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ABSTRACT
Graphics processing units (GPUs) are powerful devices ca-
pable of rapid parallel computation. GPU programming,
however, can be quite difficult, limiting its use to experi-
enced programmers and keeping it out of reach of a large
number of potential users. We present Chestnut, a domain-
specific GPU parallel programming language for parallel multi-
dimensional grid applications. Chestnut is designed to greatly
simplify the process of programming on the GPU, making
GPU computing accessible to computational scientists who
have little or no parallel programming experience, as well
as a useful and powerful language for more experienced pro-
grammers. In addition, Chestnut has an optional GUI pro-
gramming interface that makes GPU computing accessible
to even novice programmers.

Chestnut is intuitive and easy to use, while still powerful
in the types of parallelism it can express. The language pro-
vides a single simple parallel construct that allows a Chest-
nut programmer to “think sequentially” in expressing her
Chestnut program; the programmer is freed from having
to think about parallelization, data layout, GPU to CPU
memory transfers, and synchronization. We demonstrate
Chestnut’s programmability with example solutions to a va-
riety of parallel applications. Performance results from our
prototype implementation of Chestnut show that Chestnut
applications perform almost as well as hand-written CUDA
code for a set of several parallel applications. In addition,
Chestnut code is much simpler and much smaller than hand-
written CUDA code.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—concurrent, distributed, and parallel languages

General Terms
Languages
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1. INTRODUCTION
Graphical Processing Units (GPUs) have become an in-

creasingly popular platform for general purpose parallel com-
puting. GPUs have the potential to support large-scale par-
allel applications on very inexpensive hardware. However,
the programming model for GPUs is quite complicated, lim-
iting its accessibility to only very sophisticated program-
mers. Nvidia’s CUDA [16] GPU programming interface, for
example, requires programmers to explicitly manage CUDA
and CPU memory, to map their parallel computation in
terms of blocks of thread groups onto GPU data, and to
structure their solution as a set of SIMD-like CUDA kernels
that run in parallel on the GPU interspersed with CPU-side
synchronization and GPU-CPU data transfers. For simple,
embarrassingly parallel applications there are obvious map-
pings to CUDA kernels, but as the complexity of the parallel
computation increases, particularly in the amount of syn-
chronization required, so does the complexity of the CUDA
program. Even for expert programmers, CUDA can be a
very difficult programming interface to use and debug.

There has been much recent work in new programming
languages and libraries designed to simplify GPU program-
ming, but most still require a fair amount of programming
expertise, often keeping GPU programming out of reach for
computational scientists and novice programmers. Chest-
nut is our domain-specific GPU programming language that
is designed to make GPU programming accessible to a larger
set of programmers, particularly targeting the computational
scientist who may have little or no parallel programming ex-
perience. We additionally provide an optional GUI program-
ming interface on top of a subset of the Chestnut language
that is similar in design to Scratch [18], and is specifically de-
signed for novice programmers to easily write parallel GPU
applications.

The Chestnut language implements a mostly sequential
view of parallel GPU programming. It has a simplified C-
style syntax that would be familiar to most scientific pro-
grammers who write sequential programs in C, Fortran, R,
or other sequential imperative or object-oriented languages.

The Chestnut language is part of our larger system that
includes a multi-layered programming model and compilers
that translate between each layer. Our fully automated com-
pilation environment goes from a GUI representation of a
Chestnut parallel program to an executable file. In addition,
we expose all intermediate layers of this translation (GUI to



Chestnut and Chestnut to CUDA-C) to make our system a
teaching tool for parallel programming; novice programmers
can start with the GUI and use the Chestnut translation to
help them learn to program in Chestnut. Most programmers
will directly write code in the Chestnut language, but pro-
grammers who want hand-optimized CUDA code can use
the Chestnut to CUDA-C translation as a starting point,
adding in their hand-written CUDA optimizations.

Chestnut is not a general-purpose language but a domain-
specific language targeting parallel multi-dimensional grid
(array) applications. Multi-dimensional grid applications
cover a large subset of parallel scientific applications [9].
Chestnut is particularly good at easily expressing grid stencil
pattern parallelism. Stencil patterns include a large class of
scientific applications that perform finite discrete modeling
or finite solvers for partial differential equations [20]; exam-
ples include climate modeling, heat diffusion, and fluid dy-
namics. Sequential implementations of these computations
involve a core operation that is performed many times on
each grid element, making them good candidates for GPU
parallelization because they map well onto a simple data
parallel model where updating individual grid elements can
be performed independently.

One difficulty in designing parallel languages is how to eas-
ily specify parallelism. The Chestnut parallel programming
model allows for a basically sequential view of the program.
A Chestnut program has sequential control flow containing
parallel blocks, or contexts, that perform computation on
grid elements in parallel. A parallel context is expressed
using a “sequential” view of its execution—to specify a par-
allel context, the programmer uses a foreach loop based
on one or more grids, where one “iteration” of the loop is
run for each element in the grid. The foreach loop and
its loop body look just like sequential code. However, each
“iteration” of the foreach loop is actually performed by a
separate thread in parallel with all of the other “iterations”.

In general, Chestnut programs specify their parallelism
based on the output grids—one computation for each ele-
ment in the output grid. For example, matrix multiplication
in Chestnut is expressed as a parallel foreach loop that
“iterates” over each result grid element. The body of the
foreach loop accesses the necessary row and column of the
input grids to perform the computation necessary for each
element in the output (result) grid. When executed on the
GPU, multiple threads simultaneously and independently
execute an “iteration” of the foreach loop to compute the
result grid elements in parallel.

Chestnut automatically handles data dependencies between
the parallel threads executing within a foreach context. It
ensures that each thread reads the initial state of all grid
data as they were at the entry of the foreach context.
Chestnut also implicitly implements barrier synchronization
at the end of each foreach context, ensuring that the grid
data reflect all the updates from the parallel foreach exe-
cution; all subsequent grid data accesses read the new values.

Chestnut is easy to use and fully exposed. The program-
mer can, with a single build command, go from the GUI to
an executable that can run on the GPU. Even though our
language is designed to be simple to program and use, it
is also quite powerful and performs well compared to hand-
written CUDA code. We therefore anticipate that even ex-
pert programmers will make use of Chestnut.

