be implemented efficiently and with
no changes to system services. Among these characteris-
tics are the uniform and location independent communi-

• cation interface, and the fact that the kernel can partici-
pate in message send and receive operations in the same
manner as a normal process.

This research was supported by National Science Foundation grant
MCS-8010686, the State of California MICRO program, and the De-
lense Advance Research Projects Agency (DoD) Arpa Order No. 4031
monitored by Naval Electronic System Command under Contract
No. N00039-82-C-0235.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1 9 8 3 ACM 0-89791-115-6/83/010/0110 $00.75

1. Introduct ion

Process migration has been discussed in the operat-
ing system literature, and has been among the design
goals for a number of systems [Finkel 80][Rashid &
Robertson 81]. Theoretical and modeling studies of dis-
t r ibuted systems have suggested that performance gains
are achievable using relocation of processes [Stone 77,
Stone & Bokhari 78, Bokhari 79, Robinson 79, Arora &
Rana 80]. Process migration has also been proposed as a
tool for building fault tolerant systems [Rennels 80].
Nonetheless, process migration has proved to be a
difficult feature to implement in operating systems.

As described here, process migration is the relocation
of a process from the processor on which it is executing
(the source processor) to another processor (the destina-
tion processor) in a distributed {loosely-coupled) system.
A loosely-coupled system is one in which the same copy
of a process state cannot directly be executed by both
processors. Rather, a copy of the state must be moved to
a processor before it can run the process. Process migra-
tion i s normally an involuntary operation that may be
initiated without the knowledge of the running process or
any processes interacting with it. Ideally, all processes
continue execution with no apparent changes in their
computation or communications.

One way to improve the overall performance of a
distributed system is to distribute the load as evenly as
possible across the set of available resources in order to
maximize the parallelism in the system. Such resource
load balancing is d i~cul t to achieve with static assign-
ment of processes to processors. A balanced execution
mix can be disturbed by a process that suddenly requires
larger amounts of some resource, or by the creation of a
new process with unexpected resource requirements. If it
is possible to assess the system load dynamically and to
redistribute processes during their lifetimes, a system has
the opportunity to achieve better overall throughput, in
spite of the communication and computation involved in
moving a process to another processor [Stone 77, Bokhard
79]. A smaller relocation cost means that the system has
more opportunities to improve performance.

System performance may also be improved by reduc-
ing inter-machine communication costs. Accesses to
non-local resources require communication, possibly
through intermediate processors. Moving a process closer

ii0

to the resource it is using most heavily may reduce
system-wide communication traffic, if the decreased cost
of accessing its favorite resource offsets the possible
increased cost of accessing its less favored ones.

A static assignment to a processor may not be best
even from the perspective of a single program. As a pro-
cess runs, its resource reference pattern may change,
making it profitable to move the process in mid-
computation.

The mechanisms used in process migration can also
be useful in fault recovery. Process migration provides
the ability to stop a process, transport its state to
another processor, and restart the process, transparently.
If the information necessary to transport a process is
saved in stable storage, it may be possible to "migrate" a
process from a processor that has crashed to a working
one. In failure modes that manifest themselves as gra-
dual degradation of the processor or the failure of some
but not all of the software, working processes may be
migrated from a dying processor (like rats leaving a sink-
ing ship) before it completely fails.

Process migration has been proposed as a feature in
a number of systems [Solomon & Finkel 79, Cheriton 79,
Feldman 79, Rashid & Robertson 81], but successful
implementations are rare. Some of the problems encoun-
tered relate to disconnecting the process from its old
environment and connecting it with its new one, not only
making the new location of the process transparent to
other processes, but performing the transition without
affecting operations in progress. In many systems, the
state of a process is distributed among a number of tables
in the system making it hard to extract that information
from the source processor and create corresponding
entries on the destination processor. In other systems,
the presence of a machine identifier as part of the process
identifier used in communication makes continuous tran-
sparent interaction with other processes impossible. In
most systems, the fact that some parts of the system
interact with processes in a location-dependent way has
meant that the system is not free to move a process st
any point in time.

