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Abstract—In a cluster system with dynamic load sharing support, a job submission or migration to a workstation is determined by the

availability of CPU and memory resources of the workstation at the time [21]. In such a system, a small number of running jobs with

unexpectedly large memory allocation requirements may significantly increase the queuing delay times of the rest of jobs with normal

memory requirements, slowing down execution of each individual job and decreasing the system throughput. We call this phenomenon

the job blocking problem because the big jobs block the execution pace of majority jobs in the cluster. Since the memory demand of

jobs may not be known in advance and may change dynamically, the possibility of unsuitable job submissions/migrations to cause the

blocking problem is high, and existing load sharing schemes are unable to effectively handle this problem. We propose two schemes to

address this problem. The first scheme, Network RAM supported load sharing, combines job migrations with network RAM, which uses

remote execution to initially allocate a job to the most lightly loaded workstation and, if necessary, network RAM to provide a global

memory space for the job larger than it would be available otherwise. This scheme has the merits of both job migrations and network

RAM. Our experiments show its effectiveness and scalability. However, this scheme requires a network RAM facility in the cluster,

which may cause additional overhead and increase cluster network traffic. In order to address this limit, we propose a second scheme,

memory reservation, incorporated with dynamic load sharing, which adaptively reserves a small set of workstations to provide special

services to the jobs demanding large memory allocations. As soon as the blocking problem is resolved by the memory reservation

scheme, the system will adaptively switch back to the normal load sharing state. Both schemes target on handling large data-intensive

jobs in clusters, and are mutually complementary. The network RAM supported load sharing scheme can fully utilize the cluster global

memory space, while the memory reservation scheme has the advantage of simple implementations and low overhead. Thus, they

both can be effective alternatives, and practically deployed in cluster computing under different system conditions.

Index Terms—Cluster computing, distributed systems, load sharing, job blocking, memory-intensive workloads, trace-driven

simulations.
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1 INTRODUCTION

LOAD sharing provides a system mechanism to dynami-
cally migrate jobs from heavily loaded workstations to

lightly loaded workstations, aiming at fully utilizing system
resources. Following the load sharing principle, researchers
have designed different alternatives by balancing the
number of jobs/tasks among the workstations (see, e.g.,
[11], [13]), by considering memory allocation requirements
of jobs (see, e.g., [3], [4]), and by considering both CPU and
memory resources (see, e.g., [22], [23], [2]). Recently, we
have developed dynamic load sharing schemes to schedule
or migrate jobs without the knowledge of their memory
allocation sizes before jobs start running [21].

In a cluster system with dynamic load sharing support, a
new job can be submitted to a workstation or a running job
can be migrated to the workstation under following
conditions. When the workstation has idle memory space,

the job can be accepted if the number of running jobs in the
workstation is still less than a predetermined threshold
which is the maximum number of job slots a CPU is willing
to take (also called the CPU Threshold). When the work-
station does not have idle memory space, or is even
oversized, no jobs will be accepted without further checking
the status of the CPU threshold. This strategy has shown its
effectiveness in load sharing, particularly to schedule jobs
with unknown memory allocation sizes [21]. However, in
such a system, a small number of running jobs with large
memory allocation requirements can be scattered among
workstations to quickly use up the memory space, imped-
ing job submissions to these workstations. Since these large
jobs normally have long remaining processing times,
eventually, all the workstations may become heavily
loaded, stopping job submissions and migrations. We call
this phenomenon the job blocking problem, which is rooted
from unsuitable placements of these large jobs. The
existence of these large jobs in a few workstations may
increase the queuing delay times of the rest of jobs with
relatively small memory requirements, slowing down
executions of individual jobs and decreasing the cluster
system’s throughput. Since job sizes including the memory
allocations are unknown in advance, the possibility of
unsuitable job placements to cause the blocking problem is
high, and existing load sharing schemes are unable to
effectively handle this problem.
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When both job submissions and migrations are blocked
in a cluster, it implies that the resource allocation in each
workstation either reaches its memory threshold due to
arrivals of some jobs with large memory demands, or
reaches its CPU threshold, or both. Further job submissions
or migrations will cause more page faults or queuing delays
in a destination workstation. One simple solution would be
to temporarily suspend the large jobs so that the job
submissions will not be blocked. However, this approach
will not be fair to the large jobs that may starve if job
submissions continue to flow, or that can be executed only
when the cluster becomes lightly loaded.

We have observed that CPU and memory resources are
actually not fully utilized during the period of blocking [21],
and will further present our performance results in
Section 6. For example, some workstations reaching their
CPU thresholds may still have idle memory space, while
some workstations experiencing page faults may still have
additional job slots available. Our recent experiments show
that, when a cluster system is not able to further accept or
migrate jobs, there are still large accumulated idle memory
space volumes available among the workstations. This is
because demanded memory allocations of a handful of jobs
could not fit in any single workstation with other running
jobs. We have also found that jobs are not evenly
distributed among workstations, which increases the total
job queuing time. Unfortunately, the dynamic load sharing
scheme or the aftermentioned job suspension is not able to
efficiently resolve this blocking problem by further utilizing
the available resources. We target to address these ineffi-
cient resource allocations. Our observations and experi-
mental results have motivated us to propose two schemes to
further utilize resources and to quickly resolve the blocking
problem.

The first scheme, network RAM supported load sharing,
combines job migrations with network RAM. It uses remote
execution to initially allocate a job to the most lightly loaded
workstation and, if necessary, network RAM to provide a
larger memory space for the job than would be available
otherwise. The merits of remote execution has been well
discussed in [6]. This scheme has the merits of both job
migrations and network RAM. Our experiments show its
effectiveness and scalability. However, this scheme requires
a network RAM facility in the cluster, which may cause
additional overhead and increase cluster traffics.

The second proposed scheme, memory reservation, is to
address the limit of the first one. It adaptively reserves a small
set of workstations (called reservedworkstations) to provide
special services to the jobs demanding large memory space.
This scheme will quickly enforce the cluster to allocate and
accumulate sufficient memory resources for unexpectedly
large data-intensive jobs. As soon as the blocking problem is
resolved by the memory reservation, the system will
adaptively switch back to the normal load sharing state. On
onehand, thismethodcan improve theutilizationofCPUand
memory resources in nonreservedworkstations because jobs
with normal sizes can be smoothly executed without the
interference of large jobs. On the other hand, large jobs are
treated fairly because they are served by reserved work-
stations. We will show the two schemes are mutually
complementary for the same objective.

The paper is organized as follows: We present the
network RAM supported scheme in Section 2 and the

memory reservation scheme in Section 3. We discuss the
performance evaluation environment in Section 4. We
evaluate the two schemes in Sections 5 and 6. We further
compare the two schemes in Section 7 and conclude our
study in Section 8.