The rest of our paper is organized as follows: Section 2

discusses related work in programming languages for par-
allel, specifically GPU, computing; Section 3 discusses the
Chestnut programming language; Section 4 presents the full
system architecture of Chestnut including the GUI program-
ming interface and compilers; Section 5 presents Chestnut
programs and performance results; and Section 6 concludes
and discusses future directions of our work.

2. RELATED WORK
The development of general purpose programming inter-

faces for GPUs, such as CUDA [16], OpenCL [10], StreamSDK [2],
and DirectCompute [15], has resulted in a huge increase in
the uses of GPUs for parallel computation, particularly for
parallel scientific applications. The underlying GPU archi-
tecture naturally lends itself to a stream [7] or SPMD model
of parallel computing, wherein a parallel kernel of code is
run independently and simultaneously across 100s of GPU
processors on a stream of data elements. There has been
a great deal of work developing interfaces for programming
general purpose GPUs, as well as many programming and
mathematical libraries ported to GPUs [8, 6], and bindings
to many existing programming languages including C, For-
tran, Ruby, Java, Python, and Matlab, all helping to sim-
plify GPGPU programming.

There has additionally been a lot of recent work in devel-
oping new GPGPU programming languages, libraries, and
GPU back-end support to existing parallel languages [17,
21, 14, 13, 5, 12]. This work makes GPGPU programming
more accessible to a larger set of users by hiding many of the
complications of GPU programing, such as having to think
about CPU and GPU memory and having to map paral-
lel computation onto GPU data. However many of these,
(hiCuda and Mint, for example), still require explicit mem-
ory copies between the host (CPU) and device (GPU).

Many of the new languages are domain specific languages
(DSL) that target stencil pattern applications. A large num-
ber of parallel applications fit the stencil parallel pattern [9],
making these languages very useful for solving a large class
of real-world scientific applications. By designing a DSL
instead of a more general purpose parallel language, the re-
sulting language is often smaller and easier to learn. In
addition, its implementation can often lead to better opti-
mized GPU code that can more easily target optimizations
that are specific to stencil patterns [11, 1]. Chestnut is also
a DSL, but it targets a larger class of applications that in-
clude both stencil pattern and also some more general grid
access patterns.

Several of these new languages are implemented as embed-
ded languages. For example, Physis is embedded in C, Mint
in C and C++, and Ypnos in Haskell. An advantage to an
embedded approach is that by adding parallel language ex-
tensions to an existing language, the parallel language gets,
for free, all the functionality of the language in which it is
embedded. In addition, embedded language development
tends to be easier, as it often involves implementing a pre-
compilation or pre-processing step to the underlying target
language, and can then make use of existing compilers for the
full compilation. For programmers who already know the
underlying sequential language, embedded languages may
be easier to learn because the programmer only needs to
learn a set of GPU parallel language extensions.

One drawback of the embedded approach is that the GPU
language extension is stuck with all the syntax and features



of the underlying language, many of which may not be use-
ful, or may not be compatible with the parallel language
extensions. In addition, for programmers who do not know
the underlying language, the parallel language is unnecessar-
ily complicated by the syntax and semantics of underlying
language. This approach can lead to the sacrifice of good
parallel language design principles [4] as a trade-off for ease
of implementation.

Many of these projects use a source-to-source translation
approach that simplifies the implementation of the language
by making use of existing compilers, libraries and run-time
systems. It also allows for more flexibility in the ”back-
end” of these implementation, as the target language can
more easily be changed to take advantage of new libraries or
language features at the target language level. In addition,
source-to-source translation has the potential for the parallel
language implementation to automatically take advantage of
improvements and optimizations in updated versions of the
underlying target language implementation.

Chestnut uses a source-to-source translation approach, cur-
rently targeting CUDA-C and Thrust. However, Chestnut
differs from other work in this area in that it is a full lan-
guage implementation rather than an embedded language.
The main goal of our work is to implement a GPU pro-
gramming language that is very easy to learn and use; by
designing our language from scratch we can more easily meet
this goal—the Chestnut language is simple, small, and de-
signed to easily express exactly the target applications that
our language supports.

3. THE CHESTNUT LANGUAGE
Chestnut is a domain specific language that supports par-

allel computation on multi-dimensional parallel arrays (grids).
The main goal of our language design is to make it simple
and easy to use yet able to express a large class of paral-
lel GPU applications. Our language implements a sequen-
tial imperative programming model, which allows the pro-
grammer to ”think sequentially” in expressing her parallel
program. Programs in Chestnut consist of sequential code
interspersed with parallel loops over parallel array data; to
the programmer, a Chestnut program is just a sequence of
statements executed in order, some of which execute on the
GPU.

Chestnut implements a GPU-centric model of computa-
tion where the graphics card is considered the computer as
much as possible. Parallel computation in Chestnut is ex-
pressed in terms of operations on parallel array data. All
parallelism in Chestnut is expressed within extended paral-
lel statements known as parallel contexts. A parallel context
(foreach loop) contains a set of statements for accessing
and modifying elements of parallel arrays. Parallel contexts
are executed on the GPU such that the set of statements
inside the foreach loop body are executed on individual
array elements in parallel on the GPU. For example, List-
ing 1 shows a very simple parallel construct that sets each
element in a parallel two-dimensional array to zero.

Because parallel contexts syntactically look like loops over
arrays, a programmer can think of the representation of
their Chestnut program as being executed sequentially even
though parts of it exhibit massive parallelism. Figure 1
shows the high-level flow of a Chestnut program with paral-
lel contexts interspersed among normal statements.

Sequential 
Code

Sequential 
Code

foreach

end

Parallel
Context

Figure 1: A chestnut program can be expressed as a se-
quential stream of code consisting of sequential blocks of
code interleaved with parallel (foreach) contexts. This gen-
eral control flow pattern can be repeated over and over in a
Chestnut program.

