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Abstract

Efficient scheduling of processes on processors of a Network
of Workstations (NOW) is essential for good system performance.
However, the design of such schedulers is challenging because of
the complex interaction between several system and workload pa-
rameters. Coscheduling, though desirable, is impractical for such a
loosely coupled environment. Two operations, waiting for a mes-
sage and arrival of a message, can be used to take remedial actions
that can guide the behavior of the system towards coscheduling us-
ing local information. We present a taxonomy of three possibilities
for each of these two operations, leading to a design space of 3 x 3
scheduling mechanisms. This paper presents an extensive imple-
mentation and evaluation exercise in studying these mechanisms.

Adhering to the philosophy that scheduling and communication
are intertwined and should be studied in conjunction, a complete
communication substrate for UltraSPARC workstations, connected
by Myrinet and running Solaris 2.5.1, has been developed. This
platform provides the entire Message Passing Interface (MPI) to
readily run off-the-shelf MPI applications by employing protected
low-latency user-level messaging. Several applications can concur-
rently use this interface. This platform has been used to design,
implement, and uniformly evaluate nine scheduling strategies with
a mixture of concurrent real applications with varying communica-
tion intensities. This includes four new schemes (Periodic Boost,
Periodic Boost with Spin Block, Spin Yield, Periodic Boost with
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Spin Yield) that are presented in this paper. In addition to evaluat-
ing the pros and cons of each mechanism in terms of throughput,
response time, CPU utilization and fairness, it is shown that Peri-
odic Boost is a promising approach for scheduling processes on a
NOwW.

1 Introduction

Networks of Workstations (NOW) have emerged as a cost-effective
solution to high performance computing. As with any other paral-
lel machine, two important issues limit their delivered performance.
First is the hardware and software cost of communicating between
processes executing on different nodes of the system. Second is the
wastage of CPU time due to non-ideal scheduling of these commu-
nicating processes.

The problem of lowering communication overhead for a NOW
has drawn a lot of attention. On the hardware side, high band-
width networks such as Myrinet [6] and ATM promise to han-
dle the high data rates of demanding applications, with point-to-
point latencies comparable to those provided by interconnection
networks of custom-built parallel machines. On the software side,
low-latency user-level messaging substrates (such as U-Net [23]
and Fast Messages [17]) have been developed using the intelli-
gent network interfaces provided by these networks. Approaches
to translate these improvements in message latencies to the appli-
cations in the form of efficient application-level messaging layers
such as MPI [14] have been undertaken [25, 12].

Optimizing communication alone may not necessarily translate
to improved performance since the scheduling strategy could nul-
lify any savings. For instance, a currently scheduled process on one
node would experience a long wait for a message from a process not
currently scheduled on another node regardless of the low latency
for messages. Scheduling and communication are thus closely in-
tertwined, and should be studied together. This paper adheres to
this philosophy when implementing an execution platform for real
applications on a NOW.

Scheduling of processes onto processors of a parallel machine
has always been an important and challenging area of research. Its
importance stems from the impact of the scheduling discipline on



the throughput and response times of a system. The research is
challenging because of the numerous factors involved in the design
and implementation of a scheduler. Some of these influencing fac-
tors are the parallel workload, presence of any sequential and/or in-
teractive jobs, native operating system, node hardware, network in-
terface, and communication software. Previous studies on parallel
schedulers have focussed their attention on closely coupled parallel
systems. Communication and synchronization costs on such ma-
chines are relatively low, making complex schemes feasible. How-
ever, many of these scheduling schemes are not very practical for a
loosely-coupled NOW environment.

Scheduling is usually done in two steps. The first step is assign-
ing a process to a processor, and the second is scheduling the pro-
cesses assigned to a processor. There is a considerable body of liter-
ature [19, 13, 18, 26, 22] related to the first step on closely coupled
multiprocessor systems. Some of these studies [22, 26, 13] exploit
the relatively low communication and synchronization overheads
of these machines, particularly those with shared memory capa-
bilities, to dynamically move processes across processors based on
CPU utilization. Other studies , however, assume process migration
to be expensive and propose static processor allocation strategies in
which the set of processors is spatially partitioned. On a network
of workstations environment, communication and synchronization
costs are relatively high. Further, processes, as implemented by
the native operating system at each workstation, are heavyweight,
making it expensive to migrate them. Hence, process migration is
cost-effective only for relatively long running jobs [1].

The second scheduling step, which is perhaps more important
for a NOW environment, is the scheduling of assigned processes at
each workstation. The choices here range from scheduling strate-
gies based purely on local knowledge at a workstation to those
using global knowledge across workstations. Local scheduling,
which does not require any global knowledge, is relatively simple
to implement. In fact, one could leave the processes to be scheduled
by the native operating system of the workstation. The drawback
is that the lack of global knowledge can result in lower CPU uti-
lization and higher communication or context switching overheads.
At the other end of the spectrum is coscheduling (also called gang
scheduling) [16, 9, 10], which schedules processes of a job simul-
taneously across all processors, giving each job the impression that
it is running on a dedicated system. While coscheduling has been
shown to be essential for the efficient performance of fine-grained
parallel applications, an implementation on a NOW can become
expensive. Further, from performance and reliability perspectives,
it does not scale well with the number of nodes in the system.