In the next section, we will discuss some of the
structure of DEMOS/MP, which eliminates these impedi-
ments to process migration. In subsequent sections, we
will describe how a process is moved, how the communi-
cation system makes the migration transparent, and the
costs involved in moving a process.

2. The Environment: DEMOS/MP
Process migration was added to the DEMOS/MP

[Powell, Miller, & Presotto 83] operating system.
DEMOS/MP is a version of the DEMOS operating system
[Baskett, Howard, & Montague 77, Powell 77] the seman-
tics of which have been extended to operate in a distri-
buted environment. DEMOS/MP has all of the facilities
of the original uni-processor implementation, allowing
users to access the multi-processor system in the same
manner as the uni-processor system.

DEMOS/MP is currently in operation on a network
of Z8000 microprocessors, as well as in simulation mode
on a DEC VAX running UNIX. Though the processor,
I/O, and memory hardware of these two implementations
are quite different, essentially the same software runs on
both systems. Software can be built and tested using
UNIX and subsequently compiled and run in native mode
on the microprocessors.

2.1. DEMOS/MP Communications
DEMOS/MP is a message-based operating system,

with communication as the most basic mechanism. A
kernel implements the primitive objects of the system:
executing processes, messages, including inter-processor
messages, and message paths, called links. Most of the
system functions are implemented in server processes,
which are accessed through the communication mechan-
ism.

All interactions between one process and another or
between a process and the system are via
communication-oriented kernel calls. Most system ser-
vices are provided by system processes that are accessed
by message communication. The kernel implements the
message operations and a few special services. Messages
are sent to the kernel to access all services except mes-
sage communication itself.

A copy of the kernel resides on each processor.
Although each kernel independently maintains its own
resources (CPU, real memory, and I /O ports), all kernels
cooperate in providing a location-transparent, reliable,
interprocess message facility. In fact, different modules of
the kernel on the same processor, as well as kernels on
different processors, use the message mechanism to com-
municate with each other.

In DEMOS/MP, messages are sent using links to
specify the receiver of the message. Links can be thought
of as buffered, one-way message channels, but are essen-
tially protected global process addresses accessed via a
local name space. Links may be created, duplicated,
passed to other processes, or destroyed. Links are mani-
pulated much like capabilities; that is, the kernel partici-
pates in all link operations, but the conceptual control of
a link is vested in the process that the link addresses
(which is always the process that created it). Addresses
in links are context-independent; if a link is passed to a
different process, it will still point to the same destination
process. A link may also point to a kernel. Messages
may be sent to or by.a kernel in the same manner as a
process.

The most important part of a link is the message
process address (see Figure 2-1). This is the field that
specifies to which process messages sent over that link are
delivered. The address has two components. The first is
a system-wide, unique, process identifier. It consists of
the identifier of the processor on which the process was
created, and- a unique local identifier generated by that
machine. The second is the last known location of the
process. During the lifetime of a link, the first com-
ponent of its address never changes; the second, however,
may.

Iii

Changes zui th
p r o c e s s l oca t i on !

Last
Known
'Machine

Set on process crea t ion .
Does no t c h a n g e

Unique Process [D

Creating Local
Machine Unique ID

S t r u c t u r e of a p r o c e s s a d d r e s s
F i g u r e 2-1

2.2. Special Kernel Communications
A link attribute, called D E L I V E R T O K E R N E L ,

causes the link to reference the kernel of the processor on
which a particular process resides. Except for the
DELIVERTOKERNEL flag, a link with this attribute

looks the same as a link to the process to which it points.
Links with the DELIVERTOKERNEL attribute used to
cause the kernel to manipulate the process in ways that
system processes cannot do directly.

A message sent over a DELIVERTOKERNEL link
follows the normal routing to the process. However, on
arrival at the destination process's message queue, the
message is received by the kernel on that processor. A
link with the DELIVERTOKERNEL attribute allows the
system to address control functions to a process without
worrying about which processor the process is on (or is
moving to).