Listing 1: A basic parallel context

// parallel 5x5 grid of Int values
IntArray2d array[5, 5];

// runs on GPU, sets each array item to 0
foreach item in array

item = 0; // body of parallel context
end

Chestnut’s GPU-centric model frees the programmer from
having to explicitly think about CPU and GPU memory,
from having to explicitly allocate memory on one or the
other, and from having to explicitly copy data between the
CPU and the GPU. Parallel arrays are allocated in GPU
memory and are only copied to CPU memory when accessed
from sequential code in a Chestnut application. In Chest-
nut, a programmer can only implicitly trigger CPU-GPU
data copy by initializing a parallel array to values read in
from a file or by printing out parallel array data values to
stdout or a file. By hiding GPU and CPU memory from
the programmer, Chestnut simplifies programming and can
better minimize the amount of data copy between the CPU
and GPU.

Chestnut additionally hides from the programmer both
GPU parallel execution concepts such as blocks and threads,
and the mapping of parallel execution onto GPU data—in
Chestnut the tight coupling between the Chestnut paral-
lelism model and the way it internally allocates threads and
maps GPU parallelism to parallel data, means that none of
the underlying GPU execution model needs to be exposed to
the Chestnut programmer. Similarly, synchronization struc-
tures (semaphores, mutexes) and explicit thread communi-
cation are hidden by the simplicity of the Chestnut parallel
programming model. Although this limits the types of par-
allelism that can be expressed in Chestnut to operations on
multi-dimensional parallel arrays, it is a reasonable tradeoff
for achieving a concise language that is very easy to learn,
and it still leaves the Chestnut language able to express a
large class of parallel programs.

Our discussion of the Chestnut language includes its ba-
sic and composite types, the parallel context, its scoping
model and its support for simultaneous GPU visualization
and animation of a parallel application computation.

3.1 Chestnut Types
As a strongly and statically typed language, Chestnut re-

quires type information at the time of a variable’s declara-



tion. Currently, Chestnut supports a set of basic built-in
types. In the future we plan to extend Chestnut to support
user-defined types using a struct or object syntax. Chestnut
automatically converts between types, using the same se-
mantics as C, when multiple built-in type operands appear
in the same expression.

Chestnut types generally fall into one of three categories:
simple types, composite types, and parallel array element
types (all shown in Listing 2). Simple types are scalar val-
ues or collections of scalar values corresponding to integer,
boolean, and floating point values, as well as RGB color
values that are used in Chestnut’s support of GPU visual-
izations of Chestnut parallel computation.

The primary composite type is the Parallel Array, de-
scribed in depth in Section 3.1.1. Chestnut currently has
support for 1, 2 and 3 dimensional arrays of any of its ba-
sic types. The final category contains Array Element types
that consist of their underlying scalar value and attributes
for accessing neighboring values. Array Element types are
used only within parallel contexts, and provide a localized
view of an array element in addition to its value, allowing
for stencil computations to be easily expressed in Chestnut.

Listing 2: Types

(1) Basic Scalar Types:
Int // a 32bit int value
Real // a 32bit float point value
Color // 4 Reals: red, green, blue,

// opacity
Bool // a 1bit boolean

(2) Array Types: // 1,2,3 dimensional

// Example Specific Array Types:
IntArray2d // 2-dim array of Int
RealArray3d // 3-dim array of Real

// Array Types have attributes:
width, height, depth

(3) Array Element Types:
Int1d, Int2d, Int3d, Real1d, ...

// Array Element types have attributes
x, y, z, east, west, north, south,
northEast, southEast, southWest, ...

3.1.1 Parallel Array Types
The Parallel Array is the main data storage type in Chest-

nut and the primary model of parallel computation: paral-
lelism is expressed in terms of operations on parallel arrays.
Currently, Chestnut supports one, two and three dimen-
sional arrays of the basic types. A specific array type is
defined by prefixing Array with the basic type (e.g. Int)
and appending the dimensionality (e.g. 2d) which in this ex-
ample forms IntArray2d as the canonical type name for a
2 dimensional array of integers. Array types have attributes
specifying the dimensions of the array (width, height, and
depth). Individual elements in parallel Arrays can be ac-
cessed using indexing, or through Array Element variables
defined in foreach parallel contexts. Listing 5 shows an
example that uses both types of access methods.

Arrays can be initialized on the GPU using a parallel con-
struct to set each Array Element value, or they can be ini-
tialized to values read in from a file. File initialization is

done on the CPU, and Chestnut implicitly copies the array
data from the CPU to the GPU once initialized. In the fu-
ture we plan to support a richer set of sequential (CPU-side)
initializations of parallel arrays via sequential loops that con-
tain assignments to parallel array elements. Chestnut would
continue to implicitly perform all CPU to GPU data copies.

Array data are initialized from file data using the sequen-
tial function read(filename). This function expects to be
passed a filename with data in a two part format: the first
part is a single line which declares the array’s type along
with its dimensions; the remainder of the file is a comma
separated list of values. All white space characters are ig-
nored, which means that the same list of elements might
have multiple valid shapes. The first line in the file de-
scribes the shape of the array and avoids ambiguity in how
the data read in should be assigned to multi-dimensional
array positions.

3.1.2 Parallel Array Element Types
The Array Element types consist of the basic type values

stored in each parallel array bucket and a set of attributes
that allow for localized neighbor element accesses, and that
give each element’s (x, y, z) position in the array.

The Array Element type allows for easy expression of
stencil pattern accesses via neighbor-specific attributes of
the centered element using dot syntax. Chestnut uses at-
tributes of Array Element types instead of indexing syn-
tax (i.e. array[x-1, y+1]) to better meet our goal of a
language that is easier to read and program. A visual ex-
ample of an Array Element’s neighbor attributes in a two-
dimensional array is shown in Figure 2; each element in the
array has neighboring points to its east, west, north
and south as well as corners northEast, southEast,
southWest and northWest. This can be extended to
3d array access by prefixing either below or above (e.g.
belowSouthEast, aboveNorth) for vertical access. When
simplifying to 1d arrays, left and right are synonyms for
west and east. Chestnut currently automatically supports
wrap-around access to points on the edges of arrays. In the
future we plan to support constant and function-derived val-
ues for edge points.

north
west north north

east

west east

south
west south south

east

Figure 2: The Neighboring points of An Array Element cen-
tered at (2, 2). The Array Element’s neighbor attributes
allow each array element easy access to each it neighbors’
values.