Another class of scheduling strategies use communication be-
havior (which are local events at each node) to guide the schedul-
ing. Studies like [21, 2, 8, 4] attempt to dynamically coschedule
communicating processes to improve job performance. Only two
of these dynamic approaches [4, 20] have been proposed, imple-
mented and evaluated on an actual NOW environment. These two
strategies, called implicit coscheduling [4] and dynamic coschedul-
ing (DCS) [20, 7], use information available locally to estimate
what is scheduled on the other nodes without requiring any explicit
messages for obtaining this information. Two actions, namely, wait-
ing for a message and receipt of a message, form the basis for these
schemes. Implicit coscheduling is based on the heuristic that a pro-
cess waiting for a message should receive it in a reasonable time (as
determined by the message latency and other factors) if the sender
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is also scheduled currently. Dynamic coscheduling, on the other
hand, uses message arrival to indicate that a process of the same
job (the sender) is scheduled on a remote node and schedules the
receiver accordingly. The former [4] has been implemented and
evaluated on Active Messages [24], which offers a closer coupling
between the sender and receiver processes than MPI on Fast Mes-
sages [17], which has been used in evaluating DCS [20]. Further,
the version of Fast Messages used in [20] can handle only one par-
allel application per node, and as a result, the evaluation is rather
limited.

These studies raise some important questions for NOW sched-
ulers. First, what is the design spectrum for developing communi-
cation based dynamic scheduling mechanisms on a NOW? In par-
ticular,what are the pros and cons of scheduling using message wait
and message arrival information ? Second, how can these schedul-
ing techniques be implemented within the context of current user-
level messaging platforms (where the OS scheduler is unaware of
communication events) 7 Third, how do these schemes compare
with each other and with the ideal behavior in terms of throughput,
response time and fairness ? Answers to these questions require an
experimental testbed to design and implement various scheduling
strategies and a detailed evaluation to understand the intricate in-
teraction between several factors. To our knowledge, no previous
study has extensively evaluated these issues on a unified frame-
work.

In this paper, we attempt to answer some of these questions.
We present a unified taxonomy for classifying different approaches
to waiting for a message and handling message arrival, leading
to a design space of nine scheduling mechanisms. This includes
five new mechanisms, called Periodic Boost (PB), Periodic Boost
with Spin Block (PB-SB), Spin Yield (SY), Periodic Boost with
Spin Yield (PB-SY), and Dynamic Coscheduling with Spin Yield
(DCS-SY), in addition to the already existing schemes, namely
Spin Block (SB), Dynamic Coscheduling (DCS), and Dynamic
Coscheduling with Spin Block (DCS-SB).

We implement and evaluate the nine scheduling mechanisms
on a testbed of SUN UltraSPARC server machines running Solaris
2.5.1, connected by Myrinet [6]. Using a protected, user-level com-
munication substrate (U-Net), we have implemented the entire MPI
messaging layer so that several off-the-shelf applications can be
readily used for evaluations. The implementation exercise has in-
volved writing software for the Myrinet interface card, user-level
libraries, and kernel drivers, without requiring any modifications
to the Solaris kernel. We conduct an exhaustive evaluation of the
nine scheduling mechanisms with a mixture of multiple MPI appli-
cations, having varying communication granularities, executing at
each node.

The results show that for workloads with low communication
intensities, there is little difference between the scheduling schemes.
As communication increases, there is clearly a need for a scheme
which uses some heuristic to guide the system towards coschedul-
ing. Of the schemes considered,it is observed that PB outperforms
most other mechanisms over a range of different workloads in terms
of the overall system throughput (total completion time divided by
the number of jobs serviced), and response time. PB is also reason-
ably fair when we consider workloads with similar communication
intensities. However, PB can unfairly favor higher communication
jobs when we consider mixed workloads. This is analogous to the
traditional multi-level priority-based UNIX System V scheduler,



which can unfairly favor I/O bound jobs in a mixture of CPU and
I/O bound jobs. DCS-SB, DCS-SY and DCS are also good can-
didates to provide improved performance. In addition, we show
that SY can be used as an alternative to SB in augmenting certain
scheduling strategies.

The rest of this paper is organized as follows. Section 2 classi-
fies the scheduling schemes and briefly describes their implementa-
tion. A description of the evaluation methodology, performance re-
sults comparing the scheduling disciplines, and implication of these
results is presented in Section 3. Finally, Section 4 concludes with
a summary of results and identifies directions for future research.

2 Scheduling Strategies

What do you do How do you wait for a message?
on message arrival? Busy Wait | Spin Block | Spin Yield
No Explicit Reschedule Local SB SY
Interrupt & Reschedule DCS DCS-SB DCS-SY
Periodically Reschedule PB,PBT PB-SB PB-SY

Table 1: Design space of scheduling strategies

Logically, there are two components to the interaction between
the scheduler and the communication mechanism. The first is re-
lated to how a process waits for a message. This can involve: (a)
just spinning (busy wait); (b) blocking after spinning for a while;
or (c) yielding to some other process after spinning for a while.
The second component is related to what happens when a message
arrives and is transferred to application-level buffers. Here again,
there are three possibilities: (a) do no explicit rescheduling; (b) in-
terrupt the host and take remedial steps to explicitly schedule the
receiver process; or (c) periodically examine message queues and
take steps as in (b). These two components can be combined to
give a 3 x 3 design space of scheduling strategies shown in Table
L.

