
Incorporating Network RAM & Flash

into Fast Backing Store for Clusters

Tia Newhall and Douglas Woos

Computer Science Department

Swarthmore College

Swarthmore, PA USA

{newhall,dwoos1}@cs.swarthmore.edu

Target Environment

q General Purpose Clusters and LAN systems

� COTS

� Variable, mixed workload

� Imbalances in resource usage across nodes

� Some nodes have idle RAM, some overloaded RAM

q Data Intensive Computing on these systems

� Use backing store for swap or temporary file space

� Some nodes swapping or local disk I/O while

 others have idle RAM

2
Cluster11, Tia Newhall, 2011

3
Cluster11, Tia Newhall, 2011

Network RAM
q Cluster nodes share each other�s idle RAM as a remote

swap partition

� Takes advantage of imbalances in RAM use across nodes

� When one node�s RAM is overcommitted, swap its pages out
over the network to store in idle RAM of other nodes

+ Avoid swapping to slower local disk

+ Almost always significant amt idle RAM when some nodes overloaded

+ Free backing store

Node A

4
Cluster11, Tia Newhall, 2011

Future of Cluster Backing Store?

Disk? Flash SSD, PCM, Network RAM, �?

� Likely more heterogeneous

� At least in the short term, but possibly indefinitely

� Different media have different strengths

� Flash: fast reads, but erasure block cleaning, wear-out

� Network RAM: fast reads & writes, but variable capacity, volatile

� Likely less under control of local node�s OS

� Network RAM and networked storage

Node Operating Systems

Designed assuming local disk is backing store for

swap and local temporary files system data

� Doesn�t fit well with new technologies

� TRIM support helps

� Doesn�t fit well with heterogeneous set of

technologies; one policy does not necessarily fit all

� Flash: log structured writes, avoiding zero block writes,

callback when data freed (to clean blocks)

� Network RAM: noop scheduler, callback when data freed

(to free remote RAM space)

� Disk: elevator, sequential placement & prefetching

5
Cluster11, Tia Newhall, 2011

Want
q Easily incorporate new technologies as backing store for swap

and local file system data

q Take advantage of strengths of different media

� fast Writes to Network RAM, fast Reads from Flash

q Take advantage of increased I/O parallelism

q Remove from OS much of the complexity of interacting with

heterogeneous set devices

� OS sub-system policies free from assumptions about underlying backing

storage device(s)

� As technologies change, OS can still have same view of backing store

�device�

6
Cluster11, Tia Newhall, 2011

7
Cluster11, Tia Newhall, 2011

Our Solution: Nwap2L
q Conceptually, 2-levels of device driver

q Top-level Nswap2L driver is interface to OS
� Appears as single, large, fast, random-access backing store

� OS policies optimized for single top-level interface

Prototype Implementation
q Top-level is Linux 2.6 lkm block device driver

� Can be added as a swap device to individual cluster nodes

q Top-level directly manages Nswap Network RAM

q Top-level uses Red Hat's dmio interface to interact
with other low-level device drivers (disk, Flash, �)

9Cluster11, Tia Newhall, 2011

Nswap Adaptable Network RAM

q P2P Design: Each node runs a multi-threaded client & server

� Client is active when node swapping (needs more RAM)

� Server is active when node has idle RAM available

q Each node manages is part of RAM currently available for storing
remotely swapped pages data (Nswap Cache)

� Nswap Cache size grows/shrinks with local process needs

q Implemented as Linux lkm block device driver

Nswap Client
swap out page Nswap Server

Nswap Server

Node A Node BKernel space

Nswap Cache Nswap Client

Network

B flash C disk flash B D E �

Nswap2L Implementation

q Nswap2L Driver Client + Nswap Server
� Shadow slotmap encodes placement on underlying device

