
Cashmere-2L: Software Coherent Shared Memory on a Clustered Remote-Write
Network*

Robert Stets, Sandhya Dwarkadas, Nikolaos Hardavellas,
Galen Hunt, Leonidas Kontothanassis! Srinivasan Parthasarathy,

and Michael Scott

Department of Computer Science t DEC Cambridge Research Lab
University of Rochester One Kendall Sq., Bldg. 700

Rochester, NY 14627-0226 Cambridge, MA 02139

cashmere@cs.rochester.edu

Abstract

Low-latency remote-write networks, such as DEC’s Memory Chan-
nel, provide the possibility of transparent, inexpensive, huge-scale
shared-memory parallel computing on clusters of shared memory
multiprocessors (SMPs). The challenge is to take advantage of
hardwaresharedmemoryfor sharing within an SMI: and to ensure
that software overheadis incurredonly when actively sharing data
across SMPs in the cluster. In this paper, we describe a ‘Ywo-
level” software coherent shared memory system-Cashmere-2L-
that meets this challenge. CashmereSL uses hardware to share
memory within a node, while exploiting the Memory Channel’s
remote-write capabilities to implement “moderately lazy” release
consistency with multiple concurrent writers, directories, home
nodes, and page-size coherence blocks across nodes. Cashmere-
2L employs a novel coherence protocol that allows a high level of
asynchrony by eliminating global directory locks and the needfor
TLB shootdown. Remote interrupts are minimized by exploiting the
remote-write capabilities of the Memory Channel network

Cashmere-2L currently runs on an &node, 32-processor DEC
AlphaServersystem. Speedups rangefrom 8 to 31 on 32processors
for our benchmark suite, depending on the application’s charac-
teristics. We quanhfi the importance of ourprotocol optimizations
by comparing perjormance to that of several alternative protocols
that do not share memory in hardware within an SMP, and require
more synchronization. In comparison to a one-level protocol that
does not share memory in hardware within an SMP Cashmere-2L
improves performance by up to 46%.

*This work was supported in part by NSF grants CDA-9401142,
CCR-9319445, CCR-9409120, CCR-9702466, CCR-9705594. and CCR-
9510173; ARPA contract F19628-94-C-0057; an external research grant,
from Digital Equipment Corporation; and a graduate fellowship from Mi-
crosoft Research (Galen Hunt).

IWmlSSlOn to maKe digital/hard copy ot part or all this work for
personai or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage, the copyright notice, the title of the publication and its date
appear, and notice is given that copying is by permission of ACM,
Inc. TO COPY otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee.
SOSP-16 10197 Saint-Malo, France
@ 1997 ACM 0-89791-916-5/97/0010...$3.50

1 Introduction

The shared-memory programming model provides ease-of-use
for parallel applications. Unfortunately, while small-scale hnrd-
ware cache-coherent “symmetric” multiprocessors (SMPs) arc now
widely available in the market, larger hardware-coherent machines
are typically very expensive. Software techniques based on virtunl
memory have been used to support a shared memory programming
model on a network of commodity workstations [3,6, 12, 14, 171,
In general, however, the high latencies of traditional networks have
resulted in poor performance relative to hardware shared memory
for applications requiring frequent communication.

Recent technological advances are changing the equation, LOW-
latency remote-write networks, such as DEC’s Memory Chnn-
nel [ll], provide the possibility of transparent and inexpcnsivo
shared memory. These networks allow processors in one nodo
to modify the memory of another node safely from user space,
with very low (microsecond) latency. Given economies of scale, a
“clustered” system of small-scale SMPs on a low-latency network
is becoming a highly attractive platform for large, shared-memory
parallel programs, particularly in organizations that already own tho
hardware. SMP nodes reduce the fraction of coherence operations
that must be handled in software. A low-latency network rcduccs
thetimethattheprogrammustwaitforthoseoperations to complete,

While software shared memory has been an active area of rc-
search for many years, it is only recently that protocols for clustered
systems have begun to be developed [7, 10,13,22]. The challenge
for such a system is to take advantage of hardware shared memory
for sharing within an SMP, and to ensure that software overhead is
incurred only when actively sharing data across SMPs in the clus-
ter. This challenge is non-trivial: the straightfotward “two-level”
approach (arrange for each SMP node of a clustered system to play
the role of a single processor in a non-clustered system) suffers
from a serious problem: it requires the processors within a node lo
synchronizevery frequently, e.g. every time one of them exchanges
coherence information with another node.

Our Cashmere-2L system is designed to capitalize on both intra-
node cache coherence and low-latency inter-node messages, All
processorsonanodesharethesamephysicalframe for asharcddata
page. We employ a “moderately lazy” VM-based implementation
of release consistency, with multiple concurrent writers, directories,
home nodes, and page-size coherence blocks. Updates by multipla
writers are propagated to the home node using dt$ [6]. Cashmerc-
2L exploits the capabilities of a low-latency remote-write network

170

to apply these outgoing diffs without remote assistance, and to
implementlow-costdirectories,notificationqueues,andapplication
locks and barriers.

Cashmere-2L solves the problem of excess synchronization due
to protocol operations within a node with a novel technique called
hvo-way dl@ng: it uses hvins (pristine page copies) and d@ (com-
parisons of pristine and dirty copies) not only to identify local
changes that must be propagated to the home node (outgoing diffs),
but also to identify remote changes that must be applied to local
memory (incoming diffs). The coherence protocol is highly asyn-
chronous: it has no global directory locks, no need for i&a-node
TLB shootdown’ or related operations, and only limited need for
remote interrupts of any kind: namely, to fetch pages on a miss and
to initiate sharing of pages that previously appeared to be private.

We have implemented Cashmere-2L on an S-node, 32-processor
DEC AlphaServer cluster connected by a Memory Channel net-
work. Speedups for our benchmark suite range from 8 to 31 on
32 processors. We have found that exploiting hardware coherence
and memory sharing within SMP nodes can improve performance
by as much as 46% at 32 processors, in comparison to a protocol
designed to view each processor as a separate node. The two-level
protocol is able to exploit in&a-node locality to coalesce page fetch
requests and reduce inter-node protocol overhead. Also, our results
show that the elimination of global locks in the protocol provides
performance increases up to 7%.

The use of NO-~vay djing does not provide significant perfor-
mance advantages over the more common, TLB-shootdown imple-
mentation of the two-level protocol. There are three reasons for
this contradiction of previous findings by other researchers [lo] that
have characterized TLB shootdown as a significant source of over-
head for software DSM on clustered architectures. First, the nature
of our protocol is such that TLB shootdown is only rarely required
(i.e. in the presenceof false sharing with active multiple writers, and
then only among processors that have writable copies of the page).
Second, even when shootdown is required it is only necessary at
worst across the four processors of an SMP. Finally, shootdown is
relatively inexpensive because of our polling-based messaging im-
plementation. However, there is no performance disadvantage to
using the two-way diffing mechanism, and it is likely to provide
performance gains in clusters of larger SMPs, or in systems using
more expensive interrupt mechanisms.

The remainder of this paper is organized as follows. We describe
the Cashmere-2L protocol in Section 2, together with alternative
protocols used for performance comparisons. In Section 3 we de-
scribe our experimental setting and present performance results. In
the final two sections, we discuss related work and summarize our
conclusions.

2 Protocol Description

We begin this section with a description of our base hardware plat-
form, which consists of a cluster of eight 4-processor AlphaServer
nodes connected by the Memory Channel. We then provide an
overview of the Cashmere-2L protocol, followed by a description

‘When a process reduces access permissions on a page in a shared
address space, it must generally interrupt the execution of any processes
executing in that address space on other processors, in order to force them
to flush their TLBs, and to updatethe page table atomically [S, 16,201. This
interrupt-based inter-processor coordination is known as TLB shootdown.

of the protocol data structures and memory classes, implementation
details, principal operations, and alternative protocols.

2.1 Memory Channel Characteristics

Digital Equipment’s Memory Channel (MC) is a low-latency
remote-write network that provides applications with access to
memory on a remote cluster using memory-mapped regions. Only
writes to remote memory are possible-reads are not supported on
the current hardware. The smallest granularity for a write is 32 bits
(32 bits is the smallest grain at which the current-generation Alpha
can read or write atomically). The adapter for the MC network sits
on the PC1 bus. A memory-mapped region can be mapped into
a process’ address space for transmit, receive, or both (a particular
virtual address mapping can only be for transmit orreceive). Virtual
addresses for transmit regions map into physical addresses located
in I/O space, and, in particular, on the MC’s PC1 adapter. Vir-
tual addresses for receive regions map into physical RAM. Writes
into transmit regions bypass all caches (although they are buffered
in the Alpha’s write buffer), and are collected by the source MC
adapter, forwarded to destination MC adapters through a hub, and
transferred via DMA to receive regions (physical memory) with the
same global identifier. Regions within a node can be shared across
processors and processes. Writes to transmit regions originating on
a given node will be sent to receive regions on that same node only
if loop-buck through the hub has been enabled for the region. In our
protocols we use loop-back only for synchronization primitives.