To implement the strategies described, we have written or mod-
ified three major software components. The first is the LANai
control program (L.CP) executing on the LANai processor of the
Myrinet interface. This program performs the data transfer be-
tween the host memory and the network. Though this can raise
an interrupt for the host processor, this feature is not used for reg-
ular message transfer which uses polling at the user level. The
second is a set of user-level libraries for a messaging layer that pro-
vides the complete MPI [14] functionality which is based on the
MPICH distribution [11]. Details of its implementation and per-
formance are not included here due to space limitations and the
reader is referred to [S]. The set of libraries includes U-Net [23]
from Cornell, together with umlib and MPI Unet which we have
developed to provide the efficient MPI interface. The implementa-
tion incorporates several optimizations to eliminate multiple levels
of copying. The routines here manage the send and receive queues
mapped directly into user address space to avoid any kernel invo-
cations for data transfers. The third component is a kernel device
driver, which in the baseline implementation is used only at the
initialization stage to set up endpoints. An endpoint is a virtual
network interface that provides a process a handle into the commu-
nication mechanism. The device driver also offers the potential for
performing some actions in kernel mode (via an ioct! call), used in
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implementing certain scheduling schemes. A schematic showing
the different components in the baseline implementation (Local)
and potential additions for implementing the different scheduling
strategies is shown in Figure 1.
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Figure 1: Software components used in the implementations

In the following discussion, we present a brief description of
each scheduling strategy considered in this study and its implemen-
tation on our platform. A more detailed description can be found
in [15].

1. Local : This scheme has been considered as a baseline to
show the need for a scheduling strategy based on global in-
formation. The scheduling of the parallel processes on each
node is solely determined by the native Solaris scheduler and
is no different from that of a serial process running on the
same node. A process spins on a message receive and incom-
ing messages are directly transferred to user-level buffers by
the network interface. From the implementation viewpoint,
this scheme is straightforward since no modifications/additions
need to be performed.

2. Spin Block (SB) : Here a process spins on a message re-
ceive for a fixed amount of time before blocking itself. The
fixed time for which it spins, henceforth referred to as spin
time, is carefully chosen to optimize performance. The ratio-
nale here is that if the message arrives within the spin time,
the sender process can be assumed to be scheduled on its
node and hence the receiver should hold on to the CPU so
as to be coscheduled with the sender. Otherwise, it should
block so that CPU cycles are not wasted. While a theoreti-
cal analysis to calculate the optimal spin time can be done in
a few situations (as in [4]), such an analysis can become ex-
ceedingly complex for a real application running on a generic
message passing layer such as MPL. We have resorted to an
empirical approach to quantify the optimal spin time for a
given application (similar to [20]). The SB mechanism is
different from a similar mechanism implemented with im-
plicit coscheduling in [4]. The latter is implemented on Split-
C/Active Messages [24], which inherently has a tighter cou-
pling (than MPI) between a sender and a receiver process.
Moreover, it uses an additional pairwise spin time to syn-
chronize each pair of communicating processes.



Spin Block improves performance in two ways. First, by
reducing the number of CPU cycles spent in idle spinning,
it increases CPU utilization per node. Second, due to the
priority boost a process can receive on wakeup, it is more
likely to be scheduled soon after getting a message. Since
the sender of the message is also likely to be scheduled at
that time (one way latencies being much smaller than an av-
erage time slice), the probability for a pair of communicating
processes to run simultaneously for some time increases.

In our implementation of Spin Block, the polling loop in the
user-level library receive call is modified to run until spin
time elapses. If a message still does not arrive, an ioctl call
is made to the kernel device driver, which makes the pro-
cess block on a semaphore. The ioctl routine also registers
a wakeup call for the corresponding endpoint with the net-
work interface. When a message arrives for that endpoint,
the LANai issues an interrupt, and the interrupt service rou-
tine (ISR) signals the corresponding semaphore. The Solaris
signaling mechanism moves the blocked process to the head
of the runnable queue for a higher priority level most of the
time. The woken up process can thus get a priority boost on
receipt of a message (though this is done implicitly within
Solaris and not explicitly by our code).

. Dynamic Coscheduling (DCS) : DCS also uses incoming
messages as an indication that the sender is scheduled on
its node. Unlike SB, it uses only a busy-wait for receiving.
However, if the receiver is not running, it explicitly schedules
it by hiking its priority.

Our implementation of DCS is similar to the one discussed
in [20]. The library level of the messaging platform is left
unchanged. The LANai periodically gets the id of the thread
currently executing on the host CPU. On receipt of a mes-
sage, the LANai checks whether the message destination pro-
cess matches that currently estimated to be running. If there
is a mismatch, an interrupt is raised. The interrupt service
routine, after verifying again that the mismatch exists, boosts
the priority of the destination process causing it to be sched-
uled almost immediately.

DCS does not handle application level skews (due to work
imbalance) between the sender and receiver, and lets pro-
cesses spin for the remainder of their time slices in such sit-
uations. However, since it boosts priorities of receiver pro-
cesses when they are spinning or even earlier (if not sched-
uled), it can potentially coschedule communicating processes
more often (and sooner after message arrival) than Spin Block
which implicitly boosts priorities only on wakeup (and not
during spinning).

. Dynamic Coscheduling with Spin Block (DCS-SB) :

In DCS there is a potential for CPU cycles to be wasted in
spinning for a message which does not come soon. It can be
combined with Spin Block to limit this wastage to the spin
time. DCS-SB does exactly that. Spinning receivers go to
sleep after a fixed spin time has elapsed. Incoming messages
cause destination processes to either have their priority ex-
plicitly boosted (if they are not blocked) or be woken up.
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DCS-SB incurs the overheads of both Spin Block and DCS,
though not always together. Its ability to increase coschedul-
ing beyond what DCS can offer is more significant at a higher
load (when there is other useful work to utilize the saved
CPU cycles) at a workstation.

