A Free Online Textbook
Introducing Computer
Architecture Topics

Tia Newhall Suzanne J. Matthews Kevin C. Webb

Swarthmore College U.S. Military Academy Swarthmore College
Swarthmore, PA USA West Point, NY USA Swarthmore, PA USA

West Point.

| The United St Military A dm}

diveintosystems.org

Dive into Systems:

Free, online textbook introducing systems,
architecture & parallel computing, available

® O ® @ DivelntoSystems x B v

<« C (Y @ diveintosystems.org/book/C5-Arch/von.html H %« O O® :

B3 mybookmarks @

Search book

Dive Into Systems

Dive Into Systems {2} Dive Into Systems / 5. What von Neumann Knew: Computer Architecture / 5.2. The von Neumann Architecture

Dive Into Systems

o . Content:

0. Introduction 5.2. The von Neumann Architecture o
5.2. The von Neumann
Architecture

online at diveintosystems.org

Anyone with internet access can use our book!

DIVE INTO®
SYSTEMS

A Gentle Introduction to Computer Systems

SUZANNE J. MATTHEWS, TIA NEWHALL,
and KEVIN C. WEBB

No Starch Press, September 2022

Published by No Starch Press
For readers who want a print version

Will always also

1. By the C, the Beautiful C
2. A Deeper Dive Into C
3. C Debugging Tools

4. Binary and Data
Representation

5. What von Neumann Knew:
Computer Architecture

5.1. The Origins of Modern
Computing

5.2. The von Neumann
Architecture

5.3. Logic Gates

5.4. Circuits

5.5. Building a Processor

5.6. The Processor’s Execution
of Program Instructions

5.7. Pipelining Instruction
Execution

5.8. Advanced Pipelining
Considerations

5.9. Looking Ahead: CPUs

Also new low-cost print version

5.11. Exercises

6. Under the C: Dive into
Assembly

7. 64-bit x86 Assembly

8. 32-bit x86 Assembly

9. ARMv8 Assembly

10. Key Assembly Takeaways

11. Storage and the Memory
Hierarchy

12. Code Optimization

Dive Into Systems 10v

remain free online! ——

The von Neumann architecture serves as the foundation for most mod-
ern computers. In this section, we briefly characterize the architecture’s
major components.

The von Neumann architecture (depicted in Figure 1) consists of five
main components:

1. The processing unit executes program instructions.

2. The control unit drives program instruction execution on the pro-
cessing unit. Together, the processing and control units make up
the CPU.

3. The memory unit stores program data and instructions.

4. The input unit(s) load program data and instructions on the com-
puter and initiate program execution.

5. The output unit(s) store or receive program results.

Buses connect the units, and are used by the units to send control and
data information to one another. A bus is a communication channel that
transfers binary values between communication endpoints (the senders
and receivers of the values). For example, a data bus that connects the
memory unit and the CPU could be implemented as 32 parallel wires
that together transfer a 4-byte value, 1-bit transferred on each wire.
Typically, architectures have separate buses for sending data, memory
addresses, and control between units. The units use the control bus to
send control signals that request or notify other units of actions, the ad-
dress bus to send the memory address of a read or write request to the
memory unit, and the data bus to transfer data between units.

The CPU
1. Processing 2. Control 3. Memory
Unit Unit Unit 4.lnput | | 5. Output
ALU registers PC IR Units Units
address bus [‘ | i [11 il]
cantral hits i I

5.2.1.The CPU
5.2.2. The Processing Unit
5.2.3. The Control Unit
5.2.4. The Memory Unit

5.2.5. The Input and Output
(1/0) Units

5.2.6. The von Neumann
Machine in Action: Executing
a Program

Show All

diveintosystems.org

x

Why a free online textbook?