2 NETWORK RAM SUPPORTED LOAD SHARING

With the rapid development of CPU chips and the increasing
demand of data accesses in applications, memory resources
in a workstation cluster become more and more expensive
relative to CPU cycles. Effective usage of global memory
resources is an important consideration in the design of load
sharing policies for cluster computing. When a workstation
does not have sufficient memory space for its assigned jobs
demanding unexpected large memory space, the systemwill
experience a large number of page faults, resulting in a long
delay for each job. There are two major approaches to more
effectively use global memory resources in a workstation
cluster, aimed at minimizing page faults in each local
workstation and improving overall performance of cluster
computing: 1) job-migration-based load sharing schemes
(such as [11], [3], [23]) and 2) network RAM (such as [8], [14],
[1]). A job-migration-based load sharing system attempts to
migrate jobs from a workstation without sufficient memory
space to a lightly loadedworkstation with large idle memory
space for the migrated jobs. When a job migration is
necessary, the migration can be either a remote execution
(where a job is initiated on a remote workstation) or a
preemptive migration which suspends the selected job and
moves it to a remoteworkstationwhere the job is restarted. In
a network RAM system [9], if a job cannot find sufficient
memory space for itsworking sets, it will utilize idlememory
space from other workstations in the cluster through remote
paging. Since remote paging is relatively slower than
accessing local memory, but much faster than local disk
access, the idle globalmemory space or the networkRAMcan
be considered as another layer between the localmemory and
the local disk in the memory hierarchy of a workstation.

Besides sharing the same objective of reducing page
faults in each local workstation, the two approaches share
another common technical feature in their implementations.
Both systems maintain a global load index for each
workstation about how its CPU and/or memory resources
are being utilized. This record is either stored in a master
workstation or distributed among the workstations and is
updated periodically by the cluster workstations.

There are several major differences between the two
approaches in theways that the globalmemory resources are
shared. Because of these differences, each approach has its
own merits and limits. First, in a network RAM cluster
system, aworkstation isprovidedwithahugeglobalmemory
space for its jobs. The globalmemory space can even be larger
than its local disk space. Thus, it is possible to eliminate
accesses to local disks due to page faults in a network RAM
cluster. In contrast, memory allocations of a job could be
limited by the local memory size of a workstation in a
migration-based load sharing cluster system where local
memorymodules arenot sharedbyotherworkstations. Thus,
a network RAM cluster system could be more beneficial to
large or nonmigratable data-intensive jobs than a migration-
based load sharing cluster system. Second, the effectiveness
of global paging operations in a network RAMcluster system
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is heavily dependent on the cluster network speed. In
contrast, the network, in general, is less frequently used in a
remote-execution-based load sharing cluster system. In other
words, a remote-execution-based load sharing system relies
less on the network speed than a network RAM system.
Finally, a migration-based load sharing system is able to
balance the workloads among workstations by sharing both
CPU and memory resources, while a network RAM system
only considers global memory resources for load sharing.
Without job migrations, job executions may not be evenly
distributed in a cluster—some workstations can be more
heavily loaded than others. Although the lightly loaded
workstations in a networkRAMcluster system canbeused as
memory servers for heavily loaded workstations, their CPU
resources are not fully utilized by the cluster.

2.1 Job-Migration-Based Load Sharing, Network
RAM, and Network RAM Supported
Load Sharing

Network RAM and job-migration-based load sharing
related operations on workstation j, for j ¼ 1; . . . ; P , are
characterized by the following variables:

1. RAMj: the total memory space provided for user-
level programs in MBytes of the workstation,

2. RPj: the amount of remote paging in MBytes from
the workstation,

3. FMj: the idle memory space in MBytes of the
workstation, and

4. MTj: the memory threshold (the memory space for
the stable working set) in MBytes is the total amount
of memory thresholds accumulated from the run-
ning jobs on the workstation.

If RAMj > MTj, page faults will rarely occur, otherwise,
paging will be frequently conducted during executions of
jobs in the workstation.

2.2 Network RAM Organizations

A network RAM organization allows each workstation to
use not only its own local memory, but also to access idle
memory space of other workstations through remote paging
in a cluster. The memory allocation decision for a job on
workstation j is made by

memory allocation ¼ local memory if MTj < RAMj

global memory if MTj � RAMj;

�

where the global memory allocation is implemented by
finding the most lightly loaded workstation one by one for
remote paging based on the following search algorithm:

Allocate the idle local memory space to the arrival job;

MDj ¼ MTj;

While (MDj � RAMj) and

(idle memory space is available elsewhere)

do

find workstation i with the largest idle memory

space among P � 1 workstations
(excluding workstation j);

allocate RPi ¼ minfMDj �RAMj; FMig MBytes

from workstation i to the job in workstation j;

FMi ¼ FMi �RPi;

MDj ¼ MDj �RPi;

where MDj represents the current local memory demand
on workstation j. The while loop continues until the memory
demand is met or no idle memory available in the system. If
MDj � RAMj after the global allocations, disk accesses due
to page faults will occur in workstation j. In order to
minimize the global paging, we give local memory accesses
the highest priority. The global paging is only conducted
when the remote workstation has additional idle memory
space. Therefore, when a new local job arrives, the network
RAM paging services for remote jobs will be transferred to
other workstations if any memory space occupied by
remote pages is needed for this new job.

2.3 CPU-Memory-Based Load Sharing

The job-migration-based load policy we have selected for
this comparative study is the CPU-Memory-based load
sharing scheme [23], which makes a job migration decision
by considering both CPU and memory resources compre-
hensively. The basic principle of this scheme is as follows:
When a workstation has sufficient memory space for both
running and requesting jobs (MTj < RAMj), the load
sharing decision is made by a CPU-based policy where
the load index in each workstation is represented by the
length of the CPU waiting queue. As long as the CPU
waiting queue is not larger than the threshold which is set
based on the CPU capability, the requesting jobs will be
locally executed in the workstation. Otherwise, the load
sharing system finds the remote workstation with the
shortest waiting queue to either remotely execute this job or
to preemptively migrate an eligible job from the local
workstation to the remote workstation. When the work-
station does not have sufficient memory space for the jobs
(MTj � RAMj), the load sharing scheme attempts to
migrate jobs to suitable workstations or even to hold the
jobs in a waiting pool if necessary.

During an execution of a memory-intensive job, page
faults may occur periodically. Each such period is called a
transition, where page faults are conducted to bring a
working set into memory. The data references will then be
memory hits for a while until the working set changes and
page faults are conducted, forming the next transition
period. The local reference period is called a phase. If the
phases of a job are clearly distinguished, the best time to do
a preemptive migration is at the end of a phase and before
another transition period is started (bring in the next
working set into memory). The migrated job will carry no
data or a small data set to a remote workstation. However,
in practice, it may be difficult to predict the data access
phase and transition patterns of so many different jobs. If
this prediction is impossible, remote executions should be a
practically optimal solution for load sharing of memory-
intensive jobs [23]. For this reason, remote executions are
used in our CPU-Memory-based load sharing policy.