MC has page-1eveI connection granularity, which is 8 Kbytes for
our Alpha cluster. The current hardware supports 64K connections
for a total of a 128 Mbyte MC address space. Unicast and multicast
process-to-process writes have a latency of 5.2 ps on our system
(latency drops below 5,os for other AlphaServer models). Our MC
configuration can sustain per-link transfer bandwidths of 29 MB/s
with the limiting factor being the 32-bit AlphaServer 2100 PC1 bus.
MC peak aggregate bandwidth, calculated with loop-back disabled,
is about 60 MB/s.

Memory Channel guarantees write ordering and local cache co-
herence. ‘Iwo writes issued to the same transmit region (even on
different nodes) will appear in the same order in every receive re-
gion. When a write appears in a receive region it invalidates any
locally cached copies of its line. Synchronization operations must
be implemented with reads and writes; there is no special hardware
support As described in Section 2.3, our implementation of global
locks requires 11 ps. These locks are used almost exclusively at the
applicationlevel. Within the coherenceprotoco1, they are used only
for the initial selection of home nodes.

2.2 Overview

Cashmere-2Lis a two-level coherence protocol that extends shared
memory across a group of SMP nodes connected (in our prototype)
via a MC network. The protocol is designed to exploit the special
features available in this type of platform. The inter-node level
of the protocol significantly benefits from the low-latency, remote-
write, in-order network, while the inn-a-node level fully leverages
the available hardware coherence. The protocol is also designed to
exploit the in&a-node hardware coherence to reduce the demands
on the inter-node level

“Moderately” Lazy Release Consistency Implementation:
Cashmere-2L implements a multiple-writer, release consistent pro-
tocol. This design decision is enabled by the requirement that

171

applications adhere to the data-race-free programming model [l].
Simply stated, shared memory accesses must be protected by locks
and barriers that are explicitly visible to the run-time system. The
consistency model implementation lies in between TreadMarks [3]
and Munin [6]. Invalidations in Munin take effect at the time of
a release. Invalidations in TreadMarks take effect at the time of a
causally related acquire (consistency information is communicated
only among synchronizing processes at the time of an acquire).
Invalidations in Cashmere-2L take effect at the time of the next
acquire, regardless of whether it is causally related or not.

Synchronization Primitives: The synchronization primitives
provided include locks, barriers, and flags. Their implementation
is two-level, requiring a local load-linked/store-condi-
tional (I.!&) acquire, followed by reads and writes to MC space
to implement a distributed lock. Consistency actions dictated by the
protocol are performed in software on completion of an acquire, or
prior to a release. .,

Page-Size Consistency Unit: The run-time library provides syn-
chronization and fault handling routines, which serve as entry points
into the protocol. Standard virtual memory (VM) fauiis com-
bine with the synchronization routines to implement consistency
throughout the system. Since VM faults are used to track shared
accesses, the coherence granularity is naturally a VM page.

Home-Based Protocol: Shared mem&y pages are mapped into
MC space. Each page in shared memory has a single distinguished
hotne node, which contains the master copy of the page. Processors
on the home node work directly on the master copy. Processors on
remote nodes update the master copy according to the definition of
release consistency. Modifications from remote nodes are transpar-
ently merged at the home node. The protocol is directory-based,
with each shared page having an associated edtry in the distributed
page directory. This entry holds information describing the current
page state. Page directory modifications are broadcast using the
MC’s remote-write capabilities.

Directory-Based Coherence: Cashmere-2L uses the broadcast
capabilities of the MC network to mainti,n a distributed (replicated)
directory of sharing information’for each page on a “per-node”
basis. A broadcast of directory modifications is performed due to
the lack of remote-read capability on the Memory Channel. Not
using broadcast would imply having to explicitly request data from
the home of a directory entry every time it is read. The directory is
examined and updated during protocol actions.

Initially, shared pages are mapped only on their associated home
nodes. Page faults are used to trigger requests for an up-to-date
copy of the page from the home node. Page faults triggered by
write accesses are also used to keep track of data modified by each
node. At the time of a write fault, the page is added to a per-
processordirry list (a list of all pages modified by a processor since
the last release). A twin or a pristine copy of the page is also created.
As in Munin, the twin is later used to determine local modifications.

At a release, each page in the dirty list is compared to its twin, and
the differences are flushed to the home node. This operation, called
a pugefluslz, also applies to pages that are no longkr in exclusive-
mode (see Section 2.4). Write notices (notification of a page having
been modified) for all pagesin the processor’s dirty list are then sent
to each node in the sharing set, as indicated by the page’s directory
entry. Both of these operations take advantage of low-latency respote
writes to communicate the data without interrupting remote process
operation. The releaser then downgrades write permissions for the
pages that are flushed and clears the dirty list. At a subsequent

acquire, a processor invalidates all pages for which write notices
have been received, and that have not already been updated by
another processor on the node.

Exclusive Mode: The protocol also includes special optimlza=
tions to avoid overhead in the absence of active sharing. A nodo
may hold a page in exclusive mode when no other node is con.
currently accessing the page (information maintained in the globnl
directory). The exclusive holder can act as though the page were
private, eliminating all coherence overhead, including page faults,
directory, and home node updates. When another node joins the
sharing set, the exclusive holder is interrupted in order to update the
copy at the home node. Subsequent modifications to the page ~111
then be flushed to the home node at the next release.

Hardware Coherence Exploitation: The protocol exploits hnrd-
ware coherence to maintain consistency within each node. All pro-
cessors in the-node share the same physical frame for a shared data
page. Hardware coherence then allows protocol transactions from
different processors on the same node to be coalesced, resulting In
reduced data communication, as well as reduced consistency over-
head. Of course, two transactions can only be coalesced if there is
nq intervening inter-node protocol transaction that invalidates the
effects of the hardware coherence. Through novel optimizations,
the protocol tracks the temporal ordering of protocol transactions
and ensures that processes within a node can execute with a high
level of asynchrony.

Hardware-Software Coherence Interaction: Temporal ordcr-
ing of protocol operations is maintained through intra-node timcs-
tamps. These timestamps hold the value of a logical clock, which is
incremented on protocol events, namely, page faults, page flushes,
acquires, and releases--operations that result in communication
with other nodes. This logical clock is used to timestamp a page at
the time of its last update, as well as to indicate when a write notice
for the page was last processed. With this information, for example,
page fetch requests can safely be eliminated if the page’s last update
timestamp is greater than the page’s last write notice timestamp,

One example of extra protocol overhead due to the two-level im-
plementation is during a page update operation. Incoming page data
cannot simply be copied into the destination page frame since the
new data may overwrite the modifications performed by other con-
current writers on the node. As described in Section 2.6, a common
solution to this problem has been to shootdown the other processors’
mappings. To avoid the explicit synchronizationinvolved in this ap
preach, Cashmere-2L employs a novel incoming d$ page update
operation. The processorsimply compares the incoming data to the
existing twin (if any) and then writes the di,fferences to the work-
ing page as well as the twin. Since applications are required to be
data-race-free, thesedifferences are exactly the modifications made
on remote nodes, and will not overlap with those on the local node,
Updating the twin ensures that only local modifications arc flushed
back to the home node at the time of the next release. This approach
altogether avoids explicit synchronization within the node.

2.3 Implementation Details

Memory and data structures of Cashmere-2L are grouped into five
major classes, according to their use of Memory Channel mappings,
These are:

Global directory- replicated on each node, with MC receive and
transmit regions (see Figure 1). No loop-back; writes arc
doubled manually to local copy.

172

node 0
~.................;

Figure 1: Memory channel mappings for global directory and syn-
chronization objects. Transmit regions (shown with dashed lines)
are mapped to I/O (PCI) space. Receive regions (shown with solid
lines) are mapped to local physical memory. Directory entries are
“doubled” in software-written to both the transmit and receive
regions of the writer. Synchronization objects employ loop-back:
writes to the local transmit region are written back by the Mem-
ory Channel to the local receive region, as shown by the dashed
arrow. Loop-back allows the writer to determine that a write has
been globally performed.

Synchronization objects - replicated on each node, with MC re-
ceive and transmit regions (see Figure 1). Uses loop-back to
wait for writes to be globally performed (see the following
section); no doubling of writes required.

Other global meta-data - receive region on each node, mapped
for transmit by every other node (see Figure 2). Includes:
global write notice lists, page read buffers, and buffers for
explicit requests.

Home node page copies - receive regions on each node, mapped
forfransmit by every other node (see Figure 3).

Private to node- no MC mappings. Includes: code (replicated,
read-only, to all nodes; shared by processors within a node);
stacks, non-shared static data, and per-processor dirty lists
(private to each processor); local copies of shared pages
(shared, with various permissions, by all local processors);
page twins, second-level directories, current logical time, and
last release time (shared by all local processors); and per-
processorwrite notice lists and no-longer-exclusive(NLE) lists
(one per processor, writable by all local processors).

