
Incorporating Network RAM and Flash into Fast

Backing Store for Clusters

Tia Newhall and Douglas Woos

Computer Science Department

Swarthmore College

Swarthmore, PA 19081, USA
{newhall,dwoos1}@cs.swarthmore.edu

Abstract—We present Nswap2L, a fast backing storage system
for general purpose clusters. Nswap2L implements a single
device interface on top of multiple heterogeneous physical storage
devices, particularly targeting fast random access devices such as
Network RAM and flash SSDs. A key design feature of Nswap2L
is the separation of the interface from the underlying physical
storage; data that are read and written to our “device” are
managed by our underlying system and may be stored in local
RAM, remote RAM, flash, local disk or any other cluster-wide
storage. Nswap2L chooses which physical device will store data
based on cluster resource usage and the characteristics of various
storage media. In addition, it migrates data from one physical
device to another in response to changes in capacity and to
take advantage of the strengths of different types of physical
media, such as fast writes over the network and fast reads from
flash. Performance results of our prototype implementation of
Nswap2L added as a swap device on a 12 node Linux cluster
show speed-ups of over 30 times versus swapping to disk and over
1.7 times versus swapping to flash. In addition, we show that for
parallel benchmarks, Nswap2L using Network RAM and a flash
device that is slower than Network RAM can perform better
than Network RAM alone.

I. INTRODUCTION

“Science has entered a data-intensive era, driven by a deluge

of data being generated by digitally based instruments, sensor

networks, and simulation devices.” 1 As a result, designing

systems that efficiently support data-intensive computing is

increasingly important. As the disparity between the speeds

of magnetic disk and other hardware such as RAM, inter-

connection networks, and flash continues to grow, the cost

of accessing disk will increasingly become the bottleneck to

system performance. It is almost certain that this disparity will

eventually make magnetic disk obsolete. In the meantime, it

will be increasingly important to develop systems that can

avoid using disk as much as possible and can make the best

use of emerging fast storage technologies in clusters. It is also

likely that cluster storage will be more heterogeneous in the

future; at the very least, Network RAM will continue to rival

solid state drives. In addition, swap and local temporary file

system storage may not be managed entirely by the OS running

on individual cluster nodes, particularly as network-shared

storage and Network RAM become more common. Replacing

1Michael Norman, Interim Director of SDSC from “SDCS to Host ‘Grand
Challenges in Data-Intensive Discovery’ Conference”, HPCwire, August 3,
2010.

magnetic disk with a heterogeneous set of fast, random access

storage devices will require changes to OS subsystems that are

designed assuming that swap and local temporary file data are

stored on local disk and that this storage is managed solely

by the OS running on individual cluster nodes.

In general purpose clusters (clusters that support multiple

users and run a wide range of program workloads), resource

utilization varies due to dynamic workloads. Because resource

scheduling is difficult in this environment, there will often be

imbalances in resource utilization across cluster nodes. For

example, some nodes may have idle RAM while others have

over-committed RAM, resulting in swapping. The idle RAM

space on some nodes can be used by a Network RAM system

to improve the performance of applications running on the

cluster. Network RAM allows individual cluster nodes with

over-committed memory to swap their pages over the network

and store them in the idle RAM of other nodes.

Data intensive applications running on general purpose

clusters, such as parallel scientific or multimedia applications,

often perform large amounts of I/O either indirectly due to

swapping or directly due to temporary file accesses. If swap

and temporary file system data can be stored in Network RAM

or solid state storage, these applications will run much faster

than when swap and temporary file system data are stored on

magnetic disk.

Nswap2L is an extension of Nswap, our Network RAM

system for Linux clusters. Nswap2L is a scalable, adaptable

system that is a solution to the problem of supporting a het-

erogeneous set of backing storage devices in general purpose

cluster systems, some of which may have changing storage

capacities (Network RAM) and some of which may not be

completely under the control of the local OS (Network RAM

and other shared network storage.)

Nswap2L implements a novel two-level device design. At

the top level is a simple interface presented to cluster operating

systems and user-level programs. The top level manages the set

of heterogeneous low-level physical storage devices, choosing

initial data placement and migrating data between devices in

response to changes in cluster-wide resource utilization and

storage capacity, and to take advantage of strengths of different

media, with a goal of making out-of-core data access as fast as

possible. Higher level system services, such as temporary file

systems or swapping systems, interact with our top-level single

device interface to take advantage of heterogeneous, adaptive,

fast, cluster-wide storage. By moving most device-specific

management into Nswap2L, our system frees cluster operating

systems from needing specialized policies in swapping and file

subsystems that are tuned for every different type of physical

storage device. Our current implementation of Nswap2L can

be added as a swap device on individual cluster nodes.

Our future work includes extending its use, particularly for

temporary local file system storage.

The rest of the paper is organized as follows: Section II

discusses related work in fast random access storage; Sec-

tion III presents background on Nswap’s Network RAM

implementation; Section IV presents experimental studies mo-

tivating our two-level design; Section V discusses the design

and implementation of Nswap2L; Section VI presents results

evaluating Nswap2L; and Section VII concludes and discusses

future directions.