2.4 Network RAM Supported Load Sharing

We have discussed advantages and limits of the network
RAM and the remote-execution-based load sharing scheme.
A further optimization step for overcoming the limits of
each scheme and resolving job blocking problems is to
combine them, and we call this scheme network RAM
supported load sharing. Here is the basic idea of this
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improved load sharing scheme. When a workstation has

sufficient space for both current and requesting jobs, the job

execution location will be determined by the CPU-based

policy. When a workstation runs out of memory space for

both current and requesting jobs, the scheme attempts to

migrate the new arrival job to the most lightly loaded

workstation. If the workstation does not have sufficient

memory space for the job, the network RAM will be used to

satisfy the memory allocation of the job through remote

paging. The scheme is outlined as follows:

If (MTj � RAMj)

find workstation i with the largest idle memory

space among P workstations;

If i 6¼ j

remotely execute the job at workstation i;

If (MTi � RAMi)

allocate global memory by using network RAM;

else
schedule the job by the CPU-based load sharing policy;

2.5 Potential Limits of Network RAM Supported
Load Sharing

We will show later in the paper the performance and

resource utilization advantages of the Network RAM

supported load sharing to resolve job blocking problems.

In practice, there will be two limits for this approach. First,

Network RAM facility may not be available in every cluster.

Widely global memory sharing in a cluster may not be

allowed for system security and reliability reasons. Second,

Network RAM will cause certain system overhead. A

particular concern can be focused on the increased cluster

network traffic due to remote memory accesses. If the

cluster is also used by running parallel processing jobs, the

performance of these jobs will be certainly affected by the

limited bandwidth of the cluster. In order to address the

limits of the Network RAM supported load sharing, we

propose another alternative that will be presented in the

next section.

3 MEMORY RESERVATION

The objective of the second scheme is to quickly make a

workstation with large memory space to be dedicated to the

job with unexpectedly large memory allocation. We assume

that a workstation with large memory space will be

available in the cluster to satisfy the large job and

eventually resolve the blocking problem. This is certainly

viable because the memory space becomes increasingly

large with proportionally decreased price. Under such an

assumption, our scheme does not require Network RAM,

and will execute jobs locally, minimizing the cluster

network traffic.
In order tomake our solution effective,we need to address

twopotential concerns. First,weneed todynamically identify

large jobs and to find suitable workstations for them to

execute on. Second, the policy should be beneficial to both

large and other jobs. We propose the second scheme that is

our software method for adaptive memory reservation.

3.1 Job Reallocations

Here is the basic idea of our software method of memory
reservation, which can be easily incorporated with the
dynamic load sharing scheme. The blocking problem is
initially detected when a workstation experiences a certain
amount of page faults, but the scheduler cannot find a
qualified destination to migrate jobs from this workstation.
If the accumulated idle memory space size in the cluster is
larger than the average user memory space of workstations
in the cluster, the reservation routine is activated. The
routine first identifies several workstations with compar-
ably largest idle memory space, and then selects one
running the smallest number of jobs. We call this selected
workstation the lightly loaded workstation for the purpose of
memory reservation. The routine continues to block job
submissions and migrations to this workstation. The time
period between identifying the workstation and comple-
tions of the running jobs in the workstation is called the
reserving period. (One alternative is to end the reserving
period as soon as the available memory space in the
reserved workstation is sufficiently large for a job migration
with large memory demand). During the reserving period,
if the blocking problem disappears, the system will be back
to the normal load sharing state. If the blocking problem
still exists after the reserving period, the reservation routine
will migrate a job with the largest memory demand
suffering serious page faults to the reserved workstation.
When the blocking problem is detected again in a work-
station, the reservation routine will first try to migrate a job
to a reserved workstation if it exists, that is able to provide
sufficient memory space and job slots. Otherwise, the
reservation routine will start another reserving period to
identify an appropriate workstation. As soon as the
blocking problem is resolved by the reservation, the system
will be adaptively switched back to the normal load sharing
state. The transition between the memory reservation for
reserved computing and normal load sharing is quite
natural. As a reserved workstation completes its special
service, the scheduler will view it as a regular workstation
and resume normal job submissions to the workstation.
Notice that the processes of starting and releasing a
reservation are not only adaptive, but also cause little
additional overhead.

The framework of the reservation routine is embedded in
the dynamic load sharing system in a workstation as
follows:

While the load sharing system is on

if job submissions or/and migrations are allowed
general dynamic load sharingðÞ;

else start reservation by {

if (9 reservation flagðreserved IDÞ ¼¼ 1)

&& (the workstation has enough available

resources)

node ID ¼ reserved ID;

else {

node ID ¼ reserve a workstationðÞ;
reservation flagðnode IDÞ ¼ 1;

}

job ID ¼ find most memory intensive jobðÞ;
migrate jobðjob ID; node IDÞ;
}
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The functions in the framework are defined as follows:

. general dynamic load sharingðÞ: conducts regular
operations of dynamic load sharing including
monitoring, local/remote job submissions, and job
migrations [21].

. reserve a workstationðÞ: selects the lightly loadedwork-
station in the cluster, continues to block job submis-
sions to the workstation until execution completions
of all running jobs in the workstation, and returns its
node ID and sets the reservation flag.

. find most memory intensive jobðÞ: identifies the job
with the largest memory demand, and returns its
job ID.

. migrate jobðjob ID; node IDÞ: migrates the identi-
fied job to the reserved workstation.

The reservation flag is turned off when the reserved
workstation completes executions of all the migrated jobs,
which resumes the normal job submissions and migrations
to the workstation.

3.2 The Rationale of Our Solution

The potential performance gain of our approach comes
from four sources. First, the idle memory space is available
among workstations. Unfortunately, the available space in
each individual workstation is not large enough to serve
any incoming jobs. A considerable amount of accumulated
idle memory space in the cluster can be utilized by job
reallocations. Reserving a workstation plays an equivalent
role to move some accumulated idle memory space to the
reserved workstation, so that the workstation is able to
serve large jobs that could not fit in any individual idle
memory space before the reservation.

Second, the identified large job is likely to be a large job with
long lifetime. The job is identified after the reserving period.
If a job is observed to demand a large memory space,
causing page faults for a period of time, this job will be
likely to continue to stay and execute for a longer time than
other jobs in the workstation for two reasons: 1) Experi-
ments have shown that a job with a large memory demand
in process interactions is less competitive than jobs with
small memory allocations in conventional operating sys-
tems, such as Unix and Linux [12]. 2) Experiments have also
shown that a job having stayed for a relatively long time is
predicted to continue to stay for a even longer time than
other jobs [11]. After a large job is migrated away, the rest of
the jobs will be served quickly, and submissions to the
workstation will continue to flow. The principle of the
shortest remaining processing time policy [15] is implicitly
applied here.

Third, the concern of unfairly treating large jobs does not
exist. We specially reserve workstations to process these
large jobs that are less competitive than jobs with small
memory allocations.

Finally, in practice, the percentage of large jobs in a job pool is
low. If there are toomany large jobs, theproposedmethodwill
reserve too many workstations so that normal jobs cannot
run.This causesunfairness tonormal jobs.This concern could
be easily addressed because several studies (e.g., [11] and
[17]) have shown that the percentage of exceptionally large
jobs is very low in real-world workloads.

Regarding the fairness in job scheduling, a recent paper
classifies existing scheduling policies into one of the three

categories: “always fair,” “sometimes unfair,” or “always
unfair” [20]. We characterize our proposed solutions as “try
to be always fair with strong adaptive efforts.”