3.2 The Parallel Context
The primary way to express parallel computation is Chest-

nut is using the parallel context on a set of parallel arrays. A
parallel context begins with a foreach statement and ends
with the keyword end. The statements between the start
and end of the parallel context specify a set of operations to



be performed in parallel on the parallel arrays, one after an-
other. Local variables defined inside a parallel context go out
of scope upon leaving the parallel context. In some sense,
parallel contexts can be thought of as anonymous functions
on parallel arrays.

In a foreach statement, the parallel computation is de-
fined in terms of output arrays. The most basic foreach
expression describes a loop over each element in an output
array. The body of the parallel context is executed once for
each element in the array. An example of the basic context
is shown above in Listing 1. Here the anonymous function
simply executes the item=0 statement once for each ele-
ment in the array array, setting its value to zero. Each
item=0 statement runs in parallel and independently from
every other statement on the GPU. The end keyword en-
sures that all of these operations have finished before con-
tinuing on to the next line of code.

Parallel contexts can contain multiple statements and even
function calls. In general, anything that is a valid statement
is valid inside of a parallel context. The notable exceptions
are that sequential functions cannot be called within parallel
contexts, and parallel contexts cannot be nested.

A foreach context can be applied to multiple parallel
output arrays. Listing 3 shows an example of a foreach con-
text over two parallel arrays that swap values in correspond-
ing positions. Multiple arrays listed in the same foreach
statement must have the same dimension.

Listing 3: Multiple Arrays in a parallel context

IntArray2d a_array[10,10]=read("a.dat");
IntArray2d b_array[10,10]=read("b.dat");

foreach a in a_array, b in b_array
Int temp = a;
a = b;
b = temp;

end

The variables declared in a foreach statement are Array
Elements types with attributes in addition to their values.
An element’s attributes can be used to access neighboring
elements’ values as well as getting its (x, y, z) position in the
parallel array. In addition, external parallel arrays (those
not listed in the foreach statement) can be accessed from
within the body of a foreach block. External access is
needed to support parallel computation on arrays of different
dimensions.

Listing 4 shows an example of a stencil computation in
Chestnut. This example computes one time step of a heat
dispersion simulation, where at each time step every array
element gets a new value based on its neighbor’s values. It
shows how to use an Array Element’s attributes to obtain
its neighbors’ values.

The Semantics of Statements Inside Parallel Con-
texts

The following are the semantic rules for evaluating state-
ments inside foreach bodies:

• Array Element values read inside foreach blocks (i.e.
that appear on the right hand side of assignment state-
ments), get the values as they were immediately before
the foreach statement.

• There is a localized sequential semantics of multiple

statements executed inside a parallel context that in-
volve assignments to the same Array Element variable;
Array Elements written to (i.e. that appear on the
left hand side of an assignment statement) are modi-
fied within the localized view of computation only (i.e.
only the specific thread updating this specific Array El-
ement’s value will read its new value within the same
parallel context).

These rules mean that Chestnut implements a localized
sequential semantics of the execution of multiple statements
that make assignments to Array Element variables inside
a parallel context. The semantics also ensure that when
assignment statements inside foreach blocks involve func-
tions of neighboring elements, all neighbor values that are
read are their value before the foreach block. Although
when executed on a GPU, the foreach body statements
are being run in parallel over the array elements, Chestnut
ensures that each value read is consistently the array value
prior to the parallel context.

As an example, in Listing 4 the first statement sets the
localized value of point to a new value, so the localized
execution of this second statement will use this new value
of point in combination with the original values of its neigh-
boring points. In other words, even though each thread
is updating an Array Element value in the first statement,
in the second statement all threads consistently read their
neighboring point values as they were prior to the foreach
block, and only the particular update to a particular Array
Element reads the new value of point when it is used in the
second statement.

Listing 4: Heat Dispersion Iteration

RealArray2d world[W,H]=read("heat.dat");

Real center = 0.4;
Real other = (1 - center)/4;

foreach point in world
point = center*point;
point = point +

other*(point.west + point.east
+ point.north + point.south);

end

These semantics mean that the Chestnut programmer doesn’t
have to think about, or handle, race conditions between par-
allel updates to individual Array Element values. To sup-
port these semantics, Chestnut internally maintains copies
of parallel arrays with these types of dependencies; one copy
is used for reading values inside a foreach loop, another
for writing. This way Chestnut ensures consistent state is
always read from parallel arrays. Chestnut handles any data
copying (or pointer swapping between copies) and any syn-
chronization necessary to support its semantics of parallel
context executions.

Listing 5 shows matrix multiply, an example of how to
access external parallel arrays in a foreach context. In
this example, the parallel computation is specified in terms
of the output array output. For each element in the out-
put array, its x and y coordinate positions are used to index
into the two source arrays of the matrix multiplication. Us-
ing an Array Element’s coordinate attributes to index into
external arrays is more complicated than expressing stencil
pattern array accesses in Chestnut, but it is still much less



complicated than in CUDA where the programmer has to
map parallelism in terms of blocks of thread onto accessing
elements from three arrays of three different dimensions.

Listing 5: Matrix multiplication in Chestnut

RealArray2d a[10, 5] = read("a.data");
RealArray2d b[5, 8] = read("b.data");
RealArray2d output[10, 8];

foreach e in output
e = 0;
for (Int i=0; i < a.height; i++) {
e = e + a[e.x, i] * b[i, e.y];

}
end

write(output, "output.data");

3.3 Functions
Chestnut supports two types of user-defined functions: se-

quential functions run on the CPU, and parallel functions
run on the GPU. Both types of functions follow C-like syntax
and semantics. Parallel functions in Chestnut are prefixed
with the keyword parallel, and sequential functions with
the keyword sequential. Although this prefix annotation
to functions appears to violate one of our goals of hiding
”thinking about parallelism” from the programmer, we use
it to help the programmer more easily remember the differ-
ences between how parallel and sequential functions can be
called and defined in a Chestnut program.