This mechanism has simplified a number of problems
associated with moving a process. It is often the case
that some part of the system needs to manipulate the
state of a process, for example, the process manager may
wish to suspend a process. Using a link with the
DELIVERTOKERNEL attribute, the process manager
can send a message to the process's kernel asking that the
process be stopped. If the process is temporarily unavail-
able to receive the message (for instance, it is in transit
during process migration}, the message is held and for-
warded for delivery when normal message receiving can
continue.

In addition to providing a message path, a link may
also provide access to a memory area in another process.
When a process creates a link, it may specify in the link
read or write access to some part of its address space.
The process holding the link mag use kernel calls to
transfer data to or from the data area defined by the
link. This is the mechanism for large data transfers, such
as file accesses or data transfer in process migration. The
kernel implements the data move operation by sending a
sequence of messages containing the data to be
transferred. These messages are sent over a DELIVER-
TOKERNEL link to the kernel of process containing the
data area. Using DELIVERTOKERNEL links allows the
data to be read from or written to the kernel of the
remote process without the kernel that instigated the
operation being aware of the process's location.

Program Link Table Other state

code

data

;= ;j

Message Queue

stack I

C o m p o n e n t s of a DEMOS/MP p roces s
Figure 2-2

The inter-machine communication of DEMOS/MP
provides reliable delivery of messages. The fundamental
guarantee is that any message sent will eventually be
delivered.

A DEMOS/Wfl ~ process is shown in Figure 2-2. A
process consists of the program being executed, along
with the program's data, stack, and state. The state con-
sists of the execution status, dispatch information, incom-
ing message queue, memory tables, and the process's link
table. Links are the only connections a process has to
the operating system, system resources, and other
processes. Thus, a process's link table provides a com-
plete encapsulation of the execution of the process.

2.3. DEMOS/MP System Processes
DEMOS/MP sys tem processes are those processes

assumed to be present at all times. User processes are
created dynamically to perform computation, usually at
the request of some user. A system process will often be
a server process, that is, most other processes will be able
to ask it to perform some functions on their behalf. The
system processes being used in DEMOS/MP are the
switchboard, process manager, memory scheduler, file sys-
tem (actually, four processes), and command interpreter.
The switchboard is a server that distributes links by
name. It is used by the system and user processes to

connect arbitrary processes together. An example of the
system process structure is shown in Figure 2-3.

The process and memory managers handle all the
high-level scheduling decisions for processes. These
processes allocate and keep track of usage for system
resources such as the CPU, real memory, etc. They con-
trol processes by sending messages to kernels to manipu-
late process states. For example, although the kernel
implements the mechanisms of migrating a process, the
process manager makes the decision of when and to
where to migrate a process.

112

Processor A

©©
@

Kernel

I

Processor B

@©
@

Kernel

~rocessor C

Q
Kernel

~ ~Network I

Example of system process lay-out
Figure 2-3

The file system is the same as that implemented for
the uni-processor DEMOS [Powell 77], with the added
freedom that the file system processes can be located on
different processors. The command interpreter allows
interactive access to DEMOS/MP programs.

One of our test examples of process migration runs
the above processes. It migrates a file system process
while several user processes are performing I/O. This is
more difficult than moving a user process would be, as we
shall see below.

fL4. T h e LonK and S h o r t o f Links

It is important to consider all the places where links
to a process might be stored when that process is moved,
since they contain information specifying the location of
the process. Although a link is not useful after the pro-
cess that it addresses terminates, some links last for rela-
tively long periods of time. For example, a request link,
which represents a service such as process management,
or a resource link, which represents an object such as an
open file, may exist for as long as the system is up, if
they are held by a system process. Other links, such as
reply links, have short lifetimes, since they are used only
once to respond to requests.

