
Implementation
Nswap Loadable Kernel Module on Linux

Developed on GNU/Linux as loadable kernel module with minimal kernel patching

Can be dynamically added and removed from a running system

Runs entirely in kernel space

Each node runs:

Nswap client
- interacts with kernel as a standard swap partition
- keeps a cache of most available servers
- handles swap out requests: finds remote Nswap server and sends it the page
- handles swap in requests: looks up page’s location and fetches it from remote server
- garbage collector thread for removing stale pages

Nswap server
- manages stored remote pages of other nodes
- receives incoming page fetch and store requests
- grows/shrinks available memory based on local memory requirements
- migrates pages to other servers when resources low

Network Swapping on Linux Clusters
Cluster nodes use the remote idle memory of other cluster nodes
as their swap device (rather than swapping to local disk)

•Robust system for sharing memory between cluster nodes

•Cluster memory shared over standard network with
commodity computers

•Idle nodes donate free physical memory as surplus to
nodes with overcommitted memory.

Nswap: A Network Swapping Module for Linux Clusters
Sean Finney, Kuzman Ganchev, Michael Spiegel, Matti Klock, Advisor: Tia Newhall — Swarthmore College

Goals
Transparency

� Users should not need to do anything special to use Nswap
� Non-invasive implementation
� How: implemented as a loadable kernel module

Speed
� runs entirely at kernel level
� minimum overhead in time and space for protocols and state data

Scalability
� Must scale well between small and large clusters
� How:

� Point-to-Point design: no central server
� Nodes make remote caching information using incomplete info.

• keep partial cache of most available servers

Flexibility
�Must quickly adapt to changing needs of every node
� How: Each node grows/shrinks/migrates stored remote pages

transparently in response to changes in its local memory use

Portability
� Should be architecture independent as possible
� Nswap runs on any architecture Linux supports

Future Work
Reliability: Developing and Adding a Reliability Scheme

Adaptability: Developing best Nswap Cache growing and shrinking scheme
Adaptive policy based on workload:

Scalability: Testing on larger and faster clusters

Speed: Developing a reliable UDP layer for faster remote page transfers

Why Network Swap?

Ethernet technology is currently outperforming
disk technology by an order of magnitude (this
trend will likely continue)

On average, two-thirds of the memory in a
network of workstations is idle.

Results
Environment:
Four Pentium III machines each with 512 MB RAM and with IBM Deskstar disk with
a sustained data rate between 167 and 326 MBits/sec and a max rate of 494
Mbits/sec. The available interconnect was either 10 Mbit or 100 Mbit Ethernet. The
bar graph shows results for four tasks with either sequential or random memory
access patterns and with or without File I/O.

Results:
•Nswap is faster than swapping to disk even when the network is

slower than the disk for several workloads.
•On faster networks (1 and 10 Gbit) Nswap will be even faster.

1 2 3 4

Task

0

2000

4000

6000

E
xe

cu
ti

on
 t

im
e

(s
ec

on
ds

)

Disk
Nswap

786.72866.181733.939605.916265.394

70.3077.30153.54847.75266.793

Note: Times for 1 Gbit and 10 Gbit networks are estimated using Amdahl’s Law and measurements for 10 and 100 Mbit. Times
shown are for a single iteration of the testing program.

1

Task

26.3028.9056.80306.6712.27

Disk

Speed�up�on�faster�networks
10Gbit1�Gbit100BaseT10BaseT

������ ������ ������

UPDATE

�������������	�
������
��������	�
�	�����

������ ������ ������

INVALIDATE
	

��
����
�����	��������� ������
�����������
�	���������
�	�����

������ ������ ������

PUNTPAGE

� ������������ �
	�������
���
�����	�
�	���������	�������

Page Migration Between Nswap Servers

����������	
�������������
��������

1

10

100

1000

10000

1980 1985 1990 1995 2000 2005

����

�
�
�
�
�

�
�
��
�
��
�

��
�
��
��
�
�
�

���������	

���
��������	

���������	��

������

�
��
�������
��
������

������
���
�

�
��
��������������������

������
���
�

swap�out�page

�����

���	��

������

Kernel space

User space

�
��
��������������������
PUTPAGE

network

BBShadow
slot map
Shadow Shadow
slot mapslot map

Random with I/O4

Task

Tasks ran for four iterations, and file I/O
was a separate process.

Random no I/O3

Sequential with I/O2

Sequential no I/O1