3.3 What is the Memory Reservation Not
Able to Do?

When the accumulated idle memory space in the cluster is
not sufficiently large, the memory reservation will not be
effective. If the accumulated idle memory space is smaller
than the user space of a single workstation, it will be
difficult to reserve a workstation providing its entire
memory space. Under such a condition, the cluster memory
resources have been sufficiently utilized. Examining the
accumulated idle memory space in the cluster is one way to
detect this condition. If a workstation cannot be reserved
within a predetermined time interval, it implies that the
cluster is truly heavily loaded.

In a heterogeneous cluster system, a reserved work-
station will be the one with relatively large physical
memory space. If the user space in the reserved workstation
is still not sufficiently large for a migrated job, this implies
that this job may not be suitable in this cluster unless our
first scheme, Network RAM supported load sharing, is
applied. If this job has to be executed in the cluster, the
memory reservation method will provide a reserved work-
station for dedicated service, where its page faults will not
affect performance of other jobs. The memory reservation
may not work well for specific workloads where big jobs are
dominant. Again, this case is rare in practice.

4 PERFORMANCE EVALUATION ENVIRONMENT

The two proposed schemes have been evaluated in a trace-
driven simulation environment. The traces have been
collected by our kernel instrumentation tool. The two
schemes and their variations on a cluster of workstations
are simulated to accept these traces as workloads. In this
section, we will present our performance evaluation
environment.

4.1 Tracing Job Execution at the Kernel Level

The lifetime of a job has been used as an important factor in
load sharing designs. Which process to be migrated in
existing scheduling policies is considered by predicting the
lifetime of CPU intensive jobs. Detailed breakdowns of the
lifetime will provide more insightful considerations for load
sharing decisions.

We have developed facilities by kernel instrumentation
[21], which measures different portions of the lifetime for a
job execution. Particularly, the instrumentation records
when a job process is interrupted for a system event, and
how long this event lasts. A trace buffer is initially allocated
when the system is booted to collect the system traces. The
facilities also dynamically measure

1. current ages and lifetime of jobs,
2. the sizes of memory allocation for each running job

and idle memory space in each workstation,
3. events of page faults in each workstation,
4. the read/write operations of each running job, and
5. the status of I/O buffer cache in each workstation.
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4.2 Application Workloads

We have selected two groups of workloads. The first group
(workload group 1) consists of six SPEC-2000 benchmark
programs: apsi, gcc, gzip, mcf, vortex, and bzip, which are
both CPU and memory intensive. Using the facilities
described above, we first run each program in a dedicated
environment to observe the memory access behavior with-
out major page faults (except for cold misses) and page
replacement (the demanded memory space is smaller than
the available user space). We selected a 400 MHz Pentium II
with 384 Mbyte physical memory and a swap space of
380 MBytes to run workload group 1. The operating system
is Redhat Linux release 6.1 with the kernel 2.2.14. Table 1
presents the basic experimental results of the six SPEC-2000
programs, where the “description” gives the application
nature of each program, the “input file” is the input file
names from SPEC200 benchmarks, the “working set” gives
the maximum size of the allocated memory space during
the execution, and the “lifetime” is the total execution time
of each program.

The second group (workload group 2) consists of seven
large scientific and system programs that are representative
CPU-intensive, memory-intensive, and/or I/O-active jobs:
bit-reversals (bit-r), merge-sort (m-sort), matrix multiplication
(m-m), a trace-driven simulation (t-sim), partitioning meshes
(metis), cell-projection volume rendering for a sphere (r-sphere),
and cell-projection volume rendering for flow of an aircraft wing
(r-wing). The descriptions and related citations of these
applications can be found in [21].

We first measured the execution performance of each
program and monitored their memory performance related
activities in a dedicated computing environment of a 233
MHz Pentium PC with 128 MByte main memory and a
swap space of 128MB, running Linux version 2.0.38. The
program memory demands in this group are smaller than
the ones in workload group 1. So, the workstations we
selected here are less powerful than the workstations used
to run programs of workload group 1. Table 2 presents the
experimental results of all the seven programs, where the
“data size” is the number of entries of the input data, the
“working set” gives a range of the memory space demand
during the execution, and the “lifetime” is the total
execution time of each program.

4.3 Trace-Driven Simulations

4.3.1 Two Simulated Clusters

Wehave simulated twohomogeneous clusters, each ofwhich
has 32 workstations. Application programs in workload
group 1 are run in cluster 1,where theCPU speed is 400MHz,

memorysize is 384MBytes, and the swapspace is 380MBytes.
While application programs in workload group 2 are run in
cluster 2, where the CPU speed is 233 MHz, memory size is
128MBytes, and the swap space is 128MBytes. In simulations
of both clusters, thememory page size is 4KBytes.Weuse the
parameters in Cheetah X15 disk (15,000 rpm) in our
simulator: seek time = 3.9ms, rotation latency = 2ms, internal
transfer time for 4 KB is 0.08 ms, and the total disk latency is
5.98 ms. We also use UltraSCSI I/O bus as the connection
between the disk and themainmemory, whose bandwidth is
160MBps. Thus, it takes 6 ms to fetch and transfer a page of
4 KByte data from disk to DRAM in our simulation. The
context switch time is set to 2.5�sbasedon theCPUspeeds.A
recent measurement study in [7] shows that the context
switch time is proportionally reduced as the CPU speed
increases, based on measurements on a large range of CPUs
from 90 MHz to 1.467 GHz. The selected context switch time
in our simulation is consistent with theirs. Ethernet connec-
tion speed,B, is 100Mbpsor 1Gbps. The remote submission/
execution cost, r, is 0.025 second. The preemptive migration
cost is estimated by assuming the entirememory image of the
working set will be transferred from a source to a destination
node for a job migration, which is rþ D

B , where r is a fixed
remote execution cost in second, andD is the amount of data
in bits to be transferred in the jobmigration. Eachworkstation
maintains a global load index containing CPU, memory, and
I/O load status information of other computing nodes. The
load sharing system periodically collects and distributes the
load information among the workstations.

4.3.2 Workload Traces

The two groups of workload traces are collected by using
our facilities to monitor the execution of the six SPEC 2000
benchmark programs (workload group 1) and the seven

582 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 7, JULY 2004

TABLE 1
Execution Performance and Memory Related Data of the Six Spec 2000 Benchmark Programs

TABLE 2
Execution Performance and Memory Related Data of

the Seven Application Programs



application programs (workload group 2) at different
submission rates on a Linux workstation. The programs in
each workload group are randomly selected to submit. Job
submission rates are generated by a lognormal function:

RlnðtÞ ¼
1ffiffiffiffiffiffi
2��

p e�
ðln t��Þ2

2�2 t > 0

0 t � 0;

(
ð1Þ

where RlnðtÞ is the lognormal arrival rate function, t is the
interarrival time for job submissions in a unit of seconds,
and the values of � and � adjust the degrees of the
submission rate. The lognormal job submission rate has
been observed in several practical studies (see, e.g., [10],
[19]). Five traces for each group are collected in each
workload group (1 and 2) with five different arrival rates:

. Trace-1 (light job submissions): � ¼ 4:0, � ¼ 4:0, and
359 jobs submitted in 3,586 seconds.

. Trace-2 (moderate job submissions): � ¼ 3:7, � ¼ 3:7,
and 448 jobs submitted in 3,589 seconds.