Each page is represented in the global directory by eight 32-bit
words, each of which is written by only one node in the system, and
indicates that node’s view of the page (more words would berequired
if there were more than eight SMP nodes). The word for a given
page on a given node contains (1) the page’s loosest permissions on
any processor on that node (invalid, read-only, read-write-2 bits),
(2) the id of any processor accessing the page in exclusive mode (6
bits), and (3) the id of the home processor (and consequently the
id of the home node) (6 bits). Home node indications in separate
words are redundant.

Global directory information could be compressed to save space,
but a global lock would then be required to ensure atomic access
(32 bits is the smallest grain at which the Alpha can read or write
atomically, and the Memory Channel does not support the Alpha’s
1vSc instructions). By expanding the directory entry to one word
per node, global locks are avoided and synchronization within the
protocol library is dramatically reduced. Moreover, even at four
bytes per node on each of eight nodes, the directory overhead for an
8K page is only 3%.

Within each node, the second-level directory maintains infonna-
tion on which processors have invalid, read-only, and read-write

. . .

node 2 node 5

i i ncde3dala , : I node3dala
p ------- 4

. . . . i . . .
: : ------- .j

I I i i
(mde4dala , (mde4dala ,

; ;

r-------i ~----; i i

; lwde5da!a ; lwde5da!a j.. / j.. /

:-------’ :-------’
(nodesdata ; (nodesdata ;

‘s. :’ ‘s. :’

I- I-
‘.’ ‘.’

------- .I ------- .I

I I
f. f.

(xde7dala , (xde7dala , ; ‘8 ; ‘8
I I , ,
--------J i 8, --------J i 8,

I I

. .
4’ 4’

t t

! mde4dal.a ,
i

: -------? ,”
.

:

Figure 2: Memory channel mappings for coherencemeta-data other
than the global directory. Each node has a receive region that is
written by other nodes and that it (alone) reads. With one exception
(the remote request polling flag) every word of the receive region is
written by a unique remote node, avoiding the need for global locks.

node 0

r--------i , =pwwO ,
p ---- -- .+

! supewe 14,

node 3

i--------y , =JPwwo ,
p ----- --,
! *upeFpage 1,’

node 7

r-------- , superpage)
p--- - -- -4
! superpage !

L-------i..
; superpage , ;

. . .
I-

-- ----- ,-. . * . L ------- ’

~6UP6Qag62 I ‘,
.�L ------- ☺

ls”peQage 2 :

�-------: l

.

r� �

. .--
--c-------☺

!

.

I , .* : I I
l ,.=

I/. . i f ;
I

i I

. . . -1
..0 I i

; I
r-------; L-2’---J . \ I : --------_
, superpage” I
I--------I

/ . . .,.+&eQage ” I x . i superpagen i
,--------I , , , ,# _-*. “:**f-----:--; 5 ,

Figure 3: Memory channel mappings for home node copies of
pages. Pages are grouped together into “superpages” to reduce the
total number of mappings. Each superpageis assigned a home node
near the beginning of execution. Every node that creates a local
copy of a page in a given superpage creates a transmit mapping
to the home node copy. The mapping is used whenever a local
processor needs (at a release operation) to update data at the home
node.

mappings. It also includes three timestamps for the page: the com-
pletion time of the last home-nodefIush operation, the completion
time of the last local update operation, and the time the most recent
write notice was received.

Timestamps are simply integers. Each node maintains a notion of
the current time and an indication of the time of the most recent re-
lease by any local processor. The current time is incremented every
time the protocol begins an acquire or release operation and applies
local changes to the home node, or vice versa. The timestamps are
updated atomically with Ilk.

Write notice lists are implemented using a multi-bin, two-level
structure, as shown in Figure 4, to avoid the need for mutually
exclusive access. Each node has a seven-bin global write notice list

173

from node 0 from node 1 from node 7

processor 0 processor I processor 2 processor 3

Figure 4: Write notices. A node’s globally-accessible write notice
list has one bin (a circular queue) for each other node in the sys-
tem. On an acquire operation, a processor traverses all seven bins
and distributes notices to the per-processor bins of processors with
mappings for the page. Each per-processor bin consists of both a
circular queue and a bitmap.

and a separate, second-level per-processor write notice list. Each
bin of the global list is written by a uniqueremote node (again, more
bins would be required on a larger system). Whenever a processor
inspects the global list it distributes the notices found therein to the
second-level lists of all affected processors.

Several intra-node data structures, including the per-processor
write notice lists, are protected by local locks, implemented with
Msc. To minimize the overhead of redundant write notices, per-
processor second-level write-notice lists consist of both a bit map
and a queue. When placing a notice in a list, a processor acquires
a local lock, sets the appropriate bit in the bit map, adds a notice
to the queue if the bit was previously clear, and releases the lock.
If the write notice is already present, no action is necessary. When
processing its own list, a processor acquires the lock, flushes the
queue, clears the bitmap, and releases the lock.

In addition to data structures shared among the processors within
a node, each individual processor maintains its own dirty list-the
list of shared pages it has written since its last release.

Explicit inter-node requests are used for only two purposes in
Cashmere-2L: to request a copy of a page from its home node, and
to break a page out of exclusive-mode. Like global write notice
lists, request buffers and reply buffers (for page transfers) employ a
multi-bin structure to avoid the need for global locks.

Synchronization. Application locks (and protocollocks for home
node selection) are represented by an g-entry array in Memory
Channel space, and by a test-and-set flag on each node. Like global
directory entries, lock arrays are replicated on every node, with
updates performed via broadcast. Unlike directory entries, however,
locks are configured for loop-back (see Figure 1). To acquire a lock,
a process first acquires the per-node flag using I&. It then sets the
array entry for its node, waits for the write to appear via loop-back,
and reads the whole array. If its entry is the only one set, then
the process has acquired the lock. Otherwise it clears its entry,

label :

ldq $7, 0($13)

beq $7, nomsg

jsr $26, handler

ldgp $29, 0($26)

nomsg:

; Checkpollflag.
; Ifmessage,

; cnllhandler.

; restore global pointer.

Figure 5: Polling. Polling code is inserted at all interior, backward*
referenced labels. The address of the polling flag is preserved In
register $13 throughout execution.

backs off, and tries again. In the absence of contention, acquiring
and releasing a lock takes about 11 ps. Digital Unix provides
a system-call interface for Memory Channel locks, but while its
internal implementation is essentially the same as ours, its latency
is more than 280 ps. Most of that overhead is due to the crossing of
the kernel-user boundary.

Application barriers employ a two-level implementation, Dur-
ing each barrier, the processors inside a node synchronize through
shared memory and upon full arrival the last arriving proccssoruscs
the Memory Channel to communicate the node’s arrival to the rest
of the nodes in the system, using an array similar to that employed
for locks. Each processor within the node, as it arrives, performs
page flushes for those (non-exclusive) pages for which it is tho last
arriving local writer. Waiting until all local processors arrlvo bc-
fore initiating any flushes would result in unnecessary serialization,
Initiating a flush of a page for which there are local writers that
have not yet arrived would result in unnecessary network trafllc:
later-arriving writers would have to flush again.

Home node selection. Home nodes are initially assigned in a
round robin manner, and then are re-assigned dynamically after pro-
gram initialization to the processorthat first touches a page [15]. To
relocate a page a processor must acquire a global lock and explicitly
request a remapping from the initial home node. Because we only
relocate once, the use of locks does not impact performance. Or-
dinary page operations (fetches, updates, flushes) need not acquire
the lock, because they must always follow their processor’s initial
access in time, and the initial access will trigger the lock-acquiring
home-node-selection code.

Explicitrequests. Although the first-generation Memory Chnnnol
supports remote writes, it does not support remote reads. To read
remote data, a message passing protocol must be used to send n
request to a remote node. The remote node responds by wdting
the requested data into a region that is mapped for receive on the
originating node.

We have experimented with both interrupt- and polling-based
approaches to handling explicit requests. Polling provides better
performance in almost every case (TSP is the only exception in our
application suite -see 1141 for more details on a comparison of
polling versus interrupts on our platform).

Pollhrg requires that processors check for messages frequently,
and branch to a handler if one has arrived. We instrument the proto-
col libraries by hand and use an extra compilation pass between tho
compiler and assembler to instrument applications. The instrumcn-
tation pass parses the compiler-generated assembly file and inserts
polling instructions at the start of all labeled basic blocks that arc
internal to a function and are backward referenced-he. at the tops
of all loops. The polling instruction sequence appears in Figure 5.

174

Superpages. Due to limitations on the size of tables in the Mem-
ory Channel subsystem of the Digital Unix kernel, we were unable
to place every shared page in a separate MC region for applica-
tions with large data sets. We therefore arrange for each MC region
to contain a sperpage, the size of which is obtained by dividing
the maximum shared memory size required by the application by
the number of table entries. Superpages have no effect on coher-
ence granularity: we still map and unmap individual pages. They
do, however, constrain our “first touch” page placement policy: all
pages of a given superpagemust share the same home node.