Selfish: We couldn’t find “right fit” textbook for our courses

Intro to broad range of systems, architecture, parallel topics
at the intro sequence level (assume only CS1 background)

Altruistic: Create Useful Resource to Share Widely

e Free (cost not a barrier to access)
e Online (easy to access) and update
e Useful resource for lots of different uses
o "Mix and match" content easily
o Primary text: intro. systems, computer organization,
C programming, ...
o Supplemental text: Arch, OS, Compilers, P&D, DB, ...

% increase

1,500

1,250
Textbook prices
1,000
750
500

- 250
Consumer prices

197075 80 85 90 95200005 10 14
Source: Bureau of Labour Statistics

Source: The Economist

diveintosystems.org

1. Clintro 4. Binary Representation
" 2. CDepth 11. Memory Hierarchy
Content Ove 'vView 3. C Debugging 5. Architecture
i 12. Code Optimization _
Three Main Themes: 13. Operating Systems
6= 10: Assembly 14. Shared Memory Parallel
1. How a computer runs a program IA32, x86_64, ARM 64 15. Other Parallel

2. How systems costs affect program
performance (Memory Hierarchy, other) Coming soon:

3. How to leverage the power of parallel computing Using Unix
Appendix

Main Architecture Content

Chapter 5 on Computer Architecture

Chapter 11 on Memory Hierarchy and Caching

Binary Representation & Arithmetic

Some Parallel Architecture Coverage: Chapter 5, 11, 14, 15
HW-OS interface: TLB, VM, interrupts, user/kernel level

O O O O O

diveintosystems.org

Von Neumann Architecture and
Computer Architecture History

The CPU
1. Processing 2. Control 3. Memory
Unit Unit Unit 4. Input 5. Output : i ‘
AbUTieeiten 7| REIR Units Units i o)
address bus | | | | Wt .
control bus . 15 | >
data bus ~ 2 ~
How it executes instructions: == D R | el)
=1 \) | 1] . i ;
Fetch-Decode-Execute-StoreResult Fi7 & @' Mz X ll _
PC and IR I) = T Y
H . k : .\ ‘.\ ' i = - e %
Instruction: opcode & operands 2 — ,
b B T4 NG * e :)
= v % T BiE i

diveintosysterﬁs.org |

Images: Lerner Books, sciencemuseum.org, IEEE Spectrum, Encylopedia Britannica

CPU Architecture: How Computer Runs a Program

Build simple CPU from bottom up, 1-bit circuits from logic gates

1.

Create truth table

for operation

A

B

A==B

0

0

1

0

1

0

0

2. Expressions for rows w/output 1 using
AND, OR, NOT, combine rows with OR:
(NOT(A) AND NOT (B)) OR (AAND B)

3. Translate expression into sequence of logic gates from
inputs to output

A4¢—|>O—

B —[>O— AND
T

AND

diveintosystems.org

3 Types of Circuts:

mirror Von Neumann Architecture

Arithmetic/Logic

1-bit Adder Circuit

— Sum (A+B)

Carry out

Control

1 bit 2-way MUX

Storage

R-S Latch

A — 1-bit
B — Adder [— Sum
Circuit (A+B)

CDUt

D

WE

NAND

b | NAND po

2 | NAND

____+E::XF

o

diveintosystems.org

. ~Q

— Out = (s & A)|(~s & B)

Q (stored
value)

WE ——

Gated
D Latch

—~q

Abstraction and building up complexity

1-bit version of circuits is building block to create multi-bit versions, which
in turn can be building blocks for larger units, ...

1 (o] 1 1 A
1-bit Adder Circuit (o} 1 1 (o} B
A). Sum (A+B) A — 1-pit i B3| A By| A, Bi| Ay Bo| Ao i
B — Adder [— Sum ;
Circuit (A+B) Cour t 1-bit |Cout | 1-pit | Cout | 1-bit | Cout | 1-bit |
AND : |
| 1 : adder adder adder adder i 0:c¢
COU{ |
carryout b s e e I i I
| 0 o) 1 SUM (A+B)
Cin { B A
h &4 %4
A — 1-bit
B — Adder — Sum 1 4-bit 1
Cos& 71— <7/— 0
Circuit (A+B) out adder ()
I 2
Cout

Sum

diveintosystems.org

Build up large functional units

From simple arithmetic/logic, control, and storage circuits

32 bit
ADDER
Circuit

32 bit
AND

32 bit
EQUALS

Circuit

A&B

A==B

..............