Links may be either in some process's link table or
in a message that is enroute to a process. Once a link is
given out, it may be passed to other processes without
the knowledge of the process that created the link (the
process to which the link points). There is no way short
of a complete system search of finding all links that point
to a process. The mechanism for handling messages dur-
ing and after a process is migrated must provide a way
for messages to be directed to the new location, despite
out-of-date links. Moreover, for performance reasons, it
should eventually bring these links up-to-date.

Moving a user process will usually be simple. The
only processes likely to have links to a user process are
system processes. Such links may be used to send only
one message, so the out-of-date link will no longer exist
after forwarding the reply message to the new location of
the user process.

Moving a system process (or, more precisely, a
server process), is more difficult, since many processes
may have links to it, and such links may last a long time,
being duplicated and passed to other processes. In fact,
the server process may not know how many copies of
links there are to it (it is possible, but optional, for a pro-
cess to keep track of how many, but not where they are).
Since such links may be used for many messages, perfor-
mance considerations will require a method for updating
these links.

8. M o v i n g a Prote in

Most of the low-level mechanisms required to mani-
pulate the process state and move data between kernels
were available in the version of DEMOS/MP that existed
when this effort began. Process migration was

implemented by using those facilities to move the process,
and adding the mechanisms for forwarding messages and
updating links.

8.1. T h e M e c h a n i s m
A process is moved between two processors called

the source processor and the destination processor. A
request to the kernel to move a process is made by the
process manager system process. In the absence of an
authentic workload for our test cases, the decision to
move a particular process and the choice of destination
were arbitrary. However, adding a decision rule for when
and to where to move a process will be easy. The process
manager and memory scheduler already monitor system

113

0

o
0

0

o

0..,

o

0

0
0

0
m
(M

0

0..,

(D

0

0
0

[~
I

, o

0

0
0

0

F 3 .~

2

CT.,

i l '

c0

0
0

¢M

,,

o~

~D
0
0

0

I
r , -

N
0
0

c~

o.g i ~co
° ,-.-I

°~.~

o ~ ~ ~

0 0 ~ m

P" o

o

cv3

I
i
i

(D

114

activity for memory and cpu scheduling, and can use the
same information to make process migration decisions.
Information on the communications load is also available.
It is of course possible for a process to request its own
migration. This request can be thought of as one more
piece of information that the process manager can use in
making migration decisions. Designing an efficient and
effective decision rule is still an open research topic.

There are several features of a decision rule that we
have considered in our implementation. The migration
scheme depends on the ability to evaluate the resource
use patterns of processes. This function is normally
available in the accounting or performance monitoring
part of the system. There must also be a way to assess
the load on individual processors. This function is often
available in systems with load-limiting schedulers, which
activate or deactivate processes based on "overall system
load. The three features not usually available are the
means to collect the above information in one place, an
strategy for improving the operation of the system con-
sidering the appropriate costs, and a hysteresis mechan-
ism to keep from incurring the cost of migration more
often than justified by the gains.

Information used to determine when and where to
move a process involves the state of machine on which
the process currently resides, and machines to where the
process could move. Processor loading and memory
demand for each machine is required.

More difficult is integrating the communications cost
incurred by a process. Processes cooperating in a compu-
tation may exhibit a great deal of parallelism, and there-
fore should be on different machines. However,
separating them could increase the latency of communica-
tion beyond the savings accrued by parallel execution.
Collection of the communication da ta is beyond the abil-
i ty of most current systems.

Once the decision has been made to migrate k pro-
cess, the following steps are performed (shown in figure
3-1).

1. Remove the process from execution:

The process is marked as "in migration". If it had
been ready, it is removed from the run queue. No
change is made to the recorded state of the process
{whether it is suspended, running, waiting for mes-
sage, etc.), since the process will (at least initially) be
in the same state when it reaches its the destination
processor. Messages arriving for the migrating pro-
cess, including DELIVERTOKERNEL messages, will
be placed on its message queue.