Kernel changes. We made several minor changes to the Digital
Unix kernel to accommodate our experiments. Specifically, we al-
low a user program to both specify the virtual address at which an
MC region should be mapped and also to control the VM accessper-
missions of an MC receive region. To address the very high cost of
interprocessor interrupts, we also arranged to effect auser-to-kernel
transition immediately upon interrupt delivery, rather than waiting
for the next kernel entry (e.g. hardclock). This change reduced
the average latency of in&a-node interrupts from 980 to 80 ps and
the cost of inter-node interrupts from 980 to 445 PS. However, for
all but one application, the improvement was insufficient to allow
interrupts to outperform polling as a means of delivering explicit
requests. We report only polling-based results in Section 3. Our
philosophy with respect to the kernel has been to make only those
changes that are of clear benefit for many types of applications. We
could improve performance significantly by moving protocol oper-
ations (the page fault handlers in particular) into the kernel, but at
a significant loss in modularity, and of portability to other sites or
other variants of Unix.

2.4 Principal Consistency Operations

2.4.1 Page Faults

In response to a page fault, a processor first modifies the page’s
second-level directory entry on the local node to reflect the new
access permissions. If no other local processor has the same per-
missions, the global directory entry is modified as well. If no
local copy for the page exists, or if the local copy’s update times-
tamp precedes its write notice timestamp or the processor’s acquire
timestamp (whichever is earlier), then the processor fetches a new
copy from the home node.

In addition to the above, write faults also require that the processor
check to see if any other node is currently sharing the page. If there
are any other sharers, the processor adds the page to its (private)
per-processor dirty list and possibly creates a twin of the page (see
Section 2.5); otherwise it shifts the page into exclusive mode (see
the following section). Finally, for either a read or a write fault,
the processor performs an mprotect call to establish appropriate
permissions, and returns from the page fault handler.

Exclusive Mode: If the global directory reveals that a desired
page is currently held exclusively, then the faulting processor must
send an explicit request to some processor on the holder node.
Upon receipt of such a request, the holder flushes the entire page to
the home node, removes the page from exclusive-mode, and then
returns the latest copy of the page to the requestor. All subsequent
page fetches will be satisfied from the home node, unless the page
re-enters exclusive-mode.

If any other processors on the node have write mappings for tbe
page, tbe responding processor creates a twin and places notices
in the no-longer-exclusive list of each such processor, where they
will be found at subsequent release operations (see below). After
returning the copy of the page, the responding processor downgrades
its page permissions in order to catch any future writes. A page in
exclusive-mode incurs no coherence protocol overhead. It has no
twin; it never appears in a dirty list; it generates no write notices or
flushes at releases.

2.4.2 Acquires

Consistency actions at a lock acquire operation (or the departure
phase of a barrier) begin by traversing the bins of the node’s global
write notice list and distributing the notices therein to the affected
local processors (i.e. those with mappings). Distributing the notices
to the local lists of the affected processors eliminates redundant
work and book-keepingin traversals of the global write notice bins.
As the write notices are distributed, the most recent “write-notice”
timestamp for the page is updated with the current node timestamp.

After distributing write notices, an acquiring processor processes
each write notice in its per-processorlist (note that this list may hold
entries previously enqueucd by other processors, as well as those
just moved from the global list). If the update timestamp precedes
the write notice timestamp for the page associated with the write
notice, the page is invalidated using an mprotect. Otherwise, no
action is taken.

2.4.3 Releases

During a release operation, a processor must flush all dirty, non-
exclusive pages to the home node. (If a processor is on the home
node, then the flush can be skipped.) These pages are found in
the processor’s (private) dirty list and in its no-longer-exclusive list,
which is written by other local processors. In addition, the releasing
processor must send write notices to all other nodes, excluding the
home node, that have copies of the dirty page. Since modifications
are flushed directly to the home node, the home node does not
require explicit notification.

If the release operations of two different processors on the same
node overlap in time, it is sufficient for only one of them to flush
the changes to a given page. As it considers each dirty page in
turn, a releasing processor compares the page’s flush timestamp
(the time at which the most recent flush began) with the node’s last
release time (the time at which the protocol operations for the most
recent release began). It skips the flush and the sending of write
notices if the latter precedes the former (though it must wait for
any active flush to complete before returning to the application).
After processing each dirty page, the protocol downgrades the page
permissions so that future modifications will be trapped.

2.5 Twin Maintenance

Cashmere-2L uses twins to identify page modifications. The twin
always contains the node’s latest view of the home node’s master
copy. This view includes all the local modifications that have been
made globally available and all tbe global modifications that the
node has witnessed. wins are unnecessary on the home node.

A twin must be maintained whenever at least one local processor,
not on the home node, has write permissions for the page, and the
page is not in exclusive-mode, The twins are used to isolate local

175

and global modifications, i.e. to perform “outgoing” and “incom-
ing” diffs. The latter operation is used in place of TLB-shootdown
to ensure data consistency, while avoiding inter-processor synchro-
nization. ~.

Special care must also be exercised to ensure that flush opera-
tions do not introduce possible inconsistencies with the twin. Since
multiple concurrent writers inside a node are allowed, the twin must
be updated not only during page-fault-triggered updates to the lo-
cal copy, but also during flushes to the home node at release time.
Aflush-update operation writes all local modifications to both the
home node and the twin. Subsequent release operations within the
node will then realize that the local modifications have already been
flushed, and will avoid overwriting more recent changes to the home
by other nodes.

2.5.1 Prior Work

In earlier work on a one-level protocol [14], we used write-through
to the home node to propagate local changes on the fly. On the
current Memory Channel, which has only modest cross-sectional
bandwidth, the results in Section 3 indicate that twins and diffs
perform better. More important, for the purposes of our two-level
protocol, twins allow us to identify remote updates to a page and
eliminate TLB shootdown, something that write-through does not.
We briefly considered a protocol that would use write-through to
collect local changes, and that would compare home and local copies
to identify remote changes. Such a protocol would eliminate the
need for twins, but would require that we use explicit intra-node
messages to synchronize with other processors on the node in order
to ensure that any writes in transit are flushed to the home node and
to stall other local writers during a page update.

2.6 Alternative Protocols ’

Shootdown In order to quantify the value of two-way diffing,
we have also implemented a shootdown protocol called Cashmere-
2LS. As described earlier, the shootdown protocol avoids races
between a processor incurring a page fault and concurrent local
writers by shooting down all other write mappings on the node,
flushing outstanding changes, and then creating a new twin only on
a subsequent write page fault. It behaves in a similar fashion at
releases: to avoid races with concurrent writers, it shoots down all
write mappings, flushes outstanding changes, and throws away the
twin. In all other respects, the shootdown protocol is the same as
Cashmere-2L.

It should be noted that this shootdown protocol is significantly
less “synchronous”than single-writer alternatives [10,221. It allows
writable copies of a page to exist on multiple nodes concurrently.
Single-writer protocols must shoot down write permission on all
processors of all other nodes when one processortakes a write fault.

One-level protocols We also present results for two one-level
protocols. The first of these (Cashmere-1L) is described in more
detail in a previous paper [14]. In addition to treating each processor
as a separate node, it “doubles” its writes to shared memory on the
fly using extra in-line instructions. Each write is sent both to the
local copy of the page and to the home node copy.

Our second one-level protocol (Cashmere-1LD) abandons write-
through in favor of twins and (outgoing) diffs. Both protocols
share many of the characteristics of Cashmere-2L. While simpler,
they do not explicitly exploit intra-node hardware coherence. Each

directory entry is again organized as eight 32-bit words, one for
each node in the cluster. Each word contains presence flags for the
processors within the node (4 bits), the id of the home node (5 bits),
an indication of whether the home node is still the original default
or has been set as the result of a “first touch” heuristic (1 bit), nnd
an indication of whether any processor within a node has exclusive
read/write permission for the page (4 bits). Write notice lists nrc
on a per processor rather than per node basis and are protected by
cluster-wide locks.

Read faults always fetch a page from the home node, and set the
presence bit on the word corresponding to the faulting processor’s
node. Write faults fetch the page if necessary, create a twin (in tho
caseof Cashmere-lLD), and insert a descriptor of the page in a local
dhty list. If the page is found in exclusive-mode, then the holder is
contacted and asked to flush the page to the home node before the
fetch operation can proceed.

At a release operation, a processor traverses its dirty list. For
each dirty page it sends write notices to other sharing processors
which do not already hold the necessary write notices. In the case
of Cashmere-ILD, the home node is also updated based on a com-
parison of the local copy and the twin. If no sharers are found, tho
page moves to exclusive mode: it will not participate in cohcrcncc
transactions until it leaves this mode. At an acquire operation, the
processor traverses its write notice list and removes itself from the
sharing set of each page found therein.