User-level library changes for DCS-SB are identical to those
for SB. The LCP raises an interrupt not only for mismatches
between estimated scheduled process and destination process
but also when the destination is known to have blocked. The
ISR, correspondingly, checks both these conditions and does
a wakeup or priority boost as needed.

. Periodic Boost (PB) and Periodic Boost with Timestamps

(PBT) :

The first of the newer schemes that we propose is called Peri-
odic Boost (PB). Going back to either of the DCS schemes or
SB, we observe that the solution to approach gang scheduling
has been to boost the priority of the process (the destination
of a message) on message arrival. However, this boost is
done within the interrupt service routine since an interrupt is
the only way of detection of message arrival by the kernel in
these schemes. When there is a mixture of high communica-
tion workloads running at a workstation, these schemes can
result in a Jarge number of interrupts, negating the purpose of
user-level messaging. In the PB scheme, we propose that we
do not have any interrupts being raised at all. Rather, we can
have an entity (thread) within the kernel which periodically
examines the endpoints of the parallel processes and boosts
their priorities. Though a number of criteria can be used for
boosting priorities, we use two, which leads us to the two
schemes called PB and PBT. In PB, the periodic mechanism
checks the endpoints in a round-robin fashion and boosts the
first with an unconsumed (henceforth called pending) mes-
sage; if no one has pending messages, no one is boosted. In
PBT (Periodic Boost using Timestamps), the periodic mech-
anism boosts the process which has the most recently arrived
pending message. The frequency with which these actions
should be taken needs to be chosen carefully. We have used
an experimental approach to find this frequency and have
found that invoking the boosting function once every 10 mil-
liseconds gives good performance.

PB and PBT are simpler to implement than the previous three
schemes. There is absolutely no change in the user-level
messaging libraries or in the LANai Control Program from
the baseline implementation. All that is needed is an addi-
tional function in the device driver which gets called periodi-
cally (via a timer mechanism) to examine the number and/or
the timestamp of pending incoming messages for each end-
point and boosts the priority of a process when needed.

The potential benefits of PB are threefold. First, it allows a
more complex heuristic (not necessarily based on communi-
cation information alone) to be used for making scheduling
decisions for parallel processes. Second, since there is no
additional work done by the LANai, the overhead for normal
send/receive operations is minimized. Third, it is possible to
dynamically control the invocation of the function (in the de-
vice driver), allowing the granularity of scheduling and the
overhead to be controlled better. However, we do not fully



explore the first and third benefits in this paper, and base the
priority boost purely on pending message information.

. Periodic Boost with Spin Block (PB-SB) :

This is an extension to PB (or PBT) motivated by the same
reasons as were given in the DCS-SB case. Here, the time
wasted in spinning is limited to the period of the kernel func-
tion which boosts priorities.

From the implementation viewpoint, the user-level libraries,
LCP and the ISR are identical to those used for Spin Block.
There is a slight change in the kernel function which imple-
ments the PB mechanism. It now preferentially wakes up
sleeping (blocked) processes which have pending messages.
If there are none, it does priority boosting as in the PB case.

PB-SB incurs the overheads of both PB and SB. So it can be
expected to do better than PB when the load is high and there
is other useful work to be done.

. Spin Yield (SY) :

In SB, the blocking of processes after spinning has two con-
sequences. First, an interrupt is required to wake the process
on message arrival (which is an overhead). Second, the block
action only relinquishes the CPU and there is no hint given to
the underlying Solaris scheduler as to what should be sched-
uled next.We attempt to fix these two problems using the
Spin Yield (SY) scheduling strategy, Here, after spinning for
the required spin time, the receiver process lowers its own
priority, boosts that of some other process (based on pend-
ing messages) and continues to spin. This avoids an interrupt
(since the process keeps spinning albeit at a lower priority),
and gives more control over which process is scheduled next.

The SY scheme only requires an ioctl call (compared to the
baseline) after the spin time has elapsed. The ioctl needs to
change the priority of the caller instead of putting it to sleep
(as is done in SB).

8. Dynamic Coscheduling with Spin Yield (DCS-SY) :

SY is an alternative to SB. Just as we had DCS-SB and PB-
SB combinations, we could also have DCS-SY and PB-SY
combinations.

The implementation of DCS-SY takes the implementation
of DCS and adds the functionality of SY. After the process
performing a receive operation spins for a fixed interval, it
yields i.e. lowers its priority and raises the priority of another
process which has pending messages. The operations for the
LANai and the driver remain the same as in DCS.

. Periodic Boost with Spin Yield (PB-SY) :

The implementation of PB-SY takes the implementation of
SY and adds the extra function (which gets called periodi-
cally) in the driver to implement PB.

From the performance viewpoint, the relative benefits of PB-
SB and PB-SY directly translate from the relative benefits of
SB and SY identified earlier.

The implementation of the novel scheduling strategies presented
here can, however, have a detrimental effect on the normal data
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transfer mechanism. To investigate if there is indeed a slowdown
in message latencies, we run a one-way latency benchmark with
each scheduling scheme in place. Contrary to expectations, we find
[15] that the one-way MPI latency (32 us for 4 byte messages) is
not significantly impacted by the implementation of any of these
scheduling strategies.

3 Performance Results

We conduct a comparison of the schemes presented in the previous
section on a uniform platform, using workloads that are a mixture
of jobs with varying communication intensities. Our workloads
are mixtures of parallel jobs and do not consider any explicit se-
quential/interactive ones. However, there are always some back-
ground/daemon processes executing on a workstation (even on an
unloaded system) which can potentially perturb the execution of
the parallel jobs.