Sequential functions can be passed scalar types and Par-
allel Arrays, and they can contain parallel foreach con-
structs. They cannot, however, be passed individual paral-
lel Array Element values. Parallel functions are functions
that can only be called from within parallel contexts. They
are primarily to support better modular design and code re-
use of sub-functionality in the bodies of parallel constructs.
Listing 6 shows an example of a parallel function definition
and use. The following are the set of constraints associated
with using and calling Chestnut parallel functions:

• A parallel function can be passed Array Element, Ar-
ray, or scalar types. Typically, a parallel function is
called on an output array element.

• A parallel function can only be called from within a
parallel context or from another parallel function.

• A parallel context cannot be inside of a parallel func-
tion. This follows from the restriction that parallel
contexts can’t be nested and because a parallel func-
tion is by definition called from a parallel context.

• A parallel function can’t issue read() or write()
calls to read or write data in from disk.

3.4 Built-in Functions
Chestnut currently supports three built-in functions. The

random function is a parallel function that can be called
from within a parallel context. It returns a random Real
value between 0.0 and 1.0.

The other two built-in functions can be applied to paral-
lel data, but are called outside of parallel constructs. They
perform operations on parallel data that cannot be easily
expressed using Chestnut’s basic foreach parallel context.
One of these is the display function, described in Sec-

tion 3.5, for visualizing and animating Chestnut computa-
tions. The second, reduce, performs a parallel reduction.
It takes a parallel array parameter and returns a scalar value
result of the reduction operation applied over all the values
in the array. Internally, Chestnut implements the reduction
operation in parallel on the GPU, but the programmer needs
only to make a simple reduction function call to invoke this
parallel operation. Listing 6 shows an example that calls the
reduce built-in function.

Currently, Chestnut supports only a sum reduction. We
plan to extend Chestnut’s reduction functionality by adding
a second parameter that would take a custom written re-
duce operation that could be applied over the parallel array.
For example, a max function could be passed as the sec-
ond argument to perform a max reduction instead of a sum
reduction.

Listing 6: User-defined and Built-in Parallel
Functions

IntArray2d array[500,500]=read("in.dat");

parallel Int square(Int2d value) {
return value * value;

}

foreach x in array
x = square(x);
x = x * 2;

end

Int sum = reduce(array);

3.5 Support for GPU Visualization
Chestnut provides built in support for visualizing paral-

lel array computation as it is executed on the GPU. Basic
pixel values, using the Color type, can be associated with
values in parallel arrays. To visualize Chestnut parallel ar-
ray data, a programmer makes a call to a special Chestnut
built-in function display. This function takes a parallel
array of data values to visualize, and an optional second ar-
gument. The second argument is a parallel color conversion
function that specifies how to set a Color value based on
an Array Element’s value. Internally, Chestnut applies the
passed color conversion function (or uses the default con-
version function) to every element in the parallel array and
then displays the result. The visualization computation is
done in parallel on the GPU and the display stays on the
GPU (i.e. it is not copied to and from the CPU for display).

Listing 7: Visualizing a simple gradient

parallel Color green(Real2d input) {
Color c;
c.red = 0; c.green = input;
c.blue = 0; c.opacity = 1;
return c;

}

RealArray2d gradient[720, 480];

foreach pixel in gradient
pixel = pixel.y / gradient.height;

end

display(gradient, green);



Figure 3: Chestnut GPU Animation of Conway’s Game of
Life, and of Mandelbrot Fractal.

Listing 7 shows an example using a custom color func-
tion passed to the display function. Calling the display
function repeatedly with the same array causes that dis-
play to be updated rather than new displays being created,
which provides for a simple and efficient way to animate the
computation and create other dynamic displays of the data.
Figure 3 shows examples of Chestnut’s on-GPU visualiza-
tions of a zoomed-in portion of Conway’s Game of Life, and
Mandelbrot fractal pattern.

With the basic types and constructs provided by Chest-
nut, a programmer can easily express stencil pattern par-
allelism and, without much more expertise, an even larger
set of parallel computations on multi-dimensional grids. The
Appendix lists a complete Chestnut program, showing inter-
spersed sequential and parallel constructs and parallel func-
tions.

4. CHESTNUT SYSTEM ARCHITECTURE
The Chestnut language is part of a larger, multi-level

Chestnut GPU programming environment including multi-
ple programming interfaces and compilers. Figure 4 shows
the architecture of the Chestnut system. At the top level is
the Chestnut Designer, which is an optional GUI program-
ming interface to Chestnut. The Chestnut Designer is very
easy to use, and is designed to be an interface for novice
programmers or programmers first learning the Chestnut
language. The graphical compiler translates the GUI repre-
sentation of a parallel program to Chestnut source code.

At the next level is the Chestnut language. Program-
mers can directly write GPU programs at this level using the
Chestnut language, or they can indirectly generate Chest-
nut programs using the Chestnut Designer and the graph-
ical compiler. The Chestnut compiler translates programs
written in the Chestnut language to C++ source code with
calls to Walnut library functions. Walnut is a C++ library
of routines that provides an abstraction on top of CUDA
and Thrust. It greatly simplifies the implementation of the
Chestnut compiler’s C++ back-end because the Walnut API
is much closer to the Chestnut model than the CUDA API

Graphical 
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NVCC
G++

Visual Design

Chestnut Program

Generated CUDA Code

Compiled Executable

The
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Project
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Project

Figure 4: The Chestnut System: A GUI representation of
a Chestnut program represented using the Visual Designer
is translated to Chestnut source code; a program expressed
in the Chestnut language is compiled to CUDA-C source,
which is in turn compiled to an executable file.

is. It also allows for the Chestnut back-end to be more eas-
ily ported to target other GPU programming interfaces and
libraries. The Chestnut system then makes use of NVCC
g++ to compile its C++ CUDA/Thrust translation to an
executable that can run on the underlying system. The
Chestnut system provides a simple, single build command
that can go from GUI to executable, automatically translat-
ing from each layer to the next—a programmer can go from
a build button on the GUI to an executable without having
to issue a command line to build. In addition, the Chestnut
system exports the translation results at each level so that
a programmer can see the underlying Chestnut and C++
CUDA/Thrust translations of the program.