. Trace-3 (normal job submissions): � ¼ 3:0, � ¼ 3:0,
and 578 jobs submitted in 3,581 seconds.

. Trace-4 (moderately intensive job submissions):
� ¼ 2:0, � ¼ 2:0, and 684 jobs submitted in 3,585
seconds.

. Trace-5 (highly intensive job submissions): � ¼ 1:5,
� ¼ 1:5, and 777 jobs submitted in 3,582 seconds.

The jobs in each trace were randomly submitted to
32 workstations. When we run clusters of 16 workstations
and eight workstations, the numbers of jobs are scaled
down proportionally. Each job has a header item recording
the submission time, the job ID, and its lifetime measured in
the dedicated environment. Following the header item, the
execution activities of the job are recorded in a time interval
of every 10ms including CPU cycles, the memory demand/
allocation, buffer cache allocation, number of I/Os, and
others. Thus, dynamic memory and I/O activities can be
closely monitored. During job interactions, page faults are
generated accordingly by an experiment-based model
presented in [21].

The five traces for workload group 1 are represented by
SPEC-Trace-1, SPEC-Trace-2, SPEC-Trace-3, SPEC-Trace-4,
and SPEC-Trace-5; and the five traces for workload group 2
are represented by App-Trace-1, App-Trace-2, App-Trace-3,
App-Trace-4, and App-Trace-5.

The slowdown of a job is the ratio between its wall-clock
execution time and its CPU execution time. A major
performance metric we have used is the average slowdown
of all jobs in a trace. Major contributions to slowdown come
from queuing time waiting for CPU service, the delay of
page faults, and the overhead of migrations and remote
submission/execution. The average slowdown measure-
ment can determine the overall performance of a load
sharing policy, but may not be sufficient to provide
performance insights.

The following additional performance metrics are also

used in our evaluation:

. Average execution time per job is defined as �tt ¼
Pn

i¼1
ti

n ,
where ti is the measured execution time of an
individual job, and n is the number of jobs in a given
workload.

. Execution time breakdowns: The average execution
time is further broken into CPU service time,
queuing time, disk access time due to page faults,
and networking time for job migrations or remote
pagings including network contention time.

For a given workload trace, we have also measured the
average/total execution time and its breakdowns. Conduct-
ing the trace-driven-simulations on a 32 node cluster, we
have evaluated the performance of Network RAM sup-
ported dynamic load sharing and memory reservation
schemes by comparing their slowdowns and execution
times of several application workloads with dynamic load
sharing without such supports.

4.3.3 The Methods to be Compared

We have compared the following five methods in this
study.

. Base: Jobs are executed without load sharing. (As
shown later in the paper, the job execution times in
this environment are extremely high due to long
paging and queuing times).

. LS_RE: Jobs are scheduled with CPU-memory-based
load sharing with remote executions.

. Net_RAM: Jobs are executed in a Network RAM
system.

. LS_Net_RAM: Jobs are scheduled by the Network
RAM supported load sharing scheme.

. M-Reservation: The system adaptively reserves a
small set of workstations to provide special services
to the jobs demanding large memory allocations
when the blocking problem occurs.

5 PERFORMANCE EVALUATION

We target evaluating and comparing the performance
merits and limits for a given workload scheduled by a
job-migration-based load sharing policy, supported by
Network RAM, supported by the combined policy, or
without load sharing or Network RAM, under various
system and workload conditions. Our performance evalua-
tion targets understanding the effects of network band-
width changes to both the job-migration-based load sharing
scheme and the Network RAM supported by remote
paging. We have quantitatively evaluated two performance
trade offs for comparing the two schemes: 1) the trade off
between reducing local disk accesses due to page faults and
increasing the network bandwidth demand due to remote
paging; 2) the trade off between reducing local disk accesses
by Network RAM and balancing job execution among
workstations by job migrations. We will show the effec-
tiveness of the Network RAM supported load sharing. We
first use trace “App-Trace-1” for evaluation to show
performance insights of different schemes. The reason we
choose the “App-Trace-1” is that this workload trace is in a
light job submission mode where the blocking problem is
not serious, which does not favor our proposed scheme.
After that, we present the average execution performance of
all the traces.

5.1 Impact of Available Network Bandwidths

Both job migration and remote paging rely on the cluster
network for data transfers. However, the performance of
each scheme is affected differently by changes of the
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network speed. Fig. 1 presents the average execution time
per job (Fig. 1a) and the network delay portion in the
execution times (Fig. 1b) of “App-Trace-1” running on
clusters of 8, 16, and 32 workstations, where the jobs are
executed in “Base,” scheduled by “LS_RE,” and executed
on “Net_RAM.” The network speed varies from 100 Mbps
to 1 Gbps.

We have the following observations based on the
experimental results in Fig. 1. First, the performance of
“LS_RE” is not significantly affected as the cluster scales
from 8 to 16, and from 16 to 32 workstations. The
performance improves only slightly as the network speed
increases from 100 Mbps to 1 Gbps. This is because the data
communication via the network by remote executions is a
small portion in the total execution time (0 to 0.094 percent,
see Fig. 1b). Second, the performance of “Net_RAM,”
supported by remote paging, is quite sensitive to the
network speed and the number of workstations in the
cluster. For example, the average execution time of
“Net_RAM” is 5 percent lower than that of “LS_RE” on
the cluster of eight workstations where the network speed is
100 Mbps. As the network speed increases to 1 Gbps, the
average execution time of “Net_RAM” is further reduced
by 10 percent. However, as the cluster of 10 Mbps increases
to 16 workstations, the average execution time of “Ne-
t_RAM” increases (to about 10 percent higher than that of
“LS_RE”). As the cluster speed increases to 1 Gbps, the
execution time is significantly reduced, and is 20 percent
lower than that of “LS_RE.” We have observed more
sensitive changes of execution times as the number of
workstations increases to 32. Our experiments show that the
cluster scalability and workload performance when using
Network RAM are highly dependent on the network speed
of the cluster because the network latency due to data
transfer and contention is a significant portion in the total
execution time (0.96 percent to 17.86 percent, see Fig. 1b).
Finally, in the workload of “App-Trace-1,” some jobs are
marked as nonmigratable. Therefore, the power and
benefits of job migrations may be limited.

In order to fully take advantage of job migrations, we
released the restrictions on the nonmigratable jobs so that
remote executions can be applied to all the jobs in “App-
Trace-1.” Fig. 2 presents the average execution time per job
(Fig. 2a) and the networking latency portions in the execution
times (Fig. 2b) of the modified “App-Trace-1” scheduled by
“LS_RE” in comparisons with “Base” and “NET_RAM” on
the clusters of 8, 16, and 32 workstations. We show that the
performance of “LS_RE” is indeed improved. In this case, the
remote-execution-based load sharing policy not only outper-
forms the Network RAM, but is also more cost-effective
without a need of a Network RAM facility.