3.1 Experimental Setup and Workloads

Our experimental platform is a network of eight Sun Ultra-1 Enter-
prise servers running an unmodified Solaris 2.5.1 operating system.
The workstations have 167 MHz UltraSPARC processors with 64
MB of main memory and a 32 bit SBUS interface operating at 25
MHz. The eight workstations are connected by Myrinet through an
8-port switch with the interface cards having a 37.5 MHz LANai
processor and 1 MB of SRAM.

The first application that we consider is LIFE, an example pro-
gram that comes with the MPICH distribution, which is illustra-
tive of near-neighbor communication in matrix computations. It
simulates the game of life on a two-dimensional matrix of cells
which is partitioned amongst the processors. Each processor com-
municates with its four nearest neighbors along the boundary of the
sub-matrix assigned to it. More importantly, from the scheduling
perspective, the application is of the bulk synchronous type with
distinct communication and computation phases and a barrier sep-
arating the iterations. LIFE is particularly suitable for our study
because by varying two parameters, namely problem size (matrix
size) and the number of iterations, it is possible to control the gran-
ularity of communication while keeping the total execution time
roughly the same. A large matrix size with small iterations results
in a coarse grain application while a small matrix size with more
iterations has fine grain communication characteristics.

Three other applications that we consider (MG, LU and EP)
are from the NAS benchmark suite. MG is a simple multi-grid
solver that solves constant coefficient differential equations on a
cubical grid. It is the most communication intensive of the three
and spends 26% of the execution time on communication. LU is a
matrix decomposition application that uses a large number of small
messages. Of the three, it falls in the middle in terms of communi-
cation intensity with 16% of the execution time on communication.
EP is an embarrassingly parallel application that is typical of many
Monte-Carlo simulations. There is very little communication in
this application (<1%) in the form of some global sums towards
the end of a large computation. For the purposes of this study, it
only serves as a competitor for processor cycles which can skew
the scheduling of other communicating parallel applications.

Using these four applications, we first construct nine differ-
ent workloads (shown in Table 2), each containing four applica-



| Wkid n Applns. in Workload Comm. "
1 LIFE (3.5), LIFE (3.5), LIFE (3.5), LIFE (3.5) (lo,lo,lo0,10)
2 LIFE (3.5), LIFE (3.5), LIFE (3.5), LIFE (12) (10,10,10,hi)
3 LIFE (3.5), LIFE (3.5), LIFE (12), LIFE (12) (lo,lo,hi,hi)
4 LIFE (3.5), LIFE (12), LIFE (12), LIFE (12) (lo,hi,hi,hi)
5 LIFE (12), LIFE (12), LIFE (12), LIFE (12) (hi,hi,hi,hi)
6 EP (<1), EP (< 1), EP (<1), EP (<1) (I0,]0,10,10)
7 MG (26), LU (16), LIFE (12), EP (<1) (hi,me,me,lo)
8 MG (26), MG (26), EP (<1), EP (< 1) (hi,hi,lo,lo)
9 MG (26), MG (26), MG (26), MG (26) (bi,hi,hi,hi)

Table 2: Four Process Mixed Workloads (% of time spent in com-
munication is given next to each application)

tions, which capture interesting mixes of the applications. The
middle column shows the four chosen applications for the work-
load and the percentage of communication (of the total execution
time) in that application. The third column gives a quick overview
of the mix of communication intensities of the applications in the
workload (lo indicates relatively low communication, ki indicates
relatively high communication, and me is in between). The first
five workloads are constructed directly from the LIFE application
which provides tunable parameters to vary the communication in-
tensity. They range from all four processes at a workstation having
low communication, through a mix of high and low communication
intensities, to a fully communication heavy workload. The next
four workloads choose a mix of the four applications, and again
span from low to high communication intensities.

The problem size for the different applications are adjusted so
that each takes approximately the same time (25 seconds) to com-
plete if it were run alone, and they are reasonably small so that all
of them can simultaneously fit in primary memory (to minimize
paging effects). For instance, executing the four job workloads on
an ideal gang scheduled environment (without any overheads for
scheduling) would result in a total completion time of 100 (4 * 25)
seconds for workloads 1 through 9. Executing them together, how-
ever, increases the completion time of each instance by an amount
that is dependent on the chosen mix and the scheduling scheme.

There are several criteria — such as throughput/utilization,
average response/turn-around time, variance in response times, fair-
ness, and degree of coscheduling — that can be used to qualify or
quantify the performance of a scheduling scheme. While one could
argue that the degree of coscheduling should be used to compare the
scheduling schemes outlined here (because they try to approximate
the behavior of coscheduling), the bottom line from the system de-
signer’s perspective is to maximize the throughput/utilization of the
system while maintaining fairness (an equal/fair allocation of the
CPUs to the jobs during execution). Similarly, the user is inter-
ested in minimizing the average response/turn-around time and its
variance. Coscheduling is one way of meeting the system designer
and user goals, but is not necessarily the only solution. In this pa-
pet, we examine performance from the perspective of the system
designer and user.