II. RELATED WORK

The work most related to ours includes other work in

Network RAM, and work in incorporating solid state storage

into systems. Network RAM uses remote idle memory as

fast backing store in networked and cluster systems. This

idea is motivated by the observation that network speeds are

increasing more rapidly than disk speeds. In addition, because

disk speeds are limited by mechanical disk arm movements

and rotational latencies, the disparity will likely continue to

grow. As a result, accesses to local disk will be slower than

using remote idle memory as backing store and transferring

blocks over the faster network. Further motivation for Network

RAM is supported by several studies [1], [2], [3] showing

that large amounts of idle cluster memory are almost always

available.

There have been several previous projects examining the

use of remote idle memory as backing store for nodes in

networks of workstations [4], [3], [5], [6], [7], [8], [9], [10],

[11]. Some incorporate Network RAM into an OS’s paging

system, some into an OS’s swapping system, and others into

an OS’s file system as a cooperative cache for file data.

Most use a central server model, wherein a single node is

responsible for managing the Network RAM resource and

clients make memory requests to this central server. A few,

including ours, are completely distributed, where peers running

on individual cluster nodes can make Network RAM allocation

and deallocation decisions without having to contact a central

authority. Our system has the unique quality of adapting to

changes in cluster RAM usage by migrating remotely swapped

pages between nodes in response to these changes. This allows

our system to be persistent on a cluster and ensures that it will

not interfere with cluster application RAM use.

There has also been much recent work that examines

incorporating emerging solid-state storage into systems [12],

[13], [14], [15], [16]. Different uses include incorporating flash

into the memory hierarchy and using it as a fast out of core

buffer cache in database management systems. Some work

has examined how flash can be used in high-performance

computing. In [15], the authors compare scientific workload

run times for different backing storage devices: two flash

devices and disk. They find that for sequential workloads, the

flash drives offer little improvement over disk, but for parallel

workloads flash significantly outperforms disk, primarily due

to increased opportunity for parallel I/O. In [16], the au-

thors model several emerging storage technologies, including

phase-change memory and spin-torque transfer memory. They

find that these newer technologies can lead to significant

performance improvements, especially if the OS is modified

to remove the classical assumption that I/O is very slow

compared to computation.

The FlashVM project [14] examines using flash as the

virtual memory system’s paging and swapping device. They

show that many changes need to be made to the operating

system in order for flash to be used efficiently by the VM

system. These include changes to device scheduling policies

that are are optimized for magnetic disk, zero-page sharing to

avoid some flash wear-out, and call-backs to the flash device

when blocks are freed so that erasure blocks can be cleaned.

We anticipate that general purpose clusters will increasingly

incorporate more flash memory, but will also continue to

use disk until the cost of flash, or other fast backing store,

significantly decreases. In addition, issues with flash wear-

out and write degradation require solutions before flash SSD

completely replaces magnetic disk. We also anticipate that

Network RAM will continue to rival fast solid state storage.

III. NSWAP’S ADAPTABLE NETWORK RAM

Nswap [17], [18] is our Network RAM system for Linux

clusters. It is implemented as a loadable kernel module that

is easily added as a swap device on cluster nodes. Nswap

runs entirely in kernel space on an unmodified 2 Linux 2.6

kernel; it transparently provides network swapping to cluster

applications. Nswap is designed to be efficient, to adapt to

changes in nodes’ RAM use, and to scale to large-sized

clusters.

Each Nswap node is an equal peer running both the Nswap

Client and the Nswap Server (shown in Figure 1). The client

is active when a node is swapping. The server is active when

a node has idle RAM space that is available for storing page

data swapped to it from remote nodes. At any point in time

a node is acting either as a client or a server, but typically

not both simultaneously; its role changes based on the current

RAM needs of its local processes.

Nswap is designed to scale to large clusters using an

approach similar to the Mosix [19] design for scalability. To

find available remote swap space, each node uses only its

own local information about available idle RAM in the cluster

(shown as the IPTable in Figure 1.) This information does not

need to be complete nor completely accurate. The IPTable

stores an estimate of the amount of available idle RAM on

some other nodes. These values are updated when nodes

2Currently, we require a re-compile of the kernel to export two kernel
symbols so that our module can read the kernel’s swap map for our device,
but no kernel code is modified

�
�
�
�

��
��
��
��

amt
B 44
C 17
D 20

.
.

.

.
.

.

host
IP Table

Nswap clientNswap clientNswap Server

User Space

BCshadow
slot map

Kernel Space

client threads

Node A

Nswap Server

Nswap Cache

threads

IP Table

Nswap client

A’s page j

server

Node B

read (swap in) page j

copy of page j

SWAP IN

Fig. 1. Nswap System Architecture. Node A shows the details of the client including the shadow slot map used to store information about which remote

servers store A’s pages. Node B shows the details of the server, including the Nswap Cache of remotely swapped pages. In response to the kernel swapping

in (out) a page to our Nswap device, a client thread issues a SWAPIN (SWAPOUT) request to read (write) the page from a remote server.

periodically broadcast their available idle RAM capacities.