From the scalability point of view, “LS_RE” demands
less network bandwidth in order to scale the cluster by
connecting more workstations than “Net_RAM” does. For
example, the execution times of “LS_RE” almost remain the
same when the number of workstations changes from 8 to
16, and 32 workstations for both 100 Mbps and 1 Gbps
networks, which means it is scalable. (Recall that the
number of jobs submitted to the cluster is proportional to
the number of workstations.) In comparison, “Net_RAM” is
only scalable for the 1 Gbps network.

5.2 Trade Offs between Page Fault Reductions and
Load Sharing

Page faults in the Network RAM are reduced at the cost of
additional network contention and delay. Although page
fault reductions may be limited by the remote-execution-
based load sharing scheme for large data-intensive jobs, the
scheme requires less additional network support compared
with the Network RAM. In order to provide insights into
the trade offs between the two schemes, we present the
execution time breakdowns of “APP-Trace-1” where all jobs
are migratable in Figs. 3 and 4. The execution time of a
workload consists of “CPU,” “networking,” “page faults,”
and “queuing,” portions. “CPU” is the execution time by
the CPU for the workload. “Networking” is the time spent
on the cluster network, which is used for remote pagings by
the Network RAM, or for remote executions by the load
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Fig. 1. The average execution times per job (a) and the networking latency portions in the execution times (b) of “App-Trace-1” with some job

migration restrictions running on clusters of 8, 16, and 32 workstations.



sharing scheme (including network contention time). “Page

faults” is the local disk delay time for both schemes.

“Queuing” is the average waiting time for a job to be

executed on a workstation. When the workload is executed

on a 100 Mbps cluster of 8 and 16 workstations, the

networking time for remote pagings by the Network RAM

is a distinguishable portion in the execution time. For

example, the networking times contribute 4 percent and

9 percent to the execution times on the 8-workstation cluster

and the 16-workstation cluster (see Figs. 3a and 4a),

respectively. In contrast, the networking time for remote

executions by the load sharing scheme is insignificant

(0.07 percent and 0.5 percent). Consequently, the queuing

time for each job in the Network RAM is significantly

increased by networking delay, causing much longer

execution times than for the remote-execution-based load

sharing scheme.
We have also shown that the networking time portions in

the executions of the workload by the Network RAM are

significantly reduced by increasing the bus speed from

100 Mbps to 1 Gbps. Consequently, the queuing time for

each job is also significantly reduced (see Figs. 3b and 4b).
Another trade off of the two schemes is betweenpage fault

reductions and load sharing. Without job migrations, job
executions may not be evenly distributed among the work-
stations by the Network RAM although page faults can be
significantly reduced through remote pagings. The unba-
lanced loads amongworkstationswhenusingNetworkRAM
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Fig. 2. The average execution times per job (a) and the networking latency portions in the execution times (b) of “App-Trace-1” without job migration

restricitons running on clusters of 8, 16, and 32 workstations.

Fig. 3. The average execution time per job of “App-Trace-1” without job migration restrictions running on a 100 Mbps cluster (a) and a 1 Gbps cluster

(b) of eight workstations.



is another reason for the long queuing times for theworkload
executed on the 100 Mbps clusters of 8 and 16 workstations.

5.3 Performance of Network RAM Supported
Load Sharing

The tradeoffspresented in theprevious sectionmotivateus to
propose the Network RAM supported load sharing scheme
(“LS_Net_RAM”). This scheme has been evaluated on a
cluster of 32 workstations with 1 Gbps network. Each
workload trace is again divided into two types: 1) some jobs
are restricted for migrations in a trace and 2) all the jobs in a
trace are migratable. Figs. 5 and 6 present the total execution
times of all the five application traces of both type 1 (Figs. 5a
and 6a) and type 2 (Figs. 5b and 6b), and Figs. 5 and 6 present
the total execution times of all the five SPEC traces of both
type 1 (Figs. 5a and 6a) and type 2 (Figs. 5b and 6b). Our

experiments showthat “LS_Net_RAM”outperformsall other
schemes for both groups of traces of both types, particularly
whenthe jobsubmissionrate ishigh(for tracesofAPP-Trace-5
and SPEC-Trace-5).

6 PERFORMANCE EVALUATION OF MEMORY

RESERVATION

Using the same trace-driven simulation, we have evaluated
the memory reservation scheme. Since this scheme is not as
sensitive as the Network RAM supported load sharing to
the network speed, we only present the performance on a
1 Gbps cluster of 32 workstations. The performance data
will also be used for performance comparisons between the
two schemes.
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Fig. 4. The average execution times per job of “App-Trace-1” without job migration restrictions running on a 100 Mbps cluster (a) and a 1 Gbps

cluster (b) of 16 workstations.

Fig. 5. The total execution times of all the five application traces ((a) for the five traces where some jobs are nonmigratable and (b) for the five traces

where all the jobs are migratable), running on a 1 Gbps cluster of 32 workstations.



6.1 Effective to Heavy Workloads with Large
Working Sets by Improving Memory Utilization

We first evaluate the memory reservation scheme by the
SPEC workloads that have large working sets of mean
memory size demand of 155 MBytes. Fig. 7 presents the total
execution times (Fig. 7a) and the queuing times (Fig. 7b)
during the executions on a 32-node cluster, where the jobs in
workload SPEC are scheduled by either the dynamic load
sharing scheme (LS_RE) or the dynamic load sharing
supported by the memory reservation scheme (M-Reserva-
tion). The trace-driven simulation results show the memory
reservation significantly reduced the total execution times
and the queuing times and is particularly effective to the

workloads with higher job arrival rates. For example,
applying memory reservation, we were able to reduce the
execution times and the queuing times by 29.3 percent and
24.8 percent, respectively, for workload SPEC-Trace-1, by
32.4 percent and 35.8 percent, respectively, for workload
SPEC-Trace-2, by 32.4 percent and 36.7 percent, respectively,
forworkload SPEC-Trace-3, by 30.3 percent and 34.0 percent,
respectively, for workload SPEC-Trace-4, and 27.4 percent
and 38.2 percent, respectively, for workload SPEC-Trace-5.

The reduction of the total execution times caused mainly
by the reduction of the queuing times effectively reduces
the average slowdowns for each trace in the SPEC work-
load. Fig. 8a presents the comparative average slowdowns
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Fig. 6. The total execution times per job of all the five SPEC traces ((a) for the five traces where some jobs are nonmigratable and (b) for the five

traces where all the jobs are migratable), running on a 1 Gbps cluster of 32 workstations.

Fig. 7. The total execution times (a) and queuing times (b) of the five traces of workload SPEC on a 32 workstation cluster scheduled LS_RE and

M-Reservation.



of job executions using LS_RE and M-Reservation. The
memory reservation scheme reduced the average slow-
downs by 23.4 percent, 27.7 percent, 22.6 percent, 24.6 per-
cent, and 28.46 percent for workloads SPEC-Trace-1, SPEC-
Trace-2, SPEC-Trace-3, SPEC-Trace-4, and SPEC-Trace-5,
respectively.