In the first set of results, the metric we use is the time taken for
the last process to complete since the first process started executing
(which we call the completion time). The lower this time the more
effective the scheduling scheme. Of course, an ideal coschedul-
ing implementation would give the lowest completion time in most
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cases. Any additional time taken beyond this lowest completion
time is considered a overhead. Therefore, if one of the above 4
process workloads were to take 140 seconds to complete on some
scheduling strategy, it is said to have a slowdown of 40% over
coscheduling. Hence, slowdown for a scheme (compared to ideal
coscheduling) can be directly computed from the completion times
given here. This time is also directly related to the system through-
put (completion time divided by the number of jobs). In the next
set of results, we give the completion times of the individual jobs to
show the variance in the turn-around times. We also present figures
monitoring the CPU utilization by each process during the course
of an execution to discuss fairness issues. The reader should note
that even though we have obtained detailed statistics to show some
of the observations/claims stated below, we are not presenting them
here due to space limitations.

3.2 Comparison of Scheduling Schemes

Table 3 shows the performance of the first five workloads using dif-
ferent scheduling strategies. Considering the schemes individually,
the slowdown for Local even with Workload 1 is 80% (compared
to coscheduling). The slowdown increases steeply as the workload
becomes more communication intensive because of the well known
problem of Local (lack of global knowledge in making schedul-
ing decisions). Local’s performance is not significant other than
as a baseline to show the need for a more sophisticated scheduling
policy that bases its decisions on what may be scheduled at other
nodes.

Workload

1] 2 3 7 5]

LOCAL |[ 180 [ 208 | 674 | 2524 [ 3997 |
SB 124 | 153 | 773 | 1814 | 2849
DCS 16277 192 [ 350 | 533 | 764
DCS-SB [ 133 | 173 | 321 | 463 | 700
PB 130 | 1381 132 | 226 | 451
PBT 152 | 190 | 252 | 295 | 284
PB-SB [[ 130 | 158 | 655 | 1635 | 2660
SY 157 | 185 | 985 | 2320 | 3046
DCS-SY || 166 | 205 | 347 | 527 | 717
PB-SY || 141 | 158 | 287 | 459 | 733

Table 3: Completion Time in Seconds (Workloads 1 to 5)

SB, DCS and DCS-SB show a less steep increase in slowdown
(compared to Local) as communication intensity increases. Be-
tween these three, we find that SB does better for workloads with
lower communication but worse than the other two at higher com-
munication intensities (workloads 3, 4 and 5). One possible reason
for its poor performance for workloads 3 and above is the follow-
ing. In SB, blocked processes get woken up (via the interrupt ser-
vice routine) on arrival of a message. Due to the policies of the
default Solaris scheduler, these processes mostly receive a priority
boost on being woken up. Since DCS boosts the priority of the des-
tination process of a message even if it has not yet called the receive
function or when it is spinning but switched out (and not just when
it blocks as is done in SB), any reply from the destination in DCS is
likely to be sent back faster (thus increasing the likelihood of being
coscheduled). DCS-SB, which combines the benefits of DCS (im-
mediate priority boost of the destination process) and SB (limited



cycles wasted in spinning), performs even better than DCS.

It should be noted that the SB mechanism is different from im-
plicit coscheduling presented in [4]. SB does not implement a pair-
wise spin component as in [4]. It also runs using a different pro-
gramming model and messaging layer (MPI and UNet respectively)
than [4], which uses Split-C over Active Messages. In Active Mes-
sages, the equivalent of a send causes a reply to be sent back by a
handler at the remote node. So a receive equivalent following the
send can have a better estimate of what is scheduled at the remote
node. A corresponding send followed by receive in MPI cannot
distinguish between load imbalance and scheduling skews. These
factors make it difficult to directly compare the performance of SB
presented here with the results for implicit coscheduling presented
in [4].

Contrary to expectations, we find SY not performing as well
as SB. There are two possible reasons for this. Spinning, despite
lowering of priority, instead of blocking may eat away valuable
CPU resources. More significant than this is the fact that the prior-
ity boost for a destination process of a message is done only when
some other process does a receive at that node (and its spin time has
expired). This may delay the priority boosting action even further
than when it would have happened in spin block, thereby further
delaying the reply message. This effect may outweigh the poten-
tial benefits of avoiding interrupt processing costs. This suggests
that SY should not be used in isolation, but only in conjunction
with some other mechanism which boosts the priority much sooner
after message arrival. PB-SY and DCS-SY are two such solution
approaches. In fact, PB-SY performs better than many schemes
for several configurations. DCS-SY performs quite similar to DCS
with a small improvement shown for higher communication inten-
sities (when the savings of yield over block are more apparent).

Uniformly, we find that the Periodic Boost (PB) scheme, pro-
posed in this paper, outperforms almost all other schemes and across
all workloads. Even the rate of increase of slowdown (from 30%
for workload 1 to 126% for workload 4) is much lower than the rate
of increase for the other schemes. As a result, while it does better
than the others for a low communication intensity mix, it does even
better (compared to the other schemes) at higher communication
intensities. Adding SB to PB does not seem to help significantly,
while adding the overheads of blocking and interrupt processing
costs. This suggests that we should not use SB in conjunction with
PB.

PBT performs worse than PB for all but the highest commu-
nication workload. This is is most likely due to the overheads in
the scheme. We have also observed that the PBT mechanism is
extremely sensitive. Since it uses time-dependent information in
making scheduling decisions, its results tend to vary significantly
from one run to another. Hence, one should be cautious in making
strong pronouncements about the performance of PBT.