Each Nswap node is also solely responsible for managing just

the portion of its local RAM that is currently available for

storing remotely swapped pages (shown as the Nswap Cache

in Figure 1.) Because there is no central authority managing

network RAM allocation, Nswap can easily scale to large-

sized clusters.

The multi-threaded Nswap Client is implemented as a

device driver for our pseudo-swap device. A client thread is

activated when the kernel makes a swap-in or swap-out request

to our swap “device”, just as it would to a driver for a swap

partition on disk. For any swap device, the kernel has a data

structure called a swap map used to keep track of each 4K

page of allocated swap space on the device. The Nswap Client

keeps additional information about each page of swap space

in a data structure called the shadow slot map. There is one

shadow slot map entry per kernel swap map entry. When a

client thread receives a swap-in request from the kernel, it

looks up the server ID in the corresponding shadow slot map

entry and sends a swap-in request to the Nswap Server storing

the page. For example, in Figure 1, the client thread handling

a read request from the kernel for swap slot j looks up entry

j in the shadow slot map to find that server B stores the page.

When the client receives a swap-out request from the kernel,

it finds a good Nswap Server candidate using IPTable data,

updates its shadow slot map entry with this server’s ID, and

send the server a swap-out request and the page to store.

The multi-threaded Nswap Server is responsible for manag-

ing the portion of its RAM currently allocated for storing re-

motely swapped page data (the Nswap Cache). Server threads

receive swap-in and swap-out messages from Nswap Client

nodes. On a swap-in request, a server thread does a fast look-

up of the page in its Nswap Cache and sends a copy of the

page to the requesting client.

A novel feature of Nswap is its adaptability to changes in

cluster-wide RAM usage. The amount of RAM Nswap makes

available on each node for storing remotely swapped page data

changes with the RAM needs of the workload. The Nswap

Server on each node is responsible for growing and shrinking

the amount of RAM it makes available for storing remotely

swapped page data (its Nswap Cache capacity). It changes its

Nswap Cache capacity in response to local memory use: when

TABLE I
READ AND WRITE ACCESS TIMES TO FLASH AND NETWORK RAM. The
data show the time in seconds to read/write 500,000 4KB pages to each

device via /dev. Each value is the average of 10 runs.

Operation Flash Network RAM
SATAI 1Gb Ethernet

Read 23.5 secs 21.7 secs
Write 32.7 secs 20.2 secs

local processes need more RAM space, the Nswap Server

releases pages from its Nswap Cache back to the local paging

system; when idle RAM becomes available, the Nswap Server

allocates some of it, increasing the size of its Nswap Cache.

When an Nswap Server gives RAM back to the paging system,

remotely swapped page data stored in that RAM are migrated

to other Nswap Servers that currently have available Nswap

Cache space. If no available Nswap Cache space exists, pages

are migrated back to their owner’s node and written to swap

space on local disk. Nswap’s adaptability is key; it allows

Nswap to be persistent on clusters and not interfere with the

RAM needs of cluster applications.

IV. MOTIVATION FOR TWO LEVEL DRIVER SYSTEM

In support of the two-level design of Nswap2L, we con-

ducted experiments comparing Network RAM and flash

speeds. All experiments were run on a 12 node cluster, each

node running a 2.6.30 Linux kernel and connected by a 1

Gigabit Ethernet switch 3. Our first experiment compares

direct reads and writes through /dev to flash and to Nswap’s

Network RAM. We measured the total time to perform a large

sequential write to the device followed by a large sequential

read. The amount of data transfered is larger than physical

RAM, thus all reads should require physical device I/O and

will not be satisfied by the file cache.

The results, in Table I, show that Nswap outperforms flash

devices for reads and writes (21.7 vs. 23.5 seconds and 20.2 vs.

32.7 seconds.) However, the read speeds from flash are close to

those from Nswap. The relative read performance will depend

on the particular devices; however, based on this experiment as

well as other studies of flash performance [16], [14], [20], we

anticipate that reads to flash will rival, and may outperform,

3Nodes have Pentium4 processors, 80GB Seagate Barracuda7200 IDE disk
drives, and Intel X25-M SATAI 80GB Flash SSD drives

TABLE II
KERNEL BENCHMARKS COMPARING SWAPPING TO FLASH VERSUS

SWAPPING TO NSWAP’S NETWORK RAM.

Workload Flash Nswap

WL1: sequential writes and reads 253.34 secs 232.50 secs
WL2: random writes and reads 181.60 secs 119.49 secs
WL3: WL1 plus disk file system I/O 208.63 secs 147.31 secs
WL4: WL2 plus disk file system I/O 259.24 secs 120.06 secs

reads to Network RAM and that writes to Network RAM will

outperform writes to flash. This experiment motivates choosing

Network RAM as the initial target of written pages, and then

migrating pages from Network RAM to flash so that some

subsequent read requests can be satisfied by faster flash; or, in

the case when flash and Network RAM are equally good, more

reads can be handled in parallel by distributing them over both

Network RAM and flash. We do not want to write to both flash

and Network RAM simultaneously since the slowest device

will determine the time it takes to satisfy the write request.