One-level protocols with home-node optimization We also havo
prepared a special version of both one-level protocols that takes
greater advantage of our prototype platform, in particular tho SMP
nodes. By allowing home-node accesses to occur directly on the
page’s master copy (the MC receive region), the home-node is able to
avoid twin operations and page invalidations. Also since each homc-
node processor now shares the same physical page frame, the node
will benefit from the underlying hardware coherence. Since pages
on remote nodes do not benefit from hardware coherence, this is
essentially an intermediate implementation that resides somcwhcrc
between a strict one-level and a full two-level protocol. The results
arepresented only to show that a full two-level protocol is necessary
to obtain robust performance.

3 Experimental Results

Our experimental environment consists of eight DEC AlphaScrver
2100 4/233 computers. Each AlphaServer is equipped with four
21064A processors operating at 233 MHz and with 256MB of shared
memory, as well as a Memory Channel network interface. The
21064A’s primary data cache size is 16 Kbytes, and the secondary
cache size is 1 Mbyte. A cache line is 64 bytes. Each AlphaServcr
runs Digital UNIX 4.OD with TmCluster v. 1.5 (Memory Channel)
extensions. The systems execute in multi-user mode, but with the
exception of normal Unix daemons no other processes were active
during the tests. In order to increase cache efficiency, application
processes are pinned to a processor at startup. No other proccs-
sors are connected to the Memory Channel. Execution times wcrc
calculated based on the best of three runs.

3.1 Basic Operation Costs

Memory protection operations on the AlphaServers cost about 55 ps.
Page faults on already-resident pages cost 72 ps. The overhead for

176

Table 1: Costs of basic operations for the two-level protocols
(2IJ2LS) and the one-level protocols (ILDIlL).

polling ranges between 0% and36% compared to a single processor
execution, depending on the application.

Directory entry modification takes 16 ps for Cashmereif locking
is required, and 5 /JS otherwise. In other words, 11 /JS is spent
acquiring and releasing the directory entry lock, but only when
relocating the home node. The cost of a twinning operation on
an 8K page is 199 ps. The cost of outgoing diff creation varies
according to the diff size. If the home nodeis local (only applicable
to the one-level protocols), the cost ranges from 340 to 561 ps. If
the home node is remote, the diff is written to uncacheableI/O space
and the cost ranges from only 290 to 363 ps per page. An incoming
diff operation applies changes to both the twin and the page and
therefore incurs additional cost above the outgoing diff. Incoming
diff operations range from 533 to 541 /JS, again depending on the
size of the diff.

Table 1 provides a summary of the minimum cost of page trans-
fers and of user-level synchronization operations. All times are for
interactions between two processors. The barrier times in parenthe-
ses are for a 32 processor barrier. The lock acquire time increases
slightly in the two-level protocols because of the two-level imple-
mentation, while barrier time decreases.

3.2 Application Characteristics

We present results for 8 applications:
SOR: a Red-Black Successive Over-Relaxation program for solv-

ing partial differential equations. The red and black arrays are
divided into roughly equal size bands of rows, with each band as-
signed to a different processor. Communication occurs across the
boundaries between bands. Processors synchronize with barriers.

LU: a kernel from the SPLASH-2 [21] benchmark, which for a
given matrix A finds its factorization A = LU, where L is a lower-
triangular matrix and U is uppertriangular. The matrix A is divided
into square blocks for temporal and spatial locality. Each block is
“owned” by a processor, which performs all computation on it.

Water: a molecular dynamics simulation from the SPLASH-
1 [19] benchmark suite. The shared array of molecule structures is
divided into equal contiguous chunks, with each chunk assigned to a
different processor. The bulk of the interprocessor communication
occurs during a phase that updates intermolecular forces using locks,
resulting in a migratory sharing pattern.

TSP: a branch-and-bound solution to the traveling salesman prob-
lem. Locks are used to insert and delete unsolved tours in a priority
queue. Updates to the shortest path are protected by a separatelock.
The algorithm is non-deterministic in the sensethat the earlier some
processor stumbles upon the shortest path, the more quickly other
parts of the search space can be pruned.

Gauss: a solver for a system of linear equations AX = B
using Gaussian Elimination and back-substitution. The Gaussian

II Proeram I Problem Size I Time Csec.1 II
SOR
LU

~ 3072x4096 (5OMbytes)
2046x2046 (33Mbytes)

Water ~ 4096 mols. (4Mbytes)
TSP 17 cities (1Mbyte)
Gauss 2046x2046 (33Mbytes)
Ilink CLP (15Mbytes)
Em3d 60106 nodes (49Mbytes)
Barnes 128K bodies 126Mbvtes)

i95.0
254.8

1847.6
4029.0

953.7
899.0
161.4
469.4

Table 2: Data set sizes and sequential execution time of applications.

elimination phase makes A upper triangular. For load balance, the
rows are distributed among processors cyclically, with each row
computed on by a single processor. A synchronization flag for each
row indicates when it is available to other rows for use as a pivot.

Ilink: a widely used genetic linkage analysis program from the
FASTLINK 2.3P package that locates disease genes on chromo-
somes. We use the parallel algorithm described in [9]. The main
shared data is a pool of sparse arrays of genotype probabilities.
For load balance, non-zero elements are assigned to processors in
a round-robin fashion. The computation is master-slave, with one-
to-all and all-to-one data communication. Barriers are used for
synchronization. Scalability is limited by an inherent serial compo-
nent and inherent load imbalance.

Barnes: an N-body simulation from the SPLASH-l [19] suite,
using the hierarchical Barnes-Hut Method. The major shared data
structures are two arrays, one representing the bodies and the other
representing the cells, a collection of bodies in close physical prox-
imity. The Barnes-Hut tree construction is performed sequentially,
while all other phases are parallelized and dynamically load bal-
anced. Synchronization consists of barriers between phases.

Em3d: a program to simulate electromagnetic wave propaga-
tion through 3D objects [8]. The major data structure is an array
that contains the set of magnetic and electric nodes. These are
equally distributed among the processors in the system. While ar-
bitrary graphs of dependencies between nodes can be constructed,
the standard input assumes that nodes that belong to a processor
have dependencies only on nodes that belong to that processor or
neighboring processors. Barriers are used for synchronization.

Table 2 presents the data set sizes and uniprocessor execution
times for each of the eight applications, with the size of shared mem-
ory space used in parentheses. The execution times were measured
by running each uninstrumented application sequentially without
linking it to the protocol library.

3.3 Comparative Speedups

Figure7 presents speedup bar charts for our applications on up to 32
processors. The unshaded extensions to the one-level bars indicate
the results of the one-level protocols with home-node optimization.
All calculations are with respect to the sequential times in Table 2.
The configurations we use are as follows: &l-four processors
with 1 process in each of 4 nodes; 4:Pfour processors with 4
processesin 1 node; 8:l-eight processors with 1 processin each of
8 nodes; 8:2-eight processors with 2 processes in each of 4nodes;
8:4-eight processors with 4 processes in each of 2 nodes; 16:2-
sixteen processors with 2 processes in each of 8 nodes; 16:”
sixteen processors with 4 processes in each of 4 nodes; 24:3-

177

twenty four processors with 3 processes in each of 8 nodes; and
32:4-thirty two processors with 4 processesin each of 8 nodes.

Table 3 presents detailed statistics on the communication incurred
by each of the applications under each of the four protocols at 32
processors, The statistics presented are the execution time, the
number of lock and barrier synchronization operations, the number
of read and write faults, the number of page transfers, the number
of directory updates, the number of write notices, the number of
transitions in to and out of exclusive-mode, and the amount of
data transferred. The Cashmere-2L and Cashmere-2LS entries also
include statistics concerning twin maintenance. The number of twin
creations is listed for both protocols. In the presence of multiple
writers, Cashmere-2L maintains the twins via incoming diffs and
flush-update operations, while Cashmere-2LS employs shootdown
operations. Statistics covering these operations are also included in
the table. All statistics, except for execution time, are aggregated
over all 32 processors.

Figure 6 presents a breakdown of execution time at 32 processors
for each application. The breakdown is normalized with respect to
total execution time for Cashmere-2L. The components shown rep-
resent time spent executing user code (user), &me spent in protocol
code (Protocol), the overhead of polling in loops (Polling),
communication and wait time (coram & Wait), and the overhead
of “doubling” writes for on-the-fly write-through to home node
copies (write Doubling; incurred by 1L only). In addition to
the execution time of user code, User time also includes cache
misses and time needed to enter protocol code, i.e. kernel over-
head on traps and function call overhead from a successful mes-
sage poll. ‘live of the components-Protocol and Comm. &
Wait-were measured directly on the maximum number of pro-
cessors. Polling overhead could not be measured directly: it
is extrapolated from the single-processor case (we assume that the
ratios of user and polling time remain the same as on a single pro-
cessor). Write doubling overhead in the case of 1L is also
extrapolated by using the minimum User and Polling times
obtained for the other protocols.

33.1 Comparison of 1LD to 1L

The main difference between the two onelevel protocols is the
mechanismused to merge changes into home-node copies of pages.
1L writes changes through to the home node on the fly, by using an
extra compilation pass to “double” writes in-line. 1LD uses twins
and (outgoing) diffs.