Moving to Table 4, which uses mixtures of different applica-
tions, we can see many of the same patterns that were observed in
Table 3. For workload 6 (4 instances of EP), the communication
is so low that there is negligible difference between the scheduling
schemes. Even Local does as good as any smart scheduling strat-
egy, and there is a slowdown of only around 6% over coscheduling.
Even though at the beginning of this section we mentioned that we
are not explicitly running sequential jobs concurrently with parallel
jobs, this result suggests that EP can be considered a sequential job
for most practical purposes. The workloads with EP can thus be
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Workload

6 7 8 ] 9 J
LOCAL |} 106 ] 1115 | 1088 | 3393
SB 104 | 438 301 | 1344
DCS 104 214 144 | 664
DCS-SB {j 101 221 134 | 525
PB 103 174 176 355
PBT 112 125 136 211
PB-SB 106 411 331 | 1467
SY 107 936 818 | 2674
DCS-SY || 105 183 145 618
PB-SY 103 171 145 836

Table 4: Completion Time in Seconds (Workloads 6 to 9)

viewed as a mix of sequential and parallel jobs.

In Table 4, we again find that PB and PBT outperform all other
scheduling strategies in terms of the slowdown over coscheduling
and controlling the rate of increase of slowdown with increased
communication. DCS-SB and DCS come next, with PB-SY close
behind. Once again, SB does not do as well at higher communica-
tion workloads.

As mentioned earlier, the completion time of the last job of a
workload may not necessarily be the only metric of importance.
While this is important when looking at the throughput of the sys-
tem, the user (and even the system designer) is interested in low-
ering the average and variance of turn-around times together with
ensuring that a fair share of the CPU is allocated to each process
during execution. We should thus examine the completion times of
each of the jobs in a workload and their variance, as well as closely
observe how the CPU(s) are allocated to the different jobs during
the course of an execution.

Workload 3
hi hi lo lo || Mean || Coeff. |
of Var,
SB 773 760 139 137 452 0.80
DCS 350 | 344 188 186 267 0.35
PB 150 152 54 137 123 0.38
PBT 252 198 § 203 210 215 0.11
PB-SY 256 | 269 | 287 286 274 0.05
Workload 5
hi hi hi hi || Mean || Coeff. |
of Var.
SB 2845 | 2836 | 2849 | 2807 || 2834 0.01
DCS 764 1 764 | 755 739 755 0.02
PB 287 | 451 449 | 409 399 0.19
PBT 63 284 | 264 49 165 0.76
PB-SY 719 | 721 733 719 723 0.01

Table 5: Individual Completion Times for Workloads 3 and 5 (in
secs)

To examine these issues, we focus specifically on workloads 3
and 5, and the performance of SB, DCS, PB, PBT and PB-SY (due
to space limitations). Workload 3, with two lo and two hi jobs,
and Workload 5, with all four hi jobs, would bring out the effect
of heterogeneous and homogeneous communication intensity jobs
on the different schemes. Table 5 shows the completion times for
the individual jobs in the two workloads, the mean completion time



and the coefficient of variation (standard deviation divided by the
mean). In addition, Figures 2 and 3 show the percentage allocation
of the CPU to the different jobs at different points in the execution
at a representative workstation. This has been found by periodically
probing for the CPU time allocated to each job and dividing by
the probe interval. It should be noted that the completion times in
Figures 2 and 3, and Table 5 may not match and may be different
from the ones presented earlier because they have been collected
at only one representative workstation (and not necessarily at the
machine where the maximum time is incurred). The applications
do not begin execution at the origin of the X-axis in the graphs.
From the user’s perspective, a low mean completion time and a low
coefficient of variation in completion times is desirable. From the
fairness point of view, one would like to see equal CPU allocations
to the current jobs in the system within each probe interval.
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Figure 2; Monitoring CPU Utilization for Workload 5

Focusing first on the homogeneous workload (Workload 5), the
four schemes other than PBT have a relatively low coefficient of
variation. Of these, PB has a low mean completion time as well,
suggesting that this mechanism is preferable over the rest. PBT,
which performed well in the total completion time results, is unde-
sirable in terms of the variation in completion times. Even though
all four jobs are equally communication intensive, PBT could end
up continuously boosting a single job in successive invocations of
the periodic mechanism. In PB, this is avoided by checking mes-
sage queues in a round-robin fashion. This effect can also be ob-
served in fairness figures (Figure 2), where the periodic utilizations
are imbalanced for PBT (the bars are not evenly split between the
current jobs) compared to the four other schemes. These results
suggest that for a homogeneous workload, PB is a good candidate
to lower the completion times, has a low coefficient of variation of
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Figure 3: Monitoring CPU Utilization for Workload 3

completion times, and a reasonably equal split of CPU utilizations
between current jobs.

Moving to the heterogeneous workload (Workload 3), we find
PB, PBT and PB-SY are reasonable from the user’s perspective in
terms of the mean and coefficient of variation of completion times
(Table 5). An examination of the fairness criteria (Figure 3) shows
that SB and DCS give an equal share of the CPU to the current jobs
in the system. PB-SY comes next and is fair to the extent that it
does not totally starve out a process, but it still favors higher com-
munication jobs. The fairness provided by PB and PBT is unde-
sirable. DCS is a reasonable choice if both criteria are considered
together.

3.3 Discussion

A clear lesson learnt from this exercise is that it is important to
immediately schedule the destination process (if it is not currently
scheduled) for which an incoming message is intended. This achieves
two goals. It potentially schedules the destination at the same time
as the sender of the message. It allows the destination to send back
a reply to the sender (if needed) at the earliest so that the sender
does not have to wait longer for the reply. Local scheduling does
nothing in this regard, and hence performs poorly.