Therefore, prefetching and migration will be a better way to

take advantage of the strengths of each device.

Our second experiment compares using flash to using

Nswap’s Network RAM as a swap device. The experiment

measures the runtime of four memory-intensive kernel bench-

mark programs, each designed to stress different cases when

disk I/O should be particularly good or bad: WL1 consists

of iterations of a large sequential write followed by a large

sequential read to virtual memory and is the best case for

swapping to disk because the memory access patterns match

the swap allocation patterns, and disk seek time is minimized;

WL2 writes and reads to random memory locations and

triggers random read and write access to the swap partition,

increasing disk head movement within the swap partition;

finally, WL3 and WL4 consist of one WL1 or WL2 process

and another process that reads and writes to a local file

partition, further stressing disk arm movement between the

swap and file partitions.

The results, in Table II, show that all four benchmarks per-

form better when Network RAM is used as the swap partition.

However, the results for flash are comparable. Because the

flash execution times include both reads and writes to the

flash drive, our proposed two-level design that makes use of

both flash and Network RAM has the promise to outperform

either flash or Network RAM alone. Even if Network RAM is

always faster than flash, our system will allow for data stored

in Network RAM to be moved to flash when there is not

enough cluster-wide idle RAM available for Network RAM.

Finally, we evaluate prefetching opportunities in real work-

loads by examining swap access patterns for several parallel

benchmark programs: Radix from SPLASH-2 [21], [22], IS

from NAS Parallel [23], and the Linpack HPL [24] benchmark.

Figure 2 shows read and write accesses to swap slots over the

run of Radix 4. The results show locality in swap slot accesses,

particularly a clear pattern of sequential writes, which match

4Swap access patterns for the IS and HPL benchmarks are very similar to
Radix and are not included here due to space restrictions.

Fig. 2. Read and Write accesses to Swap Slots over the execution of the
Radix SPLASH-2 benchmark. The x-axis is time and the y-axis is swap slot

number. Reads are shown in grey, writes in black.

the OS’s swap allocation policy. The data also show that writes

are much less frequent than reads; in fact, analysis of the raw

data indicates that almost all swap slots are written to only

one time and read from multiple times. These results support

prefetching pages from Network RAM to flash. The locality of

swap access patterns means that prefetching policies could be

developed to make good guesses at which pages to prefetch.

In addition, because swapped data are likely to be written

once but read multiple times, prefetching may be cost effective

by prefetching a page just once into flash to obtain multiple

subsequent fast reads of the page.

V. NSWAP2L DESIGN AND IMPLEMENTATION

Figure 3 shows Nswap2L’s system architecture. It is a

multi-layered system which separates the interface, policy, and

mechanism components. At the top is the Interface Layer with

which the OS and user-level programs interact. Currently, it

implements an interface of a single, fast random access block

device that can be added as a swap partition on cluster nodes.

In the future we plan to extend Nswap2L functionality so that

it can be used as backing store for other kernel and user-

level services such as temporary file systems, and we plan to

add new interfaces, including a programmable API. Currently,

the Interface layer contains functions to read and write to our

“device”. In the future, we plan to add Interface functions

to free and allocate blocks and to force persistent storage

of some blocks. The Interface layer maintains a mapping of

where blocks written to our top-level ”device” are stored on

the underlying physical devices.

The Policy Layer implements policies for choosing under-

lying placement of blocks written to our top-level “device”,

for prefetching blocks from one physical device to another,

and for migrating blocks between different low-level devices.

The Mechanism Layer implements functionality to read and

write blocks to different low-level physical devices, to move

a block stored on one device to another, and to free blocks

Mechanism Layer:

Policy Layer:

read/write page to/from low−level device

Interface Layer: Single, Fast, Random Access Block Device

Kernel and/or User−level

migrate page from one backing store to another

choose low−level device for data placement

Programmable
API

Other...

free a page/block from top−level device
allocate space from top−level device

Physical Storage:

storage ...
Network RAM Flash SSD disk other cluster−wide

prefetching blocks between low−level devices

force persistent storage for page/block

read/write a page or block to/from top−level device

move page from one low−level device to another
free a page from low−level device

Fig. 3. Nswap2L System Architecture. It supports a set of interfaces on

top of multiple physical storage. Current functionality is shown in black and

white. Future functionality is shown in grey boxes.

Network
RAM

Kernel: R/W blocks

FlashSSD

Flash Driver Block Driver

Device

. . .

. . .

Nswap2L Top−Level Device Driver

Disk Driver

Disk

dm_io interface

Fig. 4. Nswap2L Implementation. When used as backing store for swap, the

OS sends R/W requests to the top-level Nswap2L driver. The top-level driver

directly manages all parts of Nswap’s Network RAM backing storage and
uses dm io to pass I/O requests to the other low-level device drivers.

stored on physical devices. The Policy Layer makes calls to

the Mechanism Layer layer to place, prefetch, and migrate

blocks between underlying physical devices.