Write doubling incurs additional computational cost for each
write to shared data. On the home node, write doubling also has a
large cache penalty in the case of Gauss and LU, since the working
set,size is increased beyond the size of the first-level cache. (On the
home node, writes to the local copy and to the home node copy are
both to physical memory. On a remote node, the write to the home
node copy goes to I/O space which bypasses all caches.) See [14]
for more details.

In addition, for all applications, write-through on the Memory
Channel often incurs the fill latency and overhead of Memory
Channel access for each word written (in addition to contention).
Although writes are coalesced in the processor’s write buffer before
being sent out onto the Memory Channel, the benefits of coalesc-
ing writes to reduce overhead on the Memory Channel is not fully
exploited. In the case of 1LD, which uses diffing, writes are con-
tiguous and have a greater chance of being coalesced. Hence, 1LD
shows better performance for most applications.

Figure 6: Breakdown of percent normalized execution time for the
no-Level (2L), ‘nvo-Level-Shootdown (2LS), One-Level-Difflng
(lLD), and One-Level-Write-Doubling (1L) protocols at 32 proccs-
sors. The components shown represent time spent executing user
code (user), time spent in protocol code (Protocol), the ovcr-
head of polling in loops (Polling), communication and wait time
(comm & Wait), and the overhead of “doubling” writes for on-
the-fly write-through to home node copies (Write Doubling;
incurred by 1L only).

Wepresenttheresults of 1Lmainlyas abasepointforcomparlson
to our earlier paper describing the one-level protocol with write-
through [14]. (Note that these latest results have been cxccuted on
a new version of the Memory Channel which offers slightly higher
bandwidth.) Wewilluse 1LD (without the home-node optimization)
as the basis for comparison of the two-level protocols in the rest of
this section sinceit has the best over-all performance of the true onc-
level protocols, and is similar to the two-level protocols described
in this paper.

3.3.2 Comparison of One- and Two-Level Protocols

Compared to the base 1LD protocol, the two-level protocols show
slight improvement for LU, SOR, TSP, and Water (l-9%), good Im-
provement for Em3d (22%), and significant improvement for Ilink,
Gauss, and Barnes (40-46%). With the home-node optimization,
both the one-level protocols improve dramatically for Em3d, but
the two-level protocols still hold their performance edge for the
applications overall.

SOR benefits mainly from the ability of 2L and 2~s to USC hard-
ware coherence within nodes to exploit application locality. This
locality results in a major reduction in the number/amount of page
faults, page transfers, write notices, directory updates, and com-
municated data (see Table 3); and a reduction in time spent in the
protocol code. Given the high computation-to-communication ratio

178

35

30

25

20

E?

-3 15
i%

10

5

0

25

20

g4 15

24

52 10

5

0

2L 2Ls 1LD 1L

SOR

2Ls ILD

Water

ZL 2Ls ILD 1L 2L PLS ILD

Gauss
16

14

12

10

$8

3
6

2L 2Ls 1LD

Em3d

20

18

16

14

a 12
-El
8 10

8 8

6

4

2

0

30

25

20

2

8 15

22

10

5

0

14

12

10

2 8

8

&? 6

4

2

0

9

6

2 5

8
a4

m

3

2L 2x-s 1LD IL

LU

2L ZLS ILD 1L

TSP

-

Ilink

2L 2L3 IL0 1L

Barnes

Figure 7: Speedups for ‘Rvo-Lmel(2L), Two-Level-Shootdown (2LS), One-Level-Diffing (lLD), and One-Level-Write-Doubling (1L).

179

- - -
Application SOR LU Water TSP Gauss Ilink Em3d Barnes - - -

Exec. time (sets) 6.3 13.4 65.8 147.1 44.0 69.5 14.2 6042
Lock/Flag Acquires (K) 0 0 3.68 2.61 129.82 0 0 0
Barriers 48 130 36 2 7 521 250 11
Read Faults (IQ 0.34 22.14 72.55 14.32 174.51 204.28 44.49 214.45
Write Faults (IQ 0.67 4.81 35.54 9.08 8.18 46.16 50.97 183.05
Page Transfers (K) 0.34 8.76 30.35 12.41 42.51 51.31 38.43 68.61
Directory Updates (IQ 2.02 18.74 111.91 23.01 70.12 144.66 181.69 261.11
Write Notices (K) 0.34 0.37 75.88 53.25 23.03 105.34 38.12 269.76
Excl. Mode Transitions (K) 0 4.42 2.03 0.03 4.14 4.13 2.92 3.49
Data (Mbytes) 4.25 116.56 277.83 103.23 385.31 479.90 345.92 616.75
lXvin Creations-(K) 0.34 0.18 25.56 7.91 3.59 10.56 8.84 54.80
Incoming Diffs 0 0 1 0 23 0 0 0
Flush-Updates 0 0 163 0 0 0 0 0 - - -
Exec. time (sets) 6.4 13.4 68.1 148.9 43.3 70.2 13.9 55.7
Lock/Flag Acquires (IQ 0 0 3.68 2.61 129.82 0 0 0
Barriers 48 130 36 2 7 521 250 11
Read Faults (K) 0.34 22.14 73.10 14.35 173.04 199.19 44.77 214.42
Write Faults (K) 0.67 4.81 35.53 9.06 8.18 46.43 50.85 183.50
Page Transfers (IQ 0.34 8.76 31.49 12.46 42.01 50.06 38.70 66.88
Directory Updates (K) 2.02 18.73 109.32 22.96 70.70 142.40 181.71 261.78
Write Notices (K) 0.34 0.37 81.83 53.13 23.08 103.44 38.39 261.39
Excl. Mode Transitions (K) 0 4.42 2.04 0.93 3.12 4.24 2.55 3.58
Data (Mbytes) 4.25 116.88 287.32 103.99 383.10 481.03 346.86 616.40
lXvin Creations (IQ 0.34 0.98 25.61 7.87 3.59 12.54 8.84 54.79
Shootdowns 0 0 161 3 0 0 0 0 - - -
Exec. time (sets) 6.6 14.7 69.5 148.4 80.1 116.6 18.2 103.43
Lock/Flag Acquires (K) 0 0 3.68 2.57 129.82 0 0 0
Barriers 48 130 36 2 7 521 250 11
Read Faults (IQ 2.98 22.83 84.48 19.81 205.95 228.53 195.87 241.65
Write Faults (IQ 2.98 7.70 35.61 8.78 8.18 47.71 95.88 181.13
Page Transfers (K) 2.98 22.83 84.48 23.18 205.95 229.94 195.88 241.66
Directory Updates (K) 5.95 25.19 163.17 45.59 312.94 459.19 386.84 483.33
Write Notices (K) 2.98 2.36 78.69 22.40 106.99 229.26 190.97 241.67
Data (Mbytes) 24.83 254.69 696.42 190.58 1779.95 1894.22 1612.47 1983.61 - - -
Exec. time (sets) 14.0 43.8 75.0 166.0 107.5 143.59 17.3 103.4
Lock/Flag Acquires (K) 0 0 3.68 2.65 129.82 0 0 0
Barriers 48 130 36 2 7 521 250 11
Read faults (K) 2.98 22.83 84.17 20.62 207.11 228.53 195.88 240.00
Write faults (K) 2.98 7.71 35.61 9.15 8.18 47.71 95.88 181.13
Page transfers (K) 2.98 22.83 84.18 24.01 207.11 229.94 195.87 240.99
Directory Updates (K) 5.95 25.19 162.56 47.20 315.26 459.19 386.84 480.03 - - -

Table 3: Detailed statistics for the Two-Level (2L), Two-Level-Shootdown (2LS). One-Level-Diffing (ILD), and One-Level-Write-Doubling
(IL) protocols at 32 processors.

for this application, however, these benefits do not translate into
significant performance improvements. Em3d also benefits mainly
from exploiting locality of access and avoiding intra-node messag-
ing. Since the computation-to-communication ratio is much lower
than for SOR, we see more gain in performance. The reduction
in the number of page faults, page transfers, and total data trans-
ferred is similar to that in SOR, as demonstrated in Table 3. Due
to the high frequency of page accesses by processors within the
page’s home node, each of these applications can benefit greatly
from available hardware coherence within the home node. Hence,
the one-level protocols with the home-node optimization are able to
obtain speedups comparable to the full two-level protocols.

LU benefits from hardware coherence within the home node and
from a reduction in the amount of data transferred, due to the abll-
ity to coalesce requests. LU’s high computation-to-communication
ratio limits overall improvements. Water also benefits from coa-
lescing remote requests for data. In both applications, the amount
of data transmitted in 2L relative to 1LD is halved.

Gauss shows significant benefits from coalescing remote requests,
since the access pattern for the shared data is essentially single
producer/multiple consumer (ideally implemented with broadcast),
There is a four-fold reduction in the amount of data transferred, but
little reduction in the number of read and write page faults. These
gains come at the expenseof a slightly larger protocol overhead due
to increased maintenance costs of protocol meta-data (Figure 6).