2. Ask destination kernel to move process:

A message is sent to the kernel on the destination
processor, asking it to migrate the process to its
machine. This message contains information about
the size and location of the the process's resident
state, swappable state, and code. The next part of
the migration, up to the forwarding of messages
(Step 6), will be controlled by the destination proces-
sor kernel.

3. Allocate a process state on the destination processor:

An empty process state is created on the destination
processor. This process state is similar to that allo-
cated during process creation, except that the newly
allocated process state has the same proeesa identifier
as the the migrating process. Resources such as vir-
tual memory swap space are reserved at this time.

4. Transfer the process state:

Using the move da ta facility, the destination kernel
copies the migrating process's state into the empty
process state.

5. Transfer the program:

Using the move da ta facility, the destination kernel
copies the memory (code, data, and stack) of the
process into the destination process. Since the ker-
nel move data operation handles reading or writing
of swapped out memory and allocation of new vir-
tual memory, this step will cause definition of
memory to take place, if necessary. Control is
returned to the source kernel.

6. Forward pending messages:

Upon being notified that the process is established
on the new processor, the source kernel resends all
messages that were in the queue when the migration
started, or that have arrived since the migration
started. Before giving them back to the communica-
tion system, the source kernel changes the location
part of the process address to reflect the new loca-
tion of the process.

7. Clean-up process's state:

On the source processor, all state for the process is
removed and space for memory and tables is
reclaimed. A [orwarding address is left on the source
processor to forward messages to the process at its
new location. The forwarding address is a degen-
erate process state, whose only contents are the (last
known) machine to which the process was migrated.
The normal message delivery system tries to find a
process when a message arrives for it. When it
encounters a forwarding address, it takes the actions
described in the next section. The source kernel has
completed its work and control is returned to the
destination kernel.

8. Restar t the process:

The process is restarted in whatever state it was in
before being migrated. Messages may now arrive for
the process, although the only part of the system
that knows the new location of the process is the
source processor kernel. The destination kernel has
completed its work.

115

At this point, the process has been migrated. The
links from the migrated process to the rest of the system
are all still valid, since links are context-independent.
Links created by the process after it has moved will point
to the process at its new location. The only problem is
what to do with'messages sent on links that still point to
the old location.

3.2. A Note on A u t o n o m y and In te rdomain
Migration

The DEMOS/MP kernels trust each other, and thus
are not completely autonomous. Moreover, for practical
purposes, all DEMOS/MP processors are identical and
provide the same services. This makes process migration
particularly useful in our environment. However, the
process migration mechanism could work even if the ker-
nels were autonomous and had different resources.

The crucial questions for autonomous processors are
"Is the process willing to be movedP' and "Will the desti-
nation machine accept it?" Any policy to decide which
process to migrate could take into account the former
question. The second question can be addressed during
the migration. Note that the destination machine actu-
ally performs most of the steps. In particular, in Step 2,
the source machine asks the destination machine to
accept the process. If the destination machine refuses,
the process cannot be migrated.

It is also possible to migrate processes between
domains. By domain, we mean that the destination pro-
cessor belongs to a collection of machines under a
different administrative control than the source processor,
and may be suspicious of the source processor and the
incoming process. The destination processor may simply
refuse to accept any migrations not fitting its criteria.
The source processor, once rebuffed, has the option of
looking elsewhere.

'].'he source and destination kernels must, of course,
be able to communicate with each other in order to
accomplish the migration, and the destination machine
must be able to handle messages sent over the links held
by the process. Since the ability to send and receive mes-
sages over links is all a DEMOS process expects of its
environment, so long as that continues to be provided,
the process can continue to run.

4. Message Forwarding
Since DEMOS/MP guarantees message delivery, in

moving a process it must be ensured that all pending,
enroute, and future messages arrive at the process's new
location. There are three cases to consider: messages sent
but not received before the process finished moving, mes-
sages sent after the process is moved using an old link,
and messages sent using a link created after the process
moved.

Messages in the first category were in process's mes-
sage queue on the source machine, waiting for the process
to receive them, when the process restarted on the desti-
nation machine. These messages are forwarded immedi-
ately as part of the migration procedure.