Conceptually, Nswap2L is implemented as two levels of

device drivers; the top level is a single pseudo-device driver

that sits on top of multiple low-level device drivers, one

for each physical storage device. The top level receives I/O

requests from the OS’s swap system and keeps track of where

data are stored on underlying physical devices so that it can

send I/O requests to the appropriate low-level physical storage

device. The top-level driver implements all the layers of our

system architecture. For example, when it receives a write

request from the kernel, it runs code in the Policy Layer

that chooses a physical device on which to place the blocks,

updates mapping information about where the block is placed,

and invokes functions in the Mechanism Layer for writing to

an underlying physical device.

Our prototype implementation (in Figure 4) closely fits our

conceptual two-level driver model. We appear to Linux as a

single, fast, block device, and receive read and write requests

from the Linux swap system. The top-level driver directly

manages the Network RAM storage and passes read and write

requests to lower-level device drivers for flash, disk, or other

storage devices. We use Red Hat’s Device Mapper module

(dmio) [25] to pass I/O requests from the top-level driver to

the low-level drivers.

The top-level driver uses the shadow slot map to track which

underlying low-level device stores each block. When a read

request to the top-level “device” is made, Nswap2L looks up

the location of the page in its shadow slot map. If the page is

stored in Network RAM, it handles all the low-level messaging

to request a copy of the page from the Nswap Server storing

the page. If, however, the page is stored on a different physical

device, Nswap uses the dmio interface to read in the page

from the underlying device. On a write request, the top-level

driver chooses a low-level device for placement and encodes

the device or Nswap Server in the shadow slot map entry for

the page.

Nswap2L’s current page placement policy always chooses

Network RAM first, choosing flash only when no Network

RAM space is available. This policy is designed to work well

in systems where writes to Network RAM are faster than

writes to flash. We anticipate that, in general, data placement

policies will be simple and will likely consist of a fixed ranking

of underlying devices. However, it is possible that policies

that take into account resource usage such as network load

may result in better placement decisions. In the future, we

plan to investigate dynamic policies that may choose flash as

the target even when there is Network RAM space available.

For example, if there is a large burst of writes, it may be

advantageous to distribute writes over flash and Network RAM

to handle more in parallel.

Prefetching is one way to improve performance, taking

advantage of the strengths of different underlying media by

targeting different devices for reads and writes and distribut-

ing storage across equally good devices to improve the I/O

bandwidth of our “device”. For example, writes to flash are

generally slower than reads, primarily due to erasure. Our

performance studies from Section IV support initially writing

pages to Network RAM and later prefetching some pages from

Network RAM to flash so that some subsequent reads can be

satisfied by flash. If flash reads are faster than Network RAM

reads, then this will improve the performance of reads to our

“device”. If flash reads remain comparable to Network RAM

reads, then prefetching can improve I/O bandwidth.

It is important to develop good prefetching policies that

will pick the best pages to move from Network RAM to flash.

However, the cost of a bad prefetching choice in our system

is much less than that of a bad prefetching choice in paging

and file systems that prefetch from backing store into main

memory; in our system, a bad prefetching choice will never

result in more paging or swapping. Therefore, we may be

able to implement more aggressive prefetching algorithms than

those used in paging and file systems that prefetch pages from

backing store into RAM.

Nswap2L’s prefetching policy implementation is divided

into sub-policies that answer three questions: (Q1) ”When

should prefetching occur?”; (Q2) ”How many pages should be

prefetched?”; and (Q3) ”Which pages should be prefetched?”

Functions that implement answers to these three questions

can be combined to create different prefetching policies. Our

current focus is on prefetching from Network RAM to flash;

however, to support prefetching between any two devices, a

fourth policy question (”From which device should pages be

prefetched?”) would be added.

Our implementation uses a prefetching thread that periodi-

cally wakes up and runs policy functions associated with the

three questions. The implementation is designed so that new

policies can be easily added to our system. We also added

a /proc interface to the prefetching subsystem that allows

prefetching to be enabled or disabled, and allows changing

the particular sub-policy functions on the fly.

The first question (when should prefetching occur) is deter-

mined by both the amount of time the prefetch thread sleeps

between checks, and by the particular Q1 policy function.

Q1 policies could be based on current swapping activity. For

example, it may be advantageous to prefetch only when a node

is in a swapping phase because pages have more potential to

be prefetched before being swapped in again. On the other

hand, prefetching during swapping activity may lead to a slow

down of the application’s performance as prefetching I/O could

interfere with swapping I/O.

Q2 policies (how much should be prefetched) can be based

on a fixed percent of total swap space in use, or on a

percentage of the number of pages swapped out the last time

the prefetch thread woke up. We have both types of policies

implemented. The second type requires adding a counter to

keep track of the number of swap outs between prefetch thread

activations.