4-way
MUX

Register File

32-bit Register #0

32-bit Register #1

32-bit Register #2

32-bit Register #3

il MUX Data out,

MUX Data out,

SW .. .
ALU
f_éﬁ
x
——— result WE 2
=
o
opcode --------, .
e A
Circuit result Data in
condition B
codes ; condition
codes

diveintosystems.org

Put it all together:

Clock Driven Execution, IR, PC,
Step through 4 Stages of Execution (for instructions with all register operands)

The CPU Special purpose registers: Memory
ALU inputs from . . .
PC:| Address of next instruction
other sources
(Mem, PC, IR, ...) IR: Current Instruction
Sro
SW
Sry weeey opcode .
Data ALU output
WE — out, x| A T— to other
g g destinations | bus
; — result Mem, PC, ...
Register |pata > ALU ()
Register File out, x| g
input PY g
f — T e
Or;rzr) { condition ALU output to
sources Beglster Regist tput t ' codes Register File
input gister output to
(Mem, from ALU other destinations
regs, ...)

diveintosystems.org

Memory

cpPU
PC: 1234 |
IR:
1234:
S
i i Data opcode ----5 r -
bus
WE=
Register
File
Data
in

A. Issue read request to memory using the
memory address in PC.

CPU pC: |

{238

IR:| ADD | Regl | Reg3 | RegO

WE —
Register File

Data

ce | |
== PC:
CPU Memory 1238
IR:| ADD | Regl | Reg3 | Reg0
BE3 1238 I
IR:| opcode | S1 | Dest Sro
1234 Sw 5
A 1238: A Iy
STo VY _ Daa opcode -y
SWY S
bus
A WE -
= e result Register File result'
File
[i)na'a Data
in B .
i condition
B. Store instruction data in IR and increment PC. codes
l CPY pC | 1238 |
IR:| ADD | Regl | Reg3 | RegO
Memory I
Srpeeee-
opcode sw [}
1234: W Sr e
1238:
WE =3/
result bus | Register File
L
Data
in .
| condition i condition
" codes codes

diveintosystems.org

Memory
1234:
1238:
bus
Memory

1234:

1238:

bus

Parallel oo [l
Architecture

3rd cycle:

4th cycle:

e In more Detall
o Pipelining 5" cycle:
o Multicore

Also high-level overview of
others (chapt 5, 14, 15)

o ILP, Superscalar, Vector Processors
Hardware Multithreading
Accelerators, GPU as example
Flynn's Taxonomy

Moore's Law, Power Wall
Performance metrics

o O O O O

Multi-Core Computer

Processor Chip

Core 0 Core 1 Core N
Reg Reg
Flle F|Ie F|Ie
cache | ‘ cache | cache |
|
L _ I 'Bus
shared cache memory

Main
Memory
(RAM)

Memory Bus
1/0 Controller

A= 7'"'“'" ______ |
E L L
1 Input and Output Devices
GPU o SM
1ol SP |sp |sP |sp
SM | SM [sM | sMm || sm | sm |sm | smel] _--7
"~ . SP | SP | SP | SP
SM | SM | SM | SM || SM | sM | sm | sm
SP | SP | SP | SP
SM | sM | sM [sm || sm | sm | sm Pfsm [N
\ N, SP |SP [SP |sP
SM | SM | SM | sM || sM | sm | sm | sm AN
L, S SP |SP |SP |sP
Ay
GPU \ \,
N, SP | SP | SP | SP
Global L2 Cache \
Memory SP | SP | SP | SP
SM | SM | SM | SM || sM | sM | sm | sm
\ SP | SP | SP | SP
SM | SM | SM | sSM || sM | sM | sm | sm \
\ Warp Scheduler
SM | SM | SM | SM || sSM | sM | sm | sm \‘ & Execution Cntrl
A
SM | SM | SM | sM || SM | sM | sm | sm \ Register File
\
\
Interface to Host ‘\ L1 Cache
A
\ Shared Memory