10
Cluster11, Tia Newhall, 2011

W/R a page i

Nswap Server

Kernel:Nswap2L

Nswap Cache
dm_io

Network

 i Shadow slotmap

Flash driver Disk driver

W/R page i

Placement, Prefetching, Migration

Nswap2L vs. Other Swap Devices
Benchmark Nswap2L

(speedup)
Nswap Flash Disk

WL1 443.0 (3.5) 471.8 574.2 1,547.4

WL2 591.6 (30.0) 609.7 883.1 17,754.8

WL4 578.9 (30.9) 591.7 978.4 17,881.2

Radix 110.7 (2.3) 113.7 147.4 255.5

IS 94.4 (2.4) 93.1 107.6 224.4

HPL 536.1 (1.5) 529.7 598.7 815.3

11
Cluster11, Tia Newhall, 2011

� Nswap2L (to NW RAM only) and Nswap perform best

� Flash is close to Nswap and Nswap2L

Device Speeds in our System

Direct Large
Read via /dev

Direct Large
Write via /dev

Flash SSD 23.5 32.7

Nswap 21.7 20.2

12
Cluster11, Tia Newhall, 2011

12 node cluster, 1GB Ethernet, Intel X25-M SATA1 80GB Flash SSD

� Nswap Network RAM is faster

� Flash reads are comparable to Nswap Reads

� Write to Network RAM and Read from both

Prefetching between devices

q Take advantage of fast writes to Network RAM

and fast reads from Flash

� Increase write speed by always writing to fastest device

� Prefetch some blocks from Network RAM to Flash

which has better read performance than write

� Results in increased read parallelism by distributing

reads over multiple devices

q Prefetching between low level devices can be

much more aggressive than prefetching from

backing store to memory

13
Cluster11, Tia Newhall, 2011

Prefetching Policy Questions

 Q1: When should prefetching occur?

if swapping since last check, periodically,�

Q2: How many pages should be prefetched?

fixed amount, % recently swapped, % total swapped

Q3: Which slots/pages should be prefetched?

RR, Random, LRS (LeastRecentlySwapped), MRS

Q4: From which device(s), to which device(s)?

from Network RAM to Flash

� Frees up Network RAM space for future writes

� Increases Parallel reads

14
Cluster11, Tia Newhall, 2011

Prefetching Experiments

q Placement policy: pick Network RAM first,

Flash only when no available Network RAM

q Prefetching polices

� Q1: periodically

� Q2: 10% of number of swap outs since last

 prefetch activation

� Q3: Random, LRS, MRS, RR of slots

� Q4: From Network RAM to Flash

15
Cluster11, Tia Newhall, 2011

Degree of Read Parallelism

WL1 WL2 IS Radix HPL

No
prefetching

5.5 5.7 5.6 5.4 5.2

Prefetching 3.8 5.3 6.1 13.7 13.1

16
Cluster11, Tia Newhall, 2011

 (ave number of concurrent reads)

Parallel workloads benefit more than sequential

 13.7 vs. 5.4

Due to:

access patterns in sequential

multiple processes in parallel

Prefetching Read/Prefetch Ratios

Policy WL1 WL2 IS Radix HPL

RR 1.1 3.0 1.7 0.5 0.9

Random 1.2 3.2 1.4 0.5 0.8

LRS 1.1 2.7 1.9 0.2 0.8

MRS 1.2 3.0 1.6 0.4 0.8

17
Cluster11, Tia Newhall, 2011

� Best Policy differs for different workloads

� MRS surprisingly isn�t always best, but not
 ever the worst, might be good general policy

Computed Ideal Runtimes

q Measured parts of execution time

� dmio adds 700% overhead to Flash I/O vs. direct

read and write to Flash via /dev

q Ideal runtime (no dmio overheads) =
(P

NS
 x TotalTime)

+(P
S
 x (TotalTime – FR

w_dmio
+ FR

no_dmio
))

q Can also use this to compute runtimes for

cases when Flash is faster than Network

RAM

18
Cluster11, Tia Newhall, 2011

Computed Runtimes

q HPL faster with prefetching to slower Flash

than NW RAM alone (Control)

� Increased parallelism in reads over NW and Flash

q On systems with faster Flash than NW,

prefetching to Flash performs better for both

workloads

19
Cluster11, Tia Newhall, 2011

Control Ideal
(no dmio)

Flash 10%
< NW

Flash 20%
< NW

WL1-Random 455.8 461.8 450.1 445.3

HPL-LRS 628.4 600.3 597.0 595.9

Conclusions

q Nswap2L Provides a high-level interface of

single, fast, random storage device on top of

heterogeneous physical storage.

q Our prototype system supports general design,

when used as fast swapping device in clusters

q Prefetching and placement policies result in faster

execution times

� Even when distributed over Network RAM and slower

Flash faster than Network RAM alone

20
Cluster11, Tia Newhall, 2011

Future Work
q Implementation that removes high overheads

with how we are using dmio

q Further investigate prefetching and placement

policies

� Adaptive policies?

q Add support for using Nswap2L as backing

store for local temporary file system

� STXXL, TPIE libraries for large data sets

� FS block size vs. swap page size

� Persistence guarantees?

21
Cluster11, Tia Newhall, 2011

Acknowledgements

q This work partially funded by NSF CSR-RUI

q Many Swarthmore undergraduate students

involved in the Nswap project

q For more information:

 www.cs.swarthmore.edu/~newhall/nswap

Questions?

22
Cluster11, Tia Newhall, 2011