Q3 policies (which pages should be prefetched) could be

quite simple, such as a round-robin selection of swap slots,

or they could be based on swap slot access patterns in an

attempt to make better prefetching choices by trying to chose

pages to prefetch that are likely to be read soon. Currently, we

have four Q3 policies implemented: round-robin of swap slots;

randomly selected swap slots; selecting the Least Recently

Swapped to (LRS) slots; and selecting the Most Recently

Swapped to (MRS) slots. If there is locality in swap slot

accesses, then MRS should prefetch pages that are most likely

to be swapped in soon. LRS and MRS are implemented using a

clock approximation algorithm. We added a reference bit to the

shadow slot map that is set when a slot is swapped in or out,

and is cleared by the clock hand when MRS or LRS Q3 policy

functions run. LRS chooses slots with clear reference bits to

prefetch (an approximation of the least recently swapped to),

and MRS chooses slots with set reference bits.

VI. EXPERIMENTAL RESULTS

In this section, we present results of several experiments

evaluating Nswap2L. Our first experiment compares the run-

time of a set of sequential and parallel benchmarks (described

in Section IV) for different swap devices: Nswap2L; flash

SSD; Nswap Network RAM; and disk. For this experiment,

Nswap2L swapped only to Network RAM; prefetching to flash

TABLE III
COMPARISON OF DIFFERENT SWAP DEVICES. The benchmark total run time

(in seconds) when run using Nswap2L, Nswap Network RAM, flash or Disk

as the swap partition. Bold entries show the best time. Nswap2L speedups
over disk are in parentheses.

Benchmark Nswap2L Nswap Flash Disk

WL1 443.0 (3.5 speedup) 471.8 574.2 1547.4
WL2 591.6 (30.0) 609.7 883.1 17754.8
WL3 503.3 (3.4) 526.4 514.1 1701.3
WL4 578.9 (30.9) 591.7 978.4 17881.2
Radix 110.7 (2.3) 113.7 147.4 255.5
IS 94.4 (2.4) 95.1 107.6 224.4
HPL 536.1 (1.5) 529.7 598.7 815.3

was not enabled. Table III shows the total runtime of the

benchmarks for the four different swap devices. The results

show that all benchmarks perform best when Nswap2L or

Nswap Network RAM are used as the swap device. Disk is

much slower, even for WL1 which is the best possible case for

disk swapping. The results for flash are comparable to Network

RAM. Since the flash execution times include both reads and

writes to the flash drive, our proposed two-level system that

makes use of both flash and Network RAM has the promise

to outperform both flash and Network RAM alone. Even if

Network RAM is always faster than flash, our system will

allow for data stored in Network RAM to be moved to flash

when there is not enough cluster-wide idle RAM available for

Network RAM, and will allow for increased parallel reads by

distributing them over both flash and Network RAM.

These results also show no additional overhead of Nswap2L

over Nswap Network RAM when Nswap2L swaps to Network

RAM only. Given that in our implementation of Nswap2L the

top-level driver directly manages Network RAM, we expected

that Nswap2L would not add additional overheads to Nswap

when all pages are swapped to Network RAM, and these data

confirm our expectation.

Our second set of experiments evaluate Nswap2L’s prefetch-

ing policies. For these experiments, the placement policy

always chooses Network RAM for swapped-out page data,

the prefetch thread then periodically runs and prefetches some

pages from Network RAM to flash, and subsequent swap-in

requests from the kernel are satisfied by Network RAM or

flash depending on whether the page has been prefetched or

not. All prefetching experiments used a Q2 policy (how many

pages to prefetch) that tries to prefetch a number of pages up

to 10% of the number of swap outs since the last activation of

the prefetching thread. We compared runs with no prefetching

(Control) to four different Q3 prefetching policies: Round-

robin (RR); Random; Least Recently Swapped (LRS); and

Most Recently Swapped (MRS).

Assuming that increasing the number of reads from flash is

desirable, the most effective prefetching policy is the one that

has the most reads per prefetched page—the policy that max-

imizes the likelihood of a page being swapped in from flash.

Table IV shows the ratio of the number of reads from flash to

the number of prefetches to flash for the different prefetching

policies for each of the benchmark programs. A ratio value

TABLE IV
FLASH READ TO PREFETCHING RATIOS. The rows are prefetching

algorithms, the columns benchmark programs, and the values are the ratio

of the number of reads from flash to the number of prefetches to flash.

WL1 WL2 IS Radix HPL

RR 1.1 3.0 1.7 0.5 0.9
RAND 1.2 3.2 1.4 0.5 0.8
LRS 1.1 2.7 1.9 0.2 0.8
MRS 1.2 3.0 1.6 0.4 0.8

TABLE V
AVERAGE DEGREE OF READ PARALLELISM.

WL1 WL2 IS Radix HPL

No Prefetching 5.5 5.7 5.6 5.4 5.2
Prefetching 3.8 5.3 6.1 13.7 13.1

greater than one is an indication that prefetched pages are,

on average, being read multiple times from flash before being

swapped out again, and indicates a better prefetching policy.