diveintosystems.org

Requested Memory Address

| Tag Index Offset Two-Way Set Associative Cache

Line, Line,
Set|V, D, Tag, CacheDataBlock, | V; D; Tag, Cache Data Block,

Memory Heirarchy &
Caching (Chapt. 11)

w N = O

e Devices =
. (—
e Locality =
. Line, output:
o CaChIng = miss (0) or hit (1).
. Line, output:
e direct mapped . on ceu R o)
Primary
e set associative Caches 10 ¥eles Storaee
Faster Access, Core 0 Core 1
Higher Cost ~
e coherency gnerees Main Memory 100 eles _ e 11 cache
Slower Access,
4 ~ M S | Tag Block M S | Tag Block
MSI exam |e Lower Cost . 1 M cycles
P Flash Disk lo]1]ofas| 6 |[[{o]1]0]123] 6 |
H Secondary
[) ~10 M cycles
false Sharlng Traditional Disk Storage | Bus I
(chapt 14) !
Remote Secondary Storage (e.g., Internet)] L2 cache
The Memory Hierarchy Tag Block

] o

Storage Capacity

diveintosystems.org

Book Development: History of community help

External Reviewers of Every Chapter from Experts in our Field (mostly faculty):

e \olunteers, multiple for each chapter
e Strengthened content and presentation
e Helped ensure broad applicability of our textbook

2019-20: Early Adopters Program: Beta Version of our textbook (SIGCSE'20)

e Required textbook at 19 different institutions
e Small stipend ($100) to faculty from SIGCSE Special Projects Grant
e Feedback on its use in different courses

e Helped further refine topic coverage and presentation

People are egar to volunteer for resource filling need, and free online

diveintosystems.org

2020 Survey of Early Adopters
BOOk USG Types of Courses using Dive into

Syst ired text
We know of ~50 different institutions ystems as a required tex

using it in their courses

Computer Organization

19 Early Adopter Institutions (2019-20)

e Most as primary textbook in intro to
computer systems or computer
organization courses

e Some using in Architecture, OS,
Parallel Computing as primary or
supplementary textbook Computer Systems

Parallel Computing

Operating Systems

C programming

Computer Architecture

diveintosystems.org

Our Current Effort (NSF funded)

e Primary: Adding Interactive Content to Dive into Systems
o Online format: ideal for adding other types of content to promote
student learning
o Develop interactive exercises for book chapters
o Also adding videos of worked examples/solutions

e Secondary: Developing Instructor Portal Content
o exercises, programming/lab assignments, links to example curricula
using Dive into Systems, ...

diveintosystems.org

Adding Interactive Exercises

e Seeking Exercise Developers from larger CS community
o Use the expertise and help from our larger community!
o Diversity of uses/ideas/school type/participants
o NSF funding to provide stipends ($1,000) to some, also volunteers
o Groups develop interactive exercises for book chapters
e Students at our institutions All contributors
o Develop tools, implement exercises in Runestone acknowledged
. for their work!
e 4 Year plan for topic groups:

o Year 2: 2023-24: Binary, Memory Hierarchy & Caching
o Year 3: 2024-25: OS, Shared Memory Parallel Computing
o Year 4: 2025-26: Architecture

diveintosystems.org

Our Current Interactive Tool Development

Tool Demos

ASM Visualizer: assembly code tracing

"Ask me another" new functionality added to Runestone*

*Runestone (by Brad Miller) is the tool we are using as our main tool, and interface to, our interactive exercies

diveintosystems.org

http://runestone.cs.swarthmore.edu/asm/
https://www.cs.swarthmore.edu/~kwebb/runestone_demo/