4.1 Chestnut Designer
The Chestnut Designer is a GUI interface to the Chestnut

language. The Designer is composed of a canvas on which
program objects can be placed and connected together to
represent the data-flow of a Chestnut program. Different
types of program components are dragged from the left side-
bar onto the canvas and connected together to create the
flow of data in the program. It provides Chestnut’s ba-
sic and array types, and function objects that operate on
some combination of these types. Currently, Chestnut De-
signer supports two functions map and reduce. The map
function is translated to a Chestnut foreach block and the
reduce function to Chestnut’s built-in parallel reduce func-
tion. As in the Chestnut Language, functions in the designer
are well specified and strongly typed; for example, the built-
in map function requires two inputs: one Array and either
another Array or a basic type. The map function then out-
puts a result Array. Functions (such as map and reduce)
can optionally accept operation in the form of a function
which takes two basic types and combines them (for exam-
ple + or *). With a basic map-reduce data-flow paradigm,
many parallel applications can be elegantly expressed in the
Chestnut Designer.

The main design goal of the Chestnut Designer is to pro-
vide an easy-to-use, discoverable interface. We’ve taken a
number of steps towards this end. First, each class of object



Figure 5: A sample GPU program expressed using Chestnut
Designer. It adds 4 to every element of a 500x500 array
and then writes the result to a file.

has a consistent and unique shape. Functions are rounded
rectangles, Arrays are sharp-cornered rectangles, and ba-
sic types are triangles. This gives the user a visual reference
to the type of the object he or she is using. Objects can
have inputs and outputs, known as sources and sinks. A
sink corresponds to an output, and it can accept data from
a source. A source is like a fountain of data, produced by
some object and available to connect to an arbitrary number
of sinks. Secondly, sources and sinks have shapes to repre-
sent how they can be connected together; circle objects can
only be connected to circle shaped connectors, triangles to
triangle connectors and so on (see Figure 5.) Thirdly, sinks
are differentiated from sources by a darker interior color. A
sink can not be connected to another sink, nor can a source
be connected to another source. It is possible to have a sink
accept multiple different types of sources; for example, the
print function can take either an Array or a basic type. This
is represented in the GUI by having both a triangle and a
circle connector next to each other. To help the user create
acceptable connections between objects, Chestnut Designer
prevents the user from doing things that do not correspond
to valid data control flow, such as connecting a source and
a sink of incompatible types or connecting two sinks to one
source.

The drag and drop paradigm is central to the design. Ob-
jects are placed on the canvas by dragging them from the
left toolbar, connections are made and destroyed by drags
from the respective sinks and sources, and objects can be
rearranged by dragging them around the canvas.

Our current prototype implementation of the Chestnut
Designer supports only a subset of programs that can be
expressed in the Chestnut language. We plan to further ex-
tend it to include a GUI interface for expressing a richer set
of parallel functions, for explicitly representing Chestnut’s
foreach parallel construct, and for representing sequential
loops. It is possible, however, that even in its final design,
the Chestnut Designer may not support the full Chestnut
Language in order to keep its interface very easy to use.

4.1.1 The Graphical Compiler
The Chestnut Graphical Compiler translates a GUI pro-

gram constructed using the Chestnut Designer to Chestnut
source code. The compiler generates Chestnut code using
a traversal algorithm on the underlying graph representa-
tion of the GUI program. Each node contains informa-
tion about sources and sinks connected to it, and it con-
tains a flatten function that is used to generate Chestnut
code specific to that node type. Thus, using a basically
breadth-first traversal of the nodes, invoking their flatten
functions in the correct order in relation to flattening their
sources and sinks, produces a Chestnut source code output
that correctly matches the data flow represented by the GUI
program.

4.2 The Chestnut Compiler
A programmer can directly write parallel programs in

the Chestnut language, or start with the Chestnut Designer
and automatically generate Chestnut source code. In either
case, the resulting Chestnut source code is compiled by the
Chestnut Compiler, which is written in Python and uses the
LEPL [3] library for parsing. The front-end of the compiler
parses Chestnut source code into an abstract syntax tree
(AST). The back-end currently generates C++ and Walnut
Library source code from the AST.

The Walnut library can be thought of as part of the Chest-
nut Compiler back-end. It is an interface on top of under-
lying GPU interface and library functions and code. Cur-
rently, Walnut is implemented on top of CUDA and Thrust.
Its purpose is to simplify the back-end by providing a target
language that more closely conforms to Chestnut code.

5. EXAMPLES AND RESULTS
We evaluate Chestnut by comparing three applications

each written in Chestnut, CUDA-C, and sequential C: Ma-
trix Multiply; Conway’s Game of Life (GOL); and Heat Dis-
persion. We compare different versions of each applications
qualitatively on their “ease of programming” and quantita-
tively on their performance. The three applications illus-
trate different types of parallel grid access patterns: Ma-
trix Multiply uses indexing and Array Element accesses; and
GOL and Heat Dispersion use stencil pattern accesses. The
CUDA versions of the applications are either taken directly
from Nvidia’s “CUDA by Example” book [19], or they are
based on example code from this book. They all use 16x16
thread blocks, and the matrix multiply example additionally
uses shared memory to speed up part of the computation.
The full Chestnut code for GOL is listed in the Appendix.
Parts of Heat Dispersion and Matrix Multiply are listed in
Section 3. Full versions of all three programs are available
on a web page 1 and are not included here due to space
limitations.

We analyze Chestnut both qualitatively and quantitatively
in comparison to sequential C and hand-written CUDA. A
qualitative code comparison allows us to evaluate our main
goal of Chestnut: a very easy to learn and use program-
ming language specifically designed for non-expert program-
mers. The quantitative analysis compares the performance
of Chestnut versions of applications to their hand-written
CUDA and sequential counterparts. This allows us to show
that Chestnut makes the power of GPU programming ac-
cessible to sequential programmers, and that it also is com-
parable in performance to hand-written CUDA code.