For WL1 and WL2 the data show that RAND performs

best (1.2 and 3.2 ratio values) and LRS performs worst (1.1

and 2.7). For WL2, RAND is likely to work just as well as

policies that account for usage due to WL2’s random memory

access patterns. For WL1, we expected LRS to perform well

because of WL1’s large sequential access patterns, however,

the data show that LRS does not perform any better than the

other policies for WL1. This result is due to WL1’s pattern of

alternating large reads and writes that means that a prefetched

page read in from flash has a 50% chance of being modified

before being swapped out again. Thus, the best ratio we would

expect for WL1 would be about 1.5.

The parallel benchmark results display more variance:

LRS performs best on IS (ratio of 1.9), but has the worst

performance on Radix (ratio of 0.2); RAND performs best

on Radix, but has the worst performance on IS and HPL;

and, RR performs best on HPL. It is surprising that MRS

does not do better given that the swap trace results from

Section IV indicate that recently swapped pages are often

accessed again. It does, however, do reasonably well across

all of the benchmarks, so it may be a good general policy.

These results also may indicate that different policies perform

better for different workloads, thus a system that is tunable like

ours is likely to be best for handling the variable workloads

of general purpose clusters.

To test the hypothesis that prefetching leads to more paral-

lelism, we ran the benchmarks with Nswap2L’s profiler thread

enabled. The profiler thread attempts to get a picture of the

amount of concurrency in the system by recording the number

of Nswap Client threads simultaneously handling reads and

writes to our device. The profiler thread wakes up twice every

second and samples global counters that are incremented by

client threads when they are actively handling swap-in or

swap-out requests from the kernel. Over time, the profiler

thread builds histograms of read and write concurrency. The

average degree of read and write parallelism is obtained from

these histogram data.

Table V shows the average degree of read parallelism of

TABLE VI
COMPARISON OF PREFETCHING POLICIES. Average runtime is shown in

seconds. Workloads in are columns, policies in rows.

Policy WL1 WL2 WL3 WL4 IS Radix HPL

Control 443.0 591.6 503.6 578.9 113.2 97.2 550.2
RR 905.7 832.3 694.7 835.5 179.5 114.9 619.1
RAND 650.3 819.2 621.9 818.0 146.2 108.2 607.3
LRS 924.1 815.2 678.7 802.0 172.1 105.6 580.5
MRS 884.5 829.9 685.0 815.6 180.8 114.0 622.6

the sequential and parallel benchmarks. These data show that

Nswap2L with prefetching leads to increased read parallelism

for the parallel benchmarks (the best case being Radix with

13.7.) For the sequential benchmarks there is no improve-

ment in average read parallelism primarily because there is

only one sequential process running on the node for these

benchmarks. The results for the parallel benchmarks show

that prefetching increases parallelism (for example 5.2 for

HPL with no prefetching vs. 13.1 for HPL with prefetching.)

Because the parallel benchmarks are typical of the types of

cluster workloads that our system is targeting, the parallel

benchmark results show that Nswap2L with prefetching has

the promise to improve the performance of applications run-

ning on general purpose clusters; these data show an increase

in read parallelism by distributing reads across Network RAM

and flash, so when flash and Network RAM speeds are about

the same, the result should be improvement in total runtime.

Table VI lists the total execution time of the benchmark

programs for the different prefetching polices. The results

show that any prefetching to flash hurts performance, the best

case for prefetching being HPL-LRS with a slow down of

only 1.05 over the Control run (580.5 vs. 550.2 seconds), the

worst case being WL1-LRS with a slow down of 2.08 (924.1

vs. 443.0 seconds). Based on our studies in Section IV, our

particular flash device has slightly slower read performance

than Network RAM, so we anticipated that the runs with

prefetching might be slightly slower than the Control runs

that use Network RAM alone. We also anticipated that we

would see some improvements in run times even though

flash is slightly slower than Network RAM due to increased

parallelism in simultaneous reads from flash and Network

RAM. However, we did not anticipate the larger slow downs.

The reason for the slow down in run times when prefetching

is enabled is the high dmio overheads of our current imple-

mentation of Nswap2L. To quantify the overhead imposed

by dmio, we ran the sequential benchmarks with Nswap2L

using only flash as the underlying devices and then using only

Network RAM as the underlying devices. We found that dmio

adds up to 700% overhead on reads and writes to flash.

Although prefetching does not lead to runtime performance

improvements under Nswap2L’s current prototype implemen-

tation, this result is only an artifact of our current implemen-

tation’s use of dmio, and is not fundamental to Nswap2L’s de-

sign. It is therefore worthwhile to consider which prefetching

policy would be most effective, given a different implementa-

tion of Nswap2L—an implementation that removes the dmio

TABLE VII
PARTS OF BENCHMARKS’ RUN TIMES USED FOR CALCULATING IDEAL

RUN TIMES. All values are in seconds unless labeled otherwise. TT is the

total execution time, NWRsp is average time to perform a single page read
from Nswap2L’s Network RAM, FRCtm is the cumulative time of all the

reads from flash, NWRCtm is the cumulative time of all the reads from

Network RAM, and NFreads is the total number of reads from flash.