We have also observed the average total idle memory
volumes during the lifetime of job executions in each
workload trace. We collect the total idle memory volume
in the cluster every second to calculate the average
amount of idle memory space during the entire lifetime.
We have repeated the measurements by using several
other time intervals, such as 10 seconds, 30 seconds, and
1 minute, and obtained almost identical average values.
This implies that the average total idle memory volume is
not sensitive to different measurement time intervals.
Fig. 8b presents the comparative average idle memory
volumes during lifetimes of the 5 SPEC workload traces
using LS_RE and M-Reservation. The memory reservation
scheme reduced the average idle memory volumes by
12.9 percent, 24.2 percent, 29.7 percent, 40.9 percent, and
50.8 percent for workloads SPEC-Trace-1, SPEC-Trace-2,
SPEC-Trace-3, SPEC-Trace-4, and SPEC-Trace-5, respec-
tively. This group of results confirms that the memory
reservation scheme can further utilize idle memory space
so that the cluster is able to accept (migrate and submit)
more jobs and to speed up the job flow in clusters. This is
the main reason for significant reductions of average
slowdowns in this workload.

6.2 Effective to Heavy Workloads with Moderate
Working Set Workloads by Improving Job
Balancing for High CPU Utilizations

Fig. 9 presents the total execution times (Fig. 9a) and the
queuing times (Fig. 9b) during the executions on a 32-node
cluster, where the jobs from the application workload are
scheduled by either LS_RE or M-Reservation. The trace-
driven simulation results show that M-Reservation can still
reduce the total execution times and the queuing times, and
is noticeably effective to the workloads of App-Trace-2 and
App-Trace-3. For example, applying memory reservation,

we were able to reduce the the execution time and the
queuing time by 13.4 percent and 16.3 percent, respectively,
for workload App-Trace-2, and by 14.0 percent and
16.8 percent, respectively, for workload App-Trace-3. The
reductions to other three traces are modest.

The reduction of the total execution times caused mainly
by the reduction of the queuing times reduces the average
slowdowns for each trace in workload group 2. Fig. 10a
presents the comparative average slowdowns of job execu-
tions using LS_RE and M-Reservation. M-Reservation
effectively reduces the average slowdowns by 33.7 percent,
46.7 percent, and 23.6 percent for workloads App-Trace-2,
App-Trace-3, and App-Trace-4, respectively. The average
slowdown reductions for workloads App-Trace-1 and App-
Trace-5 are modest. Our experiments show that the
performance gains mainly come from job balancing from
M-Reservation. In fact, the total idle memory volumes are
almost the same as those without using M-Reservation. We
collect the number of active jobs in each workstation every
second to calculate the standard deviation of the number of
active jobs among all nonreserved workstations at this
moment. This standard deviation gives the job balance
skew in each workstation. We further calculate the average
job balance skew during the entire lifetime among all
nonreserved workstations by first summing all the indivi-
dual skews and then dividing the sum by the total number
of time units. We have repeated the measurements by using
several other time intervals, such as 10 seconds, 30 seconds,
and 1 minute, and obtained almost identical average values.
This implies that the average job balance skew is not
sensitive to different measurement time intervals. Fig. 10b
presents the comparative average job balance skew during
lifetimes of five workload executions (the application
traces) using LS_RE and M-Reservation. M-Reservation
reduces the average job balance skew by 10.3 percent,
16.5 percent, and 6.3 percent, for workloads App-Trace-2,
App-Trace-3, and App-Trace-4, respectively. The two job
balance skew differences for traces App-Trace-1 and App-
Trace-5 are small. This is why little performance gains are
achieved by M-Reservation for these two traces. This group
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Fig. 8. The average slowdowns (a) and the average idle memory volumes (b) for executing the five traces of the SPEC workload on a 32 workstation

cluster scheduled by LS_RE and M-Reservation.



of results indicates that M-Reservation is able to evenly

distribute jobs among nonreserved workstations to reduce

total queuing time. We have shown that overall perfor-

mance gains (reductions of total execution times and

slowdowns) from improving job balancing is not as

significant as that from improving memory utilizations by

M-Reservation.

6.3 More Performance Insights on Memory
Reservation

The effectiveness and performance insights of the memory

reservation scheme will be discussed by simple models in

this section. The execution time of job i in a workload for

i ¼ 1; . . . ; n, texeðiÞ, is expressed as

texeðiÞ ¼ tcpuðiÞ þ tpageðiÞ þ tqueðiÞ þ tmigðiÞ;

where tcpuðiÞ, tpageðiÞ, tqueðiÞ, and tmigðiÞ are the CPU service

time, the paging time for page faults, the queuing time

waiting in a job queue, and the migration time if the job is

migrated during its execution.
The total execution time of a workload with n jobs, Texe,

is expressed as the sum of the total CPU service time (Tcpu),

total paging time (Tpage), the total queuing time (Tque), and

the total migration time (Tmig):

Texe ¼
Xn
i¼1

texeðiÞ

¼
Xn
i¼1

tcpuðiÞ þ
Xn
i¼1

tpageðiÞ þ
Xn
i¼1

tqueðiÞ þ
Xn
i¼1

tmigðiÞ

¼ Tcpu þ Tpage þ Tque þ Tmig:

XIAO ET AL.: ADAPTIVE MEMORY ALLOCATIONS IN CLUSTERS TO HANDLE UNEXPECTEDLY LARGE DATA-INTENSIVE JOBS 589

Fig. 10. The average slowdowns (a) and average job balance skews (b) for executing the five traces of the application workload on a 32 workstation

cluster scheduled by LS_RE and M-Reservation.

Fig. 9. The total execution times (a) and queuing times (b) of the five traces of the application workload on a 32 workstation cluster scheduled by

LS_RE and M-Reservation.



For a given workload with n jobs running on a cluster,

we compare the total execution time of the workload

without memory reservation, Texe, and the same quantity

with memory reservation to resolve the blocking problem,

denoted as T̂Texe ¼ T̂Tcpu þ T̂Tpage þ T̂Tque þ T̂Tmig. The comparison

consists of the following four separate models.

1. CPU service time. The jobs demand identical CPU
services on both cluster environment, so that
Tcpu ¼ T̂Tcpu.

2. Paging time. There will be three possible results:
Tpage > T̂Tpage, Tpage ¼ T̂Tpage, and Tpage < T̂Tpage. Paging
time reduction ðTpage > T̂TpageÞ is the objective of the
memory reservation, which can be achieved by
migrating jobs with large memory demands to
reserved workstations.

3. Queuing time. In a cluster with memory reservation,
the queuing time consists of two parts:

T̂Tque ¼ T̂Tn�que þ
Xm
k¼1

gðQrðkÞÞ;

where T̂Tn�que is the queuing time in nonreserved

workstations, g is a FIFO queuing function mainly

determined by the CPU service time of jobs in the

queue of a reserved workstation, m is the number of

reserved workstations, and QrðkÞ is the number of

jobs in reserved workstation k.
The queuing time in reserved workstation k

satisfies

gðQrðkÞÞ �
XQrðkÞ

j¼1

ðQrðkÞ � jÞwkj;

where the arrival order of jobs to workstation k is in

an increasing order, i.e., job 1 is the first job arrived

in workstation k, and job QrðkÞ is the last arrived job.

Variable wkj is the waiting time of job jþ 1 for job j

to complete in workstation k. In other words, wkj is

the time interval between the arrival time of job jþ 1

and the completion time of job j.
4. Migration time. There will be again three possible

results: Tmig > T̂Tmig, Tmig ¼ T̂Tmig, and Tmig < T̂Tmig.