1http://andrewstromme.com/chestnut/pmam2012



Listing 8: CUDA GOL Initialization

////// CUDA GOL initialization //////
__global__ void initboard(int *grid,

float percent)
{

// a parallel thread needs to map
// itself onto a GPU grid cell
int offset, row, col;
row=threadIdx.y+blockIdx.y*blockDim.y;
col=threadIdx.x+blockIdx.x*blockDim.x;

// map 2D view to its 1D index
offset = col + row*M;

// not all threads map to a valid
// grid location
if(row < N && col < M) {
float val=curand_uniform(rand_state)
grid[offset]= val < percent ? 1: 0;

}
}

int main (int argc, char *argv[]) {

int *grid, *copy;

// allocate memory space on GPU
// for grid and grid copy:
cudaMalloc((void**)&grid,

sizeof(int)*N*M);
cudaMalloc((void**)&copy,

sizeof(int)*N*M);

// define blocks of 16x16 threads
dim3 threads(16,16);
dim3 blocks((M+15)/16, (N+15)/16);

// initialize the board on the GPU
initboard<<<blocks,threads>>>(grid,0.25)

5.1 Qualitative Comparisons
We use the Game of Life program to demonstrate the

readability and ease of writing in Chestnut. The results of
our quantitative analysis of GOL is very similar across the
three example applications.

In comparing the number of lines of code across the three
versions of all applications, we found that Chestnut versions
average about 15% of the length of the CUDA version (40 vs
300 lines for Game of Life, for example), and that they are
about the same length, or slightly shorter than equivalent
sequential versions. Chestnut GOL, for example, is smaller
than its sequential counterpart due to it not requiring nested
loops, having a more concise way of initializing the grid, not
having to explicitly maintain a copy, and having built-in
support for wrap-around neighbor access for edge points.

More important than a comparison of the number of lines
of code, is a comparison of the ”ease of expressing paral-
lelism” in Chestnut vs. CUDA. To evaluate this, we com-
pare the initialization portion of the CUDA version of GOL
to the Chestnut version.

Listing 8 shows the main part of the initialization of the
CUDA version of GOL. All error detection and handling
code has been removed to make the listing easier to read,
also making it shorter than it is in the full implementation.
We also removed code that initializes random state needed

Listing 9: Chestnut GOL Initialization

////// Chestnut Initialization //////
foreach cell in grid
cell = (random() < 0.25);

end

by Nvidia’s CURAND library function curand_uniform,
which is used to initialize the GOL grid cell values. This
further simplifies and shortens the CUDA example from its
full implementation.

In general, CUDA GPU data can be initialized on the
CPU first, followed by a call to cudaMemcpy to explicitly
copy CPU data to a CUDA GPU allocated array, or it can
be initialized on the GPU using a CUDA kernel. We show
the latter of these in our example because it matches the
way we initialize the grid in the Chestnut version of GOL.

Comparing the CUDA version of GOL initialization to the
Chestnut version (shown in Listing 9) illustrates how much
more concisely this can be expressed in Chestnut. More im-
portantly, however, it shows that in Chestnut the program-
mer does not need to think about GPU vs. CPU memory,
does not need to explicitly allocate GPU memory, nor copy
data between GPU and CPU. Additionally, a Chestnut pro-
grammer does not need to explicitly specify a parallel exe-
cution model (the threads and blocks definitions in the
CUDA version), nor does a programmer need to map the
parallel execution model in terms of blocks of threads onto
accessing individual GPU data. In the CUDA initboard
kernel function, each thread needs to calculate a row and
column value for the data element it is accessing based on
its id within a block and thread group. It also needs to
check that its mapping maps onto a valid part of the CUDA
data array (for some sized data there may be extra threads
that do not participate in changing grid values). In addi-
tion, a programmer’s two-dimensional view of the grid has
to be mapped onto a one-dimensional CUDA representation
of the data to obtain its offset.

In Chestnut, the initialization code is a very simple single
line statement inside a foreach loop over the elements in
the parallel grid—it is even simpler than the sequential ver-
sion’s initialization code. Here the programmer only needs
to ”think sequentially” to initialize GPU data. All parts of
the underlying parallel computation model (i.e. blocks and
threads) are hidden from the programmer.

Comparing the CUDA and Chestnut expressions of play-
ing the game of life (executing multiple rounds of simulating
one time-step change in the game-of-life grid), the two differ
in much the same way as they do in the initialization code.
The Chestnut version (listed in the Appendix) involves the
programmer simply writing a loop that iterates for the to-
tal number of time-steps, calling a foreach statement that
calls a parallel helper function to change each element based
on its neighboring values. The bulk of the code in the paral-
lel function looks identical to the code in a sequential version
that computes the new value. The code to get the neighbor-
ing values is trivial compared to the CUDA version and the
sequential version. The Chestnut version uses an Array El-
ement’s attribute values to read its neighboring values, and
takes advantage of Chestnut’s support for automatically do-
ing wrap-around for edge points. In a sequential version, the



Benchmark Sequential CUDA Chestnut Speed-up
GOL 371.0 s 0.8 s 1.7 s 217

MatrixMult 398.6 s 0.2 s 1.1 s 347
Heat 349.5 s 1.7 s 5.4 s 65

Table 1: Average Run Time of Sequential, CUDA, and
Chestnut versions of the three applications. The data show
the time in seconds. The speed-up values are the speed-up of
the Chestnut version over the sequential version.

Benchmark CUDA Chestnut Slow-down
GOL 6.8 secs 15.1 2.2

MatrixMult 11.9 secs 84.9 7.1
Heat 15.4 secs 51.7 3.4

Table 2: Average Run Time of Larger versions of the CUDA
and Chestnut versions of the three applications. The data
show the time in seconds. The slow-down values are Chest-
nut’s slow-down over the CUDA version.

programmer would explicitly have to handle wrap-around
with the edge values. In the CUDA version, the program-
mer has to also explicitly program wrap-around for edge
points, but additionally must map a parallel thread onto a
portion of the grid data using its block and thread ids, and
must handle maintaining a copy of the grid data that can be
read from while the threads simultaneous write to a different
copy the new value for each cell.