TT NWRsp FRCtm NWRCtm NFreads

WL1 Control 455.8 177.5 µs N/A 840.5 N/A
WL1 RAND 616.8 141.5 µs 349.0 655.3 413,713

HPL Control 628.4 153.1 µs N/A 96.1 N/A
HPL LRS 708.5 152.7 µs 68.9 93.0 24,186

overhead for accessing the flash device.

We estimate the performance of Nswap2L without the dmio

overhead to flash I/O, using our experimental results with dmio

and our measured times of the low-level devices to remove

dmio overheads. We calculate the ideal execution time (the

time of Nswap2L without dmio overhead) as:

(1) ideal = ((pctNS)∗TT)+((pctS)∗(TT−FRtm+IFRtm))

The (ideal) runtime is for flash reads with no dmio overhead,

pctNS and pctS are the proportion of the total runtime due to

non-swapping and swapping, TT is total measured runtime,

FRtm is the time for flash reads with dmio, IFRtm is the

time for flash reads with no dmio overhead.

To compute the ideal runtime, we ran the benchmarks

with timers enabled to extract the portion of the run time

due to reading from flash and reading from Network RAM

(shown in Table VII.) We also measured the proportion of

each application’s execution due to swapping by comparing

run times using two different amounts of physical RAM, one

that results in swapping and one that does not. We found that

99% of WL1’s execution time is due to swapping, and 40%

of HPL’s execution is due to swapping.

The cumulative read times in Table VII do not account

for the fact that reads are concurrent, so we estimate the

part of the execution due to flash reads (FRtm) based on

the proportion of the measured flash and network cumulative

read times (FRCtm and NWRCtm) multiplied by the total

execution time (TT):

(2) FRtm = (TT) ∗ ((FRCtm)/(FRCtm+NWRCtm))

Next, we calculate the ideal flash read speed with no

dmio overhead (IFsp) as the ratio of measured direct

flash (DirFRtm) read time to direct network read time

(DirNWRtm), from Table I, multiplied by the average

network read time for the run (NWRsp), from Table VII:

(3) IFsp = ((DirFRtm)/(DirNWRtm)) ∗ (NWRsp)

From this we obtain an estimate of the the cumulative ideal

flash read time (IFCtm) and portion of the execution time

due to ideal flash read time (IFRtm):

(4) IFCtm = IFsp ∗ (total num flash reads)

(5) IFRtm = TT ∗ (IFCtm/(IFCtm+NWRCtm))

With values for (2) and (5), we compute the ideal runtime of

the prefetching experiments without dmio overhead (1). For

example, for WL1-RAND we compute:

(2) FRtm = (616.8) ∗ ((349)/(349 + 665.3)) = 214.3

(3) IFsp = (23.62/20.43) ∗ (141.5µs) = 163.6µs

TABLE VIII
BENCHMARK COMPUTED PREFETCHING RUN TIMES. Control is the

measured non-prefetching time. Ideal is the computed prefetching runtime

without added dmio overhead using our system’s measured flash device
speed. Flash 10% (and Flash 20%) are computed prefetching run times for

a flash device that is 10% (and 20%) faster than the network.

Control Ideal Flash 10% Flash 20%
(no dmio) < network < network

WL1 Random 455.8 461.8 450.1 445.3
HPL LRS 628.4 600.3 597.0 595.9

(4) IFCtm = (163.6µs) ∗ 413713 = 67.7

(5) IFRtm = (616.8) ∗ ((67.7)/(67.7 + 655.3)) = 57.7

(1) ideal = (.01)(616.8)+(.99)(616.8−214.3+57.8) = 461.8

The ideal run time of WL1-RANDOM, 461.8, is much

closer to the control WL1 run time of 455.77 seconds and

better fits our expectations based on the measured speeds of

our flash and network devices. Since there is no increase in

parallel reads for the prefetching runs of WL1, the computed

ideal run time for the prefetching run is slightly slower than

the run time with no prefetching because reads from our flash

device are slightly slower than reads from Network RAM.

In Table VIII we show calculated run times of WL1, and

HPL benchmarks for our ideal measured flash times (no dmio

overhead), and for flash devices that are 10% and 20% faster

than the network. We chose WL1 and HPL because they both

run long enough to do a fair amount of prefetching, and they

illustrate two extremes in read parallelism during the runs with

prefetching (WL1 shows no increase in parallelism, and HPL

shows a significant increase.)

The run times for faster flash devices were calculated

starting with a computed flash speed for function (3) and then

applying functions (4) and (5) to calculate the total runtime

(1). For example, to estimate a flash read speed that is 10%

faster than the network we used:

(3)IFsp = .9 ∗NWRsp

The results in Table VIII show that when flash is 10%

or 20% faster than the network, Nswap2L with prefetching

outperforms swapping to Network RAM alone. In addition,

the HPL-LRS ideal runtime (using our system’s measured flash

speed that is slightly slower than the network) is faster than

using Nswap2L with Network RAM alone (600.3 vs. 628.4

seconds). HPL’s faster ideal run time is due to the increase

in the average degree of parallel reads when prefetching is

enabled (5.2 for Control vs. 13.1 for LRS). This result supports

our two-level design even when flash is slightly slower than

Network RAM; here prefetching results in an increase in