The migration time is workload and network speed

dependent. As high speed networks become

widely used in clusters, the migration time in load

sharing is only a small portion in the execution

time, becoming less crucial for load sharing

performance. When Tmig < T̂Tmig, the memory re-

servation needs to sufficiently reduce queuing time

to trade off the increase in migration time. Our

experiments show that Tmig � T̂Tmig because the

number of large jobs is very small in job pools.

Using the four portions in the total execution time,

considering the paging time reduction (Tpage > T̂Tpage), and

assuming the difference between Tmig and T̂Tmig is insignif-

icant in load sharing performance, we examine the potential

execution time reduction from the memory reservation:

Texe � T̂Texe ¼ ðTcpu þ Tpage þ Tque þ TmigÞ
� ðT̂Tcpu þ T̂Tpage þ T̂Tque þ T̂TmigÞ

� ðTpage � T̂TpageÞ þ ðTque � T̂TqueÞ
� ðTpage � T̂TpageÞ þ ðTque � T̂Tn�que

�
Xm
k¼1

XQrðkÞ

j¼1

ðQrðkÞ � jÞwkjÞ

> Tque � T̂Tn�que �
Xm
k¼1

XQrðkÞ

j¼1

ðQrðkÞ � jÞwkj:

The above model gives conditions for the memory
reservation to effectively reduce the total execution time
by resolving the blocking problem. A key condition for
performance gains (i.e., the above difference is larger than
0) is that the queuing time in nonreserved workstations
(T̂Tn�que) is significantly smaller than the queuing time in all
workstations without memory reservation (Tque) because
jobs are more evenly distributed with memory reservation.
Since time quantum

Pm
k¼1

PQrðkÞ
j¼1 ðQrðkÞ � jÞwkj in reserved

workstations include CPU service times, and no page faults
due to memory shortage will be conducted, the queuing
time in the reserved workstations are minimized if
wk1 < wk2 . . . < wkQrðkÞ. This is likely to be achieved because
only a small portion of jobs are large ones.

The model also indicates that memory reservation can be
potentially unsuccessful with the following conditions:

1. The cluster is lightly loaded, and moderate page
faults in each node can be effectively reduced by
dynamic load sharing. This is because the possibility
to trigger the memory reservation due to the
blocking problem is low.

2. Majority jobs in the workload are equally sized in
their memory demands. Again, possibility to trigger
the memory reservation due to the blocking problem
is low, assuming that the accumulated global
memory storage is sufficiently large.

3. If the memory allocation size of a migrated job to a
reserved workstation is larger than the available user
space in the reserved workstation, page faults may
increase the job queuing time in a reserved node. If
this makes Texe > T̂Texe, memory reservation fails.

The concern in the first condition has been addressed by
adaptively reserving workstations, where the memory
reservation is not initiated until the blocking problem is
detected. In practice, our experiments have shown that the
memory demands of jobs in a workload are seldom equally
sized. Thus, the second concern should not be a base for only
using a general purpose load sharing system to cover all the
cases. The third concern can be addressed by selecting the
workstations with large user memory space as the reserved
workstations, and by applying Network RAM to a reserved
workstation to further enhance its memory size.

7 COMPARISONS BETWEEN THE TWO SCHEMES

The two group workloads have different characteristics:
The SPEC workloads have large working sets (the mean
memory demand is 155 MBytes) with dynamic request
changes, while the application workloads have moderate
working sets (the mean memory demand is 37 MBytes) with
relative stable memory allocation requests. Both job
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submission rates of both group workloads vary from low,
moderate, to high. Our trace-driven simulations show that
the Network RAM supported load sharing scheme outper-
forms the memory reservation scheme for the application
workloads, and the memory reservation scheme outper-
forms the other scheme for the SPEC workloads. Compar-
ing Fig. 5b with Fig. 9a, we show that the two schemes
perform almost the same for workloads APP-Trace-1, APP-
Trace-2, and APP-Trace-3 (low and moderate submission
rates). However, the Network RAM supported load sharing
scheme has execution time reductions of 17 percent and
8 percent for App-Trace-4 and APP-Trace-5 (traces with
high job submission rates), respectively, normalized from
the execution times of the memory reservation scheme. On
the other hand, comparing Fig. 6b with Fig. 7a, we show
that the memory reservation scheme has execution time
reductions of 38 percent, 40 percent, 19 percent, 17 percent,
and 16 percent for SPEC-Trace-1, SPEC-Trace-2, SPEC-
Trace-3, SPEC-Trace-4, and SPEC-Trace-5, respectively,
normalized from the execution times of the Network
RAM supported load sharing scheme. These results are
consistent with our analysis in previous sections. The
memory reservation scheme is more effective to resolve
the blocking problem than the Network RAM supported
load sharing scheme, which can be easily caused by the
heavy workloads of large working sets with dynamically
changing memory demands. In contrast, the Network RAM
supported load sharing scheme can efficiently handle a
large number of jobs with moderate working sets, where the
blocking problem may not be a serious concern.

Here, we further summarize the merits and limits of each
scheme to show how they are mutually complimentary to
each other. The Network RAM supported load sharing
scheme has two advantages. First, since a job migration can
vary timely, the rest of the jobs in an overloaded work-
station can be relieved quickly. Second, if the memory space
is sufficiently large in the identified workstation for a job
migration, the migrated job will be efficiently executed
there. If the memory space is not enough, the network RAM
will take care of it. A major limit of this scheme is that a job
migration with a large memory demand can seriously affect
the current jobs in the identified workstation, although
Network RAM can utilize the global memory of a cluster.
This is because the workstation is not dedicated to the
migrated large job. It is still open to CPU intensive job
submissions and migrations.

The memory reservation scheme has the advantage of
utilizing a few memory servers to provide a dedicated
environment for unexpectedly large data-intensive jobs.
However, since the “trouble-maker job” cannot be imme-
diately migrated during the “transition period,” the
performance of other jobs in the heavily loaded workstation
can be seriously affected.

8 CONCLUSION

Accommodating expected and unexpected workload fluc-
tuations of service demands is highly desirable in cluster
computing. Existing studies indicate that even load sharing
schemes that dynamically assign and schedule resources
are not able to fully utilize the available resources. We make
three contributions in this study.

1. We present the conditions to cause the job blocking
problem.

2. We present two schemes to address the job blocking
problem for workloads with different resource
demands under different system conditions.

3. Our trace-driven simulation experiments and analy-
sis show that the proposed schemes effectively
improve cluster resource utilization to resolve job
blocking problems, resulting in significant perfor-
mance gain.

The deployment of the two schemes in cluster systems
relies on available system environment. If global memory
space in the cluster can be widely shared by Network RAM
and the increased network traffic is not a concern for
applications, the network RAM supported load sharing
scheme is an optimal choice. On the other hand, if a few
workstations with large memory space are available in the
cluster and jobs are sensitive to network bandwidths, the
memory reservation scheme should be used. Since the two
schemes are complimentary to each other, we can also keep
the both schemes in the system, and switch between them
adaptively in practice.
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