Messages in the middle category are forwarded as
they arrive. After the process has been moved, a for-
warding address is left at the source processor pointing
toward the destination processor. When a message is
received at a given machine, if the receiver is a forward-
ing address, then the machine address of the message is
updated and the message is resubmitted to the message
delivery system (see Figure 4-1). As a byproduct of for-
warding, an attempt may be made to fix up the link of
the sending process (See next section).

The last case, messages sent using links created after
the process has moved, is trivial. Links created after the
process is moved will contain the same process identifier,
and the last known machine identifier in the process
address will be that of the new machine.

P r o c e s s o r I

K e r n e l

P r o c e s s o r II P r o c e s s o r III

process A

i , t forwarding
a~dres~

',

K e r n e l K e r n e l

(I) menage ~ (2) forwerAeA m,mmge

M e s s a g e s e n t t h r o u g h a f o r w a r d i n g a d d r e s s

F i g u r e 4 - 1

116

Simply forwarding messages is a sufficient mechan-
ism to insure correct operation of the process and
processes communicating with it after it has moved.
However, the motivation for process migration is often to

improve message performance. Routing messages
through another processor (with the forwarding address)
can defeat possible performance gains and, in many eases,
degrade performance. The next sect~.on discusses
methods for updating links to reduce the cost of forward*
ing.

An alternative to message forwarding is to return
messages to their senders as not deliverable. This
method does not require any process state to be left
behind on the source processor. The kernel sending the
message will receive a response that indicates that the
process does not exist on the destination machine. Nor-
really this means that the process the link points to has
terminated; in this case, it may mean the process has
migrated. The sending kernel can attempt to find the
new location of the process, perhaps by notifying the pro-
eess manager or some system-wide name service, or can
notify the sending process that the link is no longer
usable, forcing it to take recovery action. The disadvan-
tage of this scheme is that, even if the kernel could
redirect the message without impacting the sending pro-
eess, more of the system would be involved in message
forwarding and would have to be aware of process migra-
tion. This method also violates the transparency of com-
munications fundamental to DEMOS/MP.

When the forwarding address is no longer needed, it
would be desirable to remove it. The optimum time to
remove it is when all linRs that point to the migrated
process's old location have been updated. This typically
would require a mechanism that makes use of reference
counts. An alternative is .to remove the forwarding
address when the process dies. This can be accomplished
by means of pointers backwards along the path of migra-
tion.

The forwarding address is compact. In the current
implementation, it uses 8 bytes of storage. As a result of
the negligible impact on system resources, we have not
found it necessary to remove forwarding addresses.
Given a long running system, however, some form of gar-
bage collection will eventually have to be used.

It is possible for the processor that is holding for-
warding address to crash. Since forwarding addresses are
(degenerate) processes, the same recovery mechanism that
works for processes works for forwarding addresses. Pro-
cees migration assumes that reliable message delivery is
provided by some lower level mechanism, for example,
published communicatior~s [Powell & Presotto 83].

6. Updat ing Links

By updatinf links, we mean updating the process
address of the link. Recall that a process address con-
tains both a unique identifier and a machine location.
The unique identifier is not changed, but the machine
location is updated to specify the new machine.

As mentioned above, for performance reasons, it is
important to update links that address a process that has
been migrated. These links may belong to processes that
are resident on the same or different processors, and
processes may have more than one link to a given process
(including to themselves). Links may also be contained
in messages in transit. It is therefore impractical to
search the whole system for links that may point to a
particular process.

Since race conditions nlight allow some messages to
be in transit while the process is being moved, the mes-
sage forwarding mechanism is required. As long as it is
available, it can also be used for forwarding messages
that are sent using links that have not yet been updated
to reflect the new location of the process.