180

However, there is a 45% improvement in execution time, a result
of the reduction in communication and wait time. Ilink’s commu-
nication pattern is all-to-one in one phase, and one-to-all in the
other (a master-slave style computation). Hence, its behavior is
similar to that of Gauss, with a 40% performance improvement in
performance. Barnes shows a 46% improvement in performance.
The benefits in this case come from the ability to coalesce page
fetch requests, which significantly reduces the amount of data trans-
ferred. Since the computation-to-communication ratio is low for
this application, this reduction has a marked effect on performance.

TSP’s behavior is non-deterministic, which accounts for the vari-
ations in user time. Performance of the two-level protocols is essen-
tially equal to that of the one-level protocols. The high computation-
to-communication ratio results in good performance in all cases.

3.33 Effect of Clustering

The performance of SOR and Gauss decreases for all protocols
when the number of processors per node (degree of clustering) is
increased, while keeping the number of processors fixed (see Fig-
ure 7). Both applications are matrix-based, with only a small amount
of computation per element of the matrix. Their data set sizes do
not fit in the second level caches and hence a large amount of traffic
is generated between the caches and main memory due to capacity
misses. Increasing the number of processors per node increases the
traffic on the sharednode bus, thereby reducing performance. These
results are corroborated by the fact that the performance of the 4:l
configuration is better than using pure hardware shared memory
within the 4 processors of an SMI? Running the application on an
ShIP without linking it to any protocol code takes 51.8 seconds, a
21% drop in performance from the 4:l ILD protocol case. Cox
et al, [7] report similar results in their comparison of hardware and
software shared memory systems.

LU exhibits negative clustering effects only for the one-level pro-
tocols. The 4:4,8:4, and 16:4 configurations experience a significant
performance drop, which is not present in either of the two-level
protocols. This can be attributed to LU’s bursty nature of page
accesses. As a pivot row is factored, the enclosed pages are only
accessed by their owner and are therefore heId in exclusive-mode.
After factoring is complete, a number of processors immediately
access the pages in the row, thus generating explicit requests for
each page to leave exclusive-mode. As the number of processors
per node increases, an increasing number of the requests are sent
to the same node, thereby creating a communication bottleneck.
The two-level protocols alleviate this bottleneck by exploiting the
available hardware coherence.

Em3d and Barnes show a performance improvement when the
number of processors per node is increased in the two-level pro-
tocols. The one level protocols do not show similar performance
gains. These applications have low computation-to-communication
ratios, allowing the reduction in inter-node traffic due to the use of
in&a-node sharing in the two-level protocols to yield benefits even
at 8 and 16 processor totals. At 4 processors, the two-level proto-
cols also benefit from sharing memory in hardware thus avoiding
software overheads and extra traffic on the bus. These results only
appear to contradict those in [4,7, lo], which report that bandwidth
plays a major role in the performance of clustered systems. Our
results compare one and two-level protocols on the same clustered
hardware, as opposed to two-level protocols on clustered hardware
versus one-level protocols on non-clustered hardware (with conse-
quently higher network bandwidth per processor). In addition our

hardwareplatform has a serial globalinterconnect (MC is a bus) that
favors protocols that reduce the number of inter-node transactions.

The performance of Water, TSP, and Ilink is unaffected by the
number of processors per node at 8 and 16 processor totals, regard-
less of the protocol.

The reduction in inter-node communication due to the use of
hardware coherence in the two-level protocols improves perfor-
mance significantly at 24 and 32 processor for Gauss, Ilink, Em3d,
and Barnes. SOR, LU, TSP, and Water show only slight over-
all benefits from exploiting hardware coherence, due to their high
computation-to-communicationratios.

Overall the extra synchronization and data structures in the two-
level protocols have little effect on performance. This observation
is supported by the similar performance of the 81 configuration for
all of the (diff-based) protocols, for all of the applications studied.

3.3.4 TLB Shootdown Versus ‘MO-Way Diffing

The use of two-way diffing in place of TLB shootdown has little
effect on the performance of the two-level protocol for most of our
applications. This result stands in sharp contrast to results reported
by others (e.g. SoftFLASH [lo]), and is explained by our use of
a multi-writer protocol and our implementation of the shootdown
mechanism.

Shootdown happens in SoftFLASH mainly when a page is
“stolen” by a remote processor, and all local mappings must be
eliminated. In Cashmere-2L, pages are never stolen. Shootdown
(or two-way diffing) is only necessary when there is more than one
local processor writing a page at a release or at a page fault. This
situation occurs only in the presence of false sharing, in lock-based
applications. It does not occur with barriers, because only the last
local processor to arrive at the barrier flushes changes to the home
node, and because the timestamps on pageupdates allow processors
to realize that the first of them to experience a page fault after the
barrier is retrieving a copy that will suffice for all. The Cashmere-
2L second-level directories indicate the node processors that have
read-only and read-write mappings for a page, so a shootdown oper-
ation can be efficiently limited to the set of processors concurrently
holding read-write mappings for the page. In contrast, SoftFLASH
must conservatively shootdown all node processors that have at any
time hosted an application process.

Additionally, the Cashmere-2L polling-based messaging layer
enables an extremely efficient shootdownmechanism. With polling,
the cost of shooting down one processor is only 72 ps. If it&a-node
interrupts are used in place of message polling, then the cost to
shootdown one processor rises to 142 ,us. In the case of Water,
a lock-based application with false sharing, 2~s matches the per-
formance of 2~ when the shootdown mechanism is implemented
with polling-basedmessaging. If instead the shootdown mechanism
is implemented with in&a-node interrupts, the 2~s execution time
increases by 6%. Note that our kernel modifications have already
decreased the latency of i&a-node interrupts by almost an order
of magnitude, so even our interrupt-based shootdown mechanism
is highly optimized. Other environments will most likely expe-
rience a more significant performance degradation when using an
interrupt-based shootdown mechanism.

3.3.5 Impact of Lock-Free Structures

To quantify the impact of the lock-free protocol structures, the 2L
protocol was modified to use global locks to control access to the

181

global directory entries and the remote write notice lists. By using
global locks, the directory entries can safely be represented in one
32-bit word, and the write notices can be stored as a single list on
each node. In addition to saving space, processing time is slightly
reduced since both structures are compressed into a smaller area.
Of course, protocol asynchrony is decreased.

Our benchmark suite contains a wide range of applications in
terms of the number of directory accesses and write notices pro-
duced. (See Table 3.) Barnes has by far the most directory accesses
and write notices, and, not surprisingly, the application benefits from
the lock-free structures. Execution time improves by 5% when lock-
free structures are used instead of structures protected by global
locks. EmSd, Ilink, and Water have a moderate amount of directory
accesses and write notices. Both Em3d (5%) and Ilink (7%) also
show improvements by using lock-free structures. Water, however,
has similar performance for the lock-free and lock-basedimplemen-
tations of protocol data structures. The remaining applications have
relatively few accesses to these structures and show no significant
differences between the lock-free or lock-based approaches.

4 Related Work

Cox et al. were among the first to study layered hardware/software
coherence protocols [7]. They simulate a system of 8-way, bus-
based multiprocessors connected by an ATM network, using a pro-
tocol derived from TreadMarks [3], and show that for clustering to
provide significant benefits, reduction in inter-node messages and
bandwidth requirements must be proportional to the degree of clus-
tering. Karlsson and Stenstrom [13] examined a similar system in
simulation and found that the limiting factor in performance was the
latency rather than the bandwidth of the message-level interconnect.
Bilas et al. [4] present a simulation study of the automatic update
release consistent (AURC) protocol on SMP nodes. They find that
the write-through traffic of AURC, coupled with the fact that pro-
cessors within an SMP have to share the same path to the top-level
network, can result in TreadMarks-style laiy release consistency
performing better than AURC with clustering.

Yeung etal. [22], in their MGS system, were the first to implement
a layered coherence protocol. They use a Munin-like multi-writer
protocol to maintain coherence across nodes. The protocol also
includes an optimization that avoids urtflecessary diff computation
in the case of a single writer. The MGS results indicate that perfor-
mance improves with larger numbers of processors per node in the
cluster. MGS is implemented on the Alewife [2] hardware shared
memory multiprocessor with a mesh interconnect. In contrast, com-
mercial multiprocessors currently provide a single connection (usu-
ally through the I/O bus) that all processors within a node have to
share, thus limiting the benefits of larger nodes.

SoftFLASH [lo] is a kernel-level implementation of a two-level
coherence protocol, on a cluster of SMPs. The protocol is based on
the hardware coherent FLASH protocol. Shared data is tracked via
TLB faults, and thus TLB shootdown with costly inter-processor
interrupts is required to avoid consistency problems. This cost is
further compounded by the use of shared page tables. At shootdown
operations, all processors that may have run an application process
must conservatively be interrupted in order to invalidate their TLB
entry. The use of a single-writer protocol also results in potentially
more frequent invalidations (and shootdowns). The SoftFLASH
results indicate that any beneficial effects of clustering are offset by

increased communication costs. This can be explained largely by
the heavy shootdown overhead, especially for larger sized nodes.