In Spin Block, the priority is boosted (in the interrupt service
routine) only when the destination has blocked waiting for the mes-
sage. However, if the destination has not yet arrived at the receive
point (due to application skews), or even if it has arrived but has
been context switched out in the middle of its spin, there is no im-
mediate boost of its priority (to absorb the message). This seems
to have a detrimental effect on the performance of Spin Block on



a programming model such as MPI, which has a coarser coupling
between processes compared to a model such as the one used in
[4]. In the implicit scheduling implementation on Split-C/Active
Messages, a reply is sent back by the handler at the remote node in
many cases. This tends to keep the sender and receiver more closely
coupled, and as a result the blocking on a receive is expected to be
more effective and is a better estimate of what is scheduled at the
remote node. In MPI, the sends and receives are explicit and the
effectiveness of our SB depends not just on message latencies and
related overheads, but also on application work imbalance. This
reiterates the need to study scheduling and communication jointly.
One possible way of improving SB could be to keep a tighter cou-
pling within the underlying MPI layer itself. For instance, we could
transmit more flow-control messages (than strictly required) to im-
plement the tighter coupling.

While Spin Yield seems attractive in terms of avoiding interrupt
costs, the downside is that the priority boost for the destination is
delayed even longer (since it occurs when another process at that
node is ready to block). This suggests that Spin Yield should never
be used in isolation. However, it can be used in conjunction with
other schemes, such as Periodic Boost or Dynamic Coscheduling,
that boost destination priority more often.

We find Periodic Boost consistently outperforming the other
schemes for both high and low communication workloads. Peri-
odic Boost is simple to implement since it does not require any
additional functionality in the network interface or the user-level
libraries. 1t does not add any overhead to the critical path of the
message transfer mechanism either. Though not explicitly stud-
ied in this paper, it also offers the flexibility of employing more
sophisticated heuristics (than just communication information) in
scheduling decisions. Also, it can be used in conjunction with sev-
eral other heuristics.

However, the “always schedule on arrival” strategy, mentioned
above, is not without its pitfalls. It can have a significant impact on
the variance of completion times and on the fairness to jobs. This
could either lead to a job (which gets coscheduled first) holding
on to the CPUs more than the others in a homogeneous workload,
or could unfairly favor communication intensive jobs in a mixed
workload. For homogeneous workloads, we find that PB is still a
good candidate in terms of lowering the coefficient of variation of
completion times as well as giving an equal share of the CPU to the
current jobs. However, with heterogeneous workloads, PB is inad-
equate since it favors communication intensive jobs. SB and DCS
are more fair under these circumstances. We find that PB-SY does
not completely starve out low communication jobs (unlike PB) in
a mixed workload, and does ensure that some progress is made
though not equally. This is analogous to the traditional UNIX Sys-
tem V scheduler, which can unfairly favor /O bound jobs in a mix-
ture of CPU and I/O bound jobs though ensuring their individual
progress. These results motivate the need for incorporating fairness
criteria into the PB and PB-SY mechanisms, and we plan to explore
this issue in our future work. It may be possible to use previously
proposed schemes [20, 4, 3] for fairness (such as limiting the num-
ber of priority boosts for a particular process or periodically raising
everyone to the highest level) in these mechanisms. In addition to
these schemes, it is also possible to use current CPU utilizations in
limiting the number of boosts that a process receives [20]. Since
the PB function is executed independent of communication events,
the scheduling decisions for fairness can also be taken at a different
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frequency than what is dictated by communication.

Finally one could argue that the coscheduling heuristics per-
form significantly worse than what one could achieve by just batch-
ing the jobs (or space sharing them if there are enough number of
nodes). Batching, however, has the well-known problem of poor
response times which is particularly disastrous for interactive jobs.
With high-performance systems being increasingly used for graph-
ics, visualization, databases and web services, in addition to the tra-
ditional large-scale scientific applications (short response times are
important when debugging large scale applications as well), we be-
lieve that dynamic coscheduling strategies are a more viable option
than batching. The disparity in results between these two options
should rather serve as a motivation for future research in dynamic
coscheduling strategies towards bridging this gap.

4 Concluding Remarks and Future Work

Efficient scheduling of processes on a NOW offers interesting chal-
lenges. Two operations, namely, waiting for a message and re-
ceipt of a message, can be used to to guide the system towards
coscheduling without explicitly requiring extra explicit communi-
cation/synchronization . Independently combining the possible ac-
tions for each of these two operations, a 3 x 3 design space of
scheduling strategies is obtained. Five of the these schemes are
original contributions of this work, while the remaining four have
been proposed in the past. This paper exhaustively evaluates the
pros and cons of this design space through implementations on
a uniform platform consisting of a network of Sun UltraSPARC
workstations, running Solaris 2.5.1, connected by Myrinet. These
schemes have been evaluated using varying mixes of several real
parallel applications with different communication intensities. We
find the newly proposed Periodic Boost (PB) scheme outperform-
ing the others over a range of different workloads.

There are several interesting directions for future research to
augment this study. Periodic Boost, which has proven very promis-
ing in this study, offers us the potential for several optimizations.
We have only explored two possible heuristics. We may be able
to use the number and/or recentness of outgoing messages, or even
base it on actions totally unrelated to communication. We could dy-
namically control the frequency of invocation of the priority boost
function, which has been statically set in this study. We also intend
to examine the fairness issues in greater detail with regard (o in-
corporating proportional fair share schedulers in conjunction with
mechanisms such as PB. We plan to explore architecture and op-
erating systems support that can improve the performance of these
strategies, and help develop more efficient scheduling mechanisms
to bring us closer to an ideal coscheduled environment, which is
more scalable and reliable than a coscheduling implementation.
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