The following scheme allows links to be updated as
they are used, rather than all at once: As it forwards the

P r o c e s s o r I

t

K e r n e l L

P r o c e s s o r II

process A

i . I forwarding
a~dres~

*

l I

(~) link update rtquest

P r o c e s s o r III

I

K e r n e l

U p d a t i n g a l i n k a f t e r a m e s s a g e f o r w a r d

F i g u r e 5 -1

117

message, the forwarding machine sends another special
message to the kernel of the process that sent the original
message (see Figure 5-1). This special message contains
the process identifier of the sender of the message, the
process identifier of the intended receiver (the migrated
process), and the new location of the receiver. All links
in the sending process's link table that point to the
migrated process are then updated to point to the new
location.

Movement of a process should cause only a small
perturbation to message communication performance. If
the process that has moved is a user process, there will
usually be few links that point to it. The links will tend
to be either reply links, which will generate only one mes-
sage and thus not need to be fixed up, or links from other
user processes with which it is communicating, which will
quickly be updated during the first few message
exchanges. As a general rule, system processes do not
retain non-reply links to user processes.

The worst case will be when the moving process is a
server process. In this case, there may be many links to
the process that need to be fixed up. Generally, links to
servers are used for more than a few message exchanges,
so the overhead of fixing up Such a link is traded off
against the savings of the cost to forward many messages.
Moreover, the likelihood of server processes migrating is
lower than for user processes. Servers are often tied to
unmovable resources and usually present predictable
loads that allow them to be properly located, reducing
the need to move them.

8. Cost of Migration
The cost of moving a process dictates how frequently

we are willing to move the process. These costs manifest
themselves in two areas; the actual cost in moving the
process and its related state, and the incremental costs
incurred in updating message paths.

The cost of the actual transfer of the process and its
state can be separated into state transfer cost and admin-
istrative cost. The s tate transfer cost includes the mes-
sages that contain the process's code, data, state, and
message queue. DEMOS/MP uses the da ta move facility
to transfer large blocks of data. This facility is designed
to minimize network overhead by sending larger packets

(and increasing effective network throughput). The pack-
ets are sent to the receiving kernel in a continuous
stream. The receiving kernel acknowledges each packet
(but the sending kernel does not have to wait for the ack-
nowledgement to send the next packet). Three da ta
moves are involved in moving a process. These are for
the program (code and data), the non-swappable
(resident) state, and the swappable state. The non-
swappable state uses about 250 bytes, and the swappable
state uses about 600 bytes (depending on the size of the
link table). For non-trivial processes, the size of the pro-
gram and da ta overshadow the size of the system infor-
mation.

In addition, each message that is pending in the
queue for the migrating process must be forwarded to the
destination machine. The cost for each of these messages

is the same ~Ls for any other inter-machine message.

The administrative cost includes the message
exchanges that are used to initiate and orchestrate the
task of moving a process. These costs depend on the
internal structures of the system on which it is being
implemented. The current DEMOS/MP implementation
uses 9 such messages, each message being in the 6-12 byte
range. These messages use the standard inter-machine
message facility.

The incremental costs for process migration are
incurred when a link needs to be updated. Each message
that goes through a forwarding address generates two
additional messages. The first is the actual message
being forwarded to its new destination, and the second is
the update message back to the sender. This will occur
for each message sent on a given link until the update
message reaches the sending process. In current exam-
pies, the worst case observed was two messages sent over
a link before it was updated. Typically, the link is
updated after the first message.

The movement of a process involves a small number
of short, control messages, and a large number of block
da ta transfers. The cost of migrating a process depends
on the efficiency of both of these types of communica-
tions.

Y. C o n e l u s l o n

Process migration has proven to be a reasonable
facility to implement in a communication-based distri-
buted operating system. Less than one person-month of

time was required to implement and test the m~chanism
in the current version of DEMOS/MP.