Finally, the Shasta system [18], which runs on hardware similar
to our system, implements an eager release consistent, varinblc-
granularity, fine-grained, single-writer protocol for coherence ncross
nodes. Unlike Cashmere-2L, Shasta does not use virtual memory to
generate access faults. Instead it uses in-line checks on every shared
memory reference to manage the state table entry for each cohcrcncc
object. Novel techniques are used to minimize the overhead of the
in-line checks. Moving to a clustered two-level protocol incrcascs
the complexity of the in-line checks and requires internal locks
in some protocol operations, which are more frequent than in the
VM-based systems. The relative benefits of variable-granularity
single-writer coherence with in-line checks is still to be determined,

5 Conclusion

We have presented a two-level software coherent shared memory
system-Cashmere-2L-that exploits hardware cache cohcrcncc
within SMP nodes and takes advantage of a low-latency rcmote-
write network. The protocol implements “moderately lnzy” rclcasc
consistency, with multiple concurrent writers, directories, home
nodes, and page-size coherence blocks. Software is invoked only
when there is sharing across SMPs. A novel coherence protocol
based on fwo-way &$ing is used to reduce intrn-node synchroniza-
tion overhead and avoid TLB shootdown. Global protocol locks WC

eliminated to avoid inter-node protocol synchronization ovcrhcad.

Results indicate that Cashmere-2L outperforms its one-level
counterpart (which treats each processor as a separate node), with
performancegains sometimes as high as 46%. Cashmere-2Lis able
to exploit locality of access within a node, and to coalesce multiple
off-node requests for data. The extra complexity of the two-level
protocol does not add significant protocol overhead, Elimination
of global protocol locks results in up to a 7% improvement over n
lock-based protocol.

Cashmere-2L does not exhibit any significant performance ad-
vantage over its shootdown-based counterpart. Careful invcstiga-
tion reveals that shootdown is unnecessary in most situations, due
to the use of a multi-writer protocol (which eliminates page “stcal-
ing”) and to the generally small amounts of false sharing in our
applications (which makes it uncommon that there arc multiple lo-
cal writers at the time of a release or page fault). Shootdown is also
relatively inexpensive on our system, since we use polling to detect
shootdown requests. As a result, the added asynchrony of two-wny
diffing provides only a small performance advantage, which is at
least partially offset by its somewhat higher computation cost. Per-
formance gains could be higher with larger degrees of clustering, or
high interrupt costs.

An important open question is the extent to which global direc-
tories (as opposed to TreadMarks-style tracking of the “happens-
before” relationship) help or hurt performance. Another issue is
the relative benefits of VM-based multiple-writer protocols versus
variable-granularity single-writer protocols, such as Shasta, in this
environment. We are currently exploring these altemativcs in the
realm of two-level protocols.

182

111

M

131

141

[51

PI

[71

PI

PI

1101

Cl11

WI

S. V. Adve and M. D. Hill. A Unified Formulation of Four
Shared-Memory Models. IEEE Transactionson Parallel and
Distributed Systems, 4(6):613-624, June 1993.

A, Agarwal, R. Bianchini, D. Chaiken,K. Johnson,D. Kranz,
J. Kubiatowicz, B. Lim, K. Mackenzie, and D. Yeung. The
MIT Alewife Machine: Architecture and Performance. In
Proceedings of the Twenty-Second International Symposium
on Computer Architecture, pages 2-13, Santa Margherita
Ligure, Italy, June 1995.

C. Amza, A. L. Cox, S. Dwarkadas, l? Keleher, H. Lu, R.
Rajamony, W. Yu, and W. Zwaenepoel. TreadMarks: Shared
Memory Computing on Networks of Workstations. Com-
puter, 29(2):18-28, February 1996.

A. Bilas, L. Iftode, D. Martin, and J. P. Singh. Shared Vir-
tual Memory Across SMP Nodes Using Automatic Update:
Protocols and Performance. Technical Report TR-517-96,
Department of Computer Science, Princeton University, Oc-
tober 1996.

D. L. Black, R. F. Rashid, D. B. Golub, C. R. Hill, andR. V.
Baron. Translation Lookaside Buffer Consistency: A Soft-
ware Approach. In Proceedings of the Third International
Collference on Architectural Supportfor Programming Lun-
guagesand OperatingSystems,pages 113-122,Boston,MA,
April 1989.

J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implemen-
tation and Performance of Munin. In Proceedings of the
Thirteenth ACM Symposium on Operating Systems Princi-
ples, pages 152-164, Pacific Grove, CA, October 1991.

A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, and
W. Zwaenepoel. So&ware Versus Hardware Shared-Memory
Implementation: a CaseStudy. In Proceedingsofthe Twenty-
First International Symposium on Computer Architecture,
pages 106-I 17, Chicago, IL, April 1994.

D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy, S.
Lumetta, T. von Eicken, and K. Yelick. Parallel Programming
in Split-C. In Proceedings, Supercomputing ‘93, pages 262-
273, Portland, OR, November 1993.

S. Dwarkadas, A. A. Schlffer, R. W. Cottingham Jr., A. L.
Cox, R Keleher, and W. Zwaenepoel. Parallelization of Gen-
eral Linkage Analysis Problems. Human Heredity, 44:127-
141,1994.

A. Erlichson, N. Nuckolls,G. Chesson,and J. Hennessy. Soft-
FLASH: AnalyzingtbePerfonnanceofClusteredDistributed
Virtual SharedMemory. In Proceedingsof the Seventhlnter-
national Cortference on Architectural Supportfor Program-
ming Languages and Operating Systems, pages 210-220,
Boston, MA, October 1996.

R. Gillett. Memory Channel: An Optimized Cluster Inter-
connect. IEEE Micro, 16(2):12-18, February 1996.

L. Iftode, C. Dubnicki, E. W. Felten, and K. Li. Improving
Release-Consistent SharedVirtualMemory Using Automatic

1131

u41

tJ51

WI

IT171

WI

WI

Pll

WI

Update. In Proceedings of the Second International Sympo-
sium on High Performance Computer Architecture, pages
14-25, San Jose, CA, February 1996.

M. Karlsson and P. Stenstrom. Performance Evaluation of
a Cluster-Based Multiprocessor Built from*ATM Switches
and Bus-Based Multiprocessor Servers. In Proceedings of
the Second International Symposium on High Pegormance
ComputerArchitecture, pages 4-13, San Jose, CA, February
1996.

L. Kontothanassis, G. Hunt, R. Stets, N. Hardavellas, M.
Ciemiak, S. Parthasarathy, W. Meira, S. Dwarkadas, and
M. L. Scott. VM-Based Shared Memory on Low-Latency,
Remote-Memory-Access Networks. In Proceedings of the
Twenty-Fourth International Symposium on Computer Ar-
chitecture, pages 157-169, Denver, CO, June 1997.

M. Marchetti, L. Kontothanassis, R. Bianchini, and M. L.
Scott. Using Simple Page Placement Policies to Reduce the
Cost of CacheFills in Coherent Shared-Memory Systems. In
Proceedings of the Ninth International Parallel Processing
Symposium, Santa Barbara, CA, April 1995.

B. Rosenburg. Low-Synchronization Translation Lookaside
Buffer Consistency in Large-Scale Shared-Memory Multi-
processors. In Proceedings of the Twelfh ACM Symposium
on Operating Systems Principles, pages 137-146, Litchfield
Park, AZ, December 1989.

D. J. Scales, K. Gharachorloo, and C. A. Thekkath. Shasta:
A Low Overhead, Software-Only Approach for Supporting
Fine-Grain Shared Memory. In Proceedings of the Seventh
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 174-
185, Boston, MA, October 1996.

D. J. Scales, K. Gharachorloo, and A. Aggarwal. Fine-
Grain Software Distributed Shared Memory on SMP Clus-

ters. WRL Research Report 97/3, DEC Western Research
Laboratory, February 1997.

J. P. Singh, W. Weber, and A. Gupta. SPLASH: Stanford
Parallel Applications for Shared-Memory. ACM SIGARCH
ComputerArchitectureNews, 20(1):5-44, March 1992.

P. J. Teller. Translation-LookasideBuffer Consistency. Com-
puter, 23(6):26-36, June 1990.

S. C. Woo, M. Ohara, E. Torrie, J. R Singh, and A. Gupta.
Methodological Considerations and Characterization of the
SPLASH-2 Parallel Application Suite. In Proceedings of
the Twenty-Second International Symposium on Computer
Architecture, pages 24-36, Santa Margherita Ligure, Italy,
June 1995.

D. Yeung, J. Kubiatowitcz, and A. Agarwal. MGS: A Multi-
grain Shared Memory System. In Proceedingsof the Twenty-
Third International Symposium on Computer Architecture,
pages 44-55, Philadelphia, PA, May, 1996.

183