ASM Visualizer

Welcome! You are using ASMVisualizer in function mode. In this mode you can write
multiple functions to be called by our_main. Please type your assembly code below and
click submit.

text
.globl our_main
type our_main, @function

our_main:
push %rbp
mov %rsp, %rbp

Add your code for the our_main function here:

mov $10, %rax
add $30, %rax

pop %rbp

retq
.size our_main, .-our_main

2. trace its execution: next/prev
show reg, stack, instr

type in assembly code & submit

Instructions
6 0x401117 push %rbp
7 0x401118 mov %rsp, %rbp
8
9 # Add your code

for the our_main
function here:

» 10 0x40111B mov $10, %rax

» N 0x401122 add $30, %rax

13 0x401126 pop %rbp
14 0x401127 retq
15 size our main

Autoscroll to current instruction
» line that just executed

» next line to execute

Step 4 of 6

First Prev Next Last

Program Output

Stack Content

Address Value

B OxIFFF000200 OX1FFF000210

Ox1FFF000208 0x401110

O0x1FFF000210 0x401130

O Autoscroll to stack pointer

Register Contents
Register Value
RAX OxA
RSP 0x1FFF000200
RBP Ox1FFF000200
RFLAG 0x44

O Show more values on click

diveintosystems.org

Cache Organization: =~ 2-Way Set Associative v Address Length: 8bits v

address: 0010011010

tag: 2 index: 4 offset: 2

block size (in bytes) = 4
number of lines = 32

number of sets = 16

Generate an Address

Correct. Good job!
Correct. Good job!
Correct. Good job!

Activity: 2 Cache System (test_caching_info)

"Ask me another" question like the current one

p

Cache Organization: 2-Way Set Associative v Address Length: 8bits v

block size: 8 total number of lines: 8

Usage: Select a range of bits, and then click its corresponding button below.

addresszobauau 100

Your current tag bits: 3 Your current index bits: 2 Your current offset bits: 3

Set to Tag Set to Index Reset selection
(o]

Correct. Good job!

Activity: 3 Cache Partition (test_caching_partition)

cache organization, size and address bits

Trace through sequence of addresses,
answer questions about effects on cache:
direct mapped or 2-way set associative

-
ICache Table Info Index v D Tag
0 0
Direct-Mapped 0
1 0 0 111
B-bit Address 2 0 o
3 0 0
Block Size : 4 u 0 o Lals
5 0 0
Number of rows : 8 & L o L
7 1 0 010
Ref/Address [R/W Hit? Miss? [Index v D Tag
0 [10111000 R 6 1 0 101
1 (01011100 R 7 1 0 010
b 10111000 W O O | | | |
G
Correct. Good job!
Activity: 4 Cache Table (test_caching_table)
.

Interested in Participating?

e Join the Dive into Systems mailing list (off diveintosystems.org)
Look for announcements posted to SIGCSE mailing list
Can Sign-up now: https://forms.gle/sHUnEs|SVWLptrMo8

o Link also available as a QR code (right).
o we will send emails with yearly deadlines

e Timeline:
o Year 2: 2023-24: Binary Representation
Memory Hierarchy and Caching

o Year 3: 2024-25: OS, Shared Memory Parallel Computing
o Year4: 2025-26: Architecture

diveintosystems.org

https://groups.google.com/forum/#!forum/dive-into-systems
https://forms.gle/sHUnEsjSVWLptrMo8

Thank you!

Ot na Questions?

Do you use our book?) Interested in)
Please let us know! participating
in our new effort?

https://forms.gle/sHUNEs{SVWLptrMo8

Read our book/mailing list: diveintosystems.org

diveintosystems.org

https://forms.gle/sHUnEsjSVWLptrMo8