5.2 Quantitative Comparisons
We compare Chestnut implementations to their sequential

and CUDA counterparts both in terms of number of lines of
code, and in terms of their execution times. Since the main
goal of Chestnut is making GPU programming accessible to
a much larger set of programmers, its main advantage is its
speed-up over an equivalent sequential version of the code.
However, we also want Chestnut to perform comparably well
to hand-written CUDA code, so that Chestnut programmers
achieve speed-ups that are close to those they would get from
programming in CUDA without the difficulty of having to
program in CUDA.

We ran performance tests of sequential, Chestnut, and
CUDA versions of our three example programs. The results
are shown in Table 1. These data show the total execu-
tion time of each version of the three programs 2. These
data show huge improvements in the Chestnut version over
the sequential version of each benchmark. Matrix Multiply
shows the largest speedup value of 347 (1.1 seconds vs. 398.6
seconds), and Heat Dispersion the smallest speed-up value
of 65 (5.4 seconds vs. 349.5 seconds). Part of the reason
for the smaller speed-up with heat dispersion is that only
four neighbor values are read to update each point value vs.
eight in GOL. Matrix multiply is surprisingly fast given that
each point update still requires sequential accesses to a sin-
gle row and a single column. One explanation for the huge
improvement in the GPU versions of matrix multiply could
be a low cache hit rate for the sequential version due to the
large size matrices. Because GPU memory is organized dif-
ferently than CPU memory, and because of its parallelism,

2Experiments were run on a system with NVidia GeForce
GTX card with 480 CUDA cores running at 1.4GHz and
1535MB of memory.

the GPU version does not suffer from a similar performance
degradation.

In Table 2, we show larger runs of only the CUDA and
Chestnut versions of the three benchmark programs. These
data show that the hand-written CUDA versions are faster
across all benchmarks, but that Chestnut is comparable.
The largest slow-down of Chestnut over CUDA is 7.1 for Ma-
trix Multiply, and the smallest is 2.2 for GOL. The CUDA
version of Matrix Multiply makes use of CUDA’s support
for shared memory and synchronization between threads,
and this accounts for a large part of its improvement over
Chestnut.

To help explain why the longer runs of the Chestnut ver-
sions of the benchmarks are slower than the hand-written
CUDA versions, we ran versions with timing code added
to measure different parts of each of their executions. Our
results show that the performance difference is not due to
extra CPU-side overhead in the Chestnut versions, but in-
stead points to Thrust as being the cause of much of the
performance difference between the two.

Our current implementation of Chestnut has focused on
implementing and designing the language, using a fairly
straight forward back-end implementation that generates
Thrust code. In the future we plan to investigate gener-
ating better optimized code, and anticipate that Chestnut
will then perform similarly to hand written CUDA code.
However, even using our current back-end implementation,
Chestnut produces GPU code that is comparable to hand-
written CUDA code.

Our quantitative results further support Chestnut as an
easy to use and powerful GPU programming language de-
signed to make GPU programming accessible to non-experts.

6. CONCLUSION AND FUTURE WORK
We have demonstrated that Chestnut is designed well to

satisfy its main goal of making GPU programming easy and
accessible to programmers with little to no prior parallel pro-
gramming experience. Chestnut is designed from scratch,
making it small and very easy to learn and use. A Chest-
nut programmer does not have to think about CPU or GPU
memory, about parallel or sequential computation, or about
synchronization; a Chestnut programmer can “think sequen-
tially” about simple operations on arrays of data. With
Chestnut, a sequential programmer can easily parallelize her
code to take advantage of huge speed-ups in computation
over a similarly structured sequential version of her appli-
cation. In addition, our preliminary results show that even
though generating optimized GPU code is a secondary goal
of our language, Chestnut does very well compared to hand
written CUDA code. Additionally, the design of the Chest-
nut compiler allows it to be fairly easy to port to target dif-
ferent CUDA libraries and to take advantage of other work
in GPU optimization for grid and stencil based applications.

Future Chestnut work includes: extending the prototype
implementation of the Visual Designer to support a larger
set of the Chestnut programming language that can be ex-
pressed with the GUI programming interface; adding sup-
port to the Chestnut language for user-defined structured
data types and for multi-dimensional parallel array of user-
defined types; further work on the Chestnut back-end to gen-
erate better optimized GPU code, which may include adding
support for generation of CULA or other GPU library code;



adding more language-level support for sequential functions
and calling sequential library code that can be interspersed
with Chestnut parallel constructs, which would allow for
user-defined CPU-side initialization functions; adding sup-
port for specifying parallel array sub-slices that can be iter-
ated over in a foreach statement or accessed sequentially,
which would allow a programmer to more easily specify dis-
tinct operations over parts of parallel arrays including ini-
tializing parts from different files; and finally, implementing
and testing more parallel applications written in Chestnut to
evaluate the expressiveness of our language, and to evaluate
the performance of the GPU code it generates.

APPENDIX
We show the complete Chestnut Game of Life program, in-
cluding all data declarations, parallel function definitions,
array initializations and parallel foreach contexts inter-
spersed with sequential code. Game of Life demonstrates
initialization inside a parallel context, support for stencil
pattern applications via easy neighbor value accesses, and
an example of using parallel functions.

Listing 10: Chestnut Game of Life

// 1000x500 parallel grid (world)
IntArray2d life_data[1000, 500];

/////////////////////////////////
// parallel function: update grid element
parallel Int game_of_life(Int2d e) {

Int neighbor_count = e.northWest
+ e.north + e.northEast + e.west
+ e.east + e.southWest + e.south
+ e.southEast;

Int state = 1; // start w/live result
if (e == 1) { // if cell is alive
if (neighbor_count <= 1) {

state = 0; // dies from loneliness
} else if (neighbor_count >= 4) {

state = 0; // dies from overpopul
}

} else { // if cell is dead
if (neighbor_count != 3) {

state = 0; // stays dead
}

}
return state;

}
/////////////////////////////////
// main program control flow:

// parallel initialization:
// set 25% of elements to 1, rest to 0
foreach cell in life_data
cell = (random() < 0.25);

end

// run 10000 rounds of GOL
for(Int i=0; i < 10000; i++) {
// update each cell’s value
foreach cell in life_data
cell = game_of_life(cell);

end
}
write(life_data, "outfile.txt")
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