A number of DEMOS/MP design features have made
the implementation of process migration possible.
DEMOS/MP provides a complete encapsulation of a pro-
cuss, with the only method of access to services and
resources being through links. There is no uncontrolled
sharing of memory and all contact with the operating sys-
tem, I /O, and other processes is made through a process's
links. DEMOS/MP has a concise process state represen-
tation. There is no process state hidden in the various
functional modules of the operating system. On the
other hand, the system servers each maintain their own
states, thus no resource state (except for links) is in the
process state. Once a process is taken out of execution, it
is a simple mat ter to copy its s tate to another processor.
The location transparency and context independence of
links make it possibb for both the moved process and
processes communicating with it to be isolated from the
change in venue.

The DELIVERTOKERNEL link at t r ibute allows
control operations to be performed without concern for
where the process is located. Thus control can follow a
process through disturbances in its execution.

The mechanism for moving a process has been imple-
mented, but there is not yet a strategy routine that actu-
ally decides when to move a process. The literature con-
tains a few studies of metrics to use for processor and
message traffic load optimization. Our continuing work

118

involves implementing process load balancing algorithms,
and developing facilities for the measurement and
analysis of the performance of communications in distri-
buted programs.

References

Arora & Rana 80
Arora, R.K. ~ Rana, S.P., "Heuristic Algorithms
for Process Assignment in Distributed Computing
Systems", information Processing Letters U , 4-5,
December, 1980, pp. 199-203.

Baskett, Howard, & Montagoe 77
Baskett, F., Howard, J.H., Montague, J.T., "Task
Communication in DEMOS", Prec. of the Sizth
Syrup. on Operating Sys. Principles, Purdue,
November 1075, pp. 23-32.

Bokhard 70
Bokhari, S.H., "Dual Processor Scheduling with
Dynamic Reassignment", IEEE Trans. on Software
Engineering SE-5, 4, July, 1970.

Cheriton 70
Cheriton, D.R., "Process Identification in Thoth",
Technical Report 79-10, University Of British
Columbia, October 1070.

Feldman 70
Feldman, J.A., "High-level Programming for Dis-
tributive Computing", CACM 15, 4 (April), 1972,
pp. 221-230.

Finkel 80
Finkel, R., "The Arachne Kernel", Technical
Report TR-380, University of Wisconsin, April,
1080.

Powell 77
Powell, M.L., "The DEMOS File System", Prec.
of the Sizth Syrup. on Operating S~s. Principles,
Purdue, November 1975, pp. 33-42.

Powell & Presotto 83
Powell, M.L., Presotto, D.L., "Publishin~ A Reli-
able Broadcast Communication Mechanism", Prec.
of the Ninth Syrup. on Operating SI/a. Principles,
Bretton Woods N.H., October 1083.

Powell, Miller, & Presotto 83
Powell, M.L., Miller, B.P., Presotto, D.L.,
"DEMOS/MP: A Distributed Operating System",
in preparation.

Rashid & Robertson 81
Rashid, R.F., Robert~on, G.G., "Accent: A Com-
munication Oriented Network Operating System
Kernel", Prec. of the Eighth SItmp. on Operating
Sys. Principles, Asilomar, Calif., December 1081,
pp. 64-75.

Rennels 80
Rennels, D.A., "Distributed Fault-Tolerant Com-
puter Systems", Computer, la, 3, March, 1080,
pp. 39-46.

Robinson 70
Robinson, J.T., "Some Analysis Techniques for
Asynchronous Multiprocessor Algorithms", IEEE
Trans. on Software Engineering SF.,-5, 1, January,
1070.

Solomon & Finkel 70
Solomon, M.H., Finkel, R.A., "The Roscoe Operat-
ing System", Prec. o/the 7th S~np. on Operating
Sys. Principles, Asilomar, Calif., 1070, pp. 108-
114.

Stone 77
Stone, KS., "Multiproeessor Scheduling with the
Aid of Network Flow Algorithms", IEEE Trans.
on Software Engineering SF_,-8, 1, January, 1077,
pp. 85-03.

Stone ~ Bokhari 78
Stone, H.S. & Bokhari, S.H., "Control of Distri-
buted Processes", Computer, July, 1078, pp. 07-
106.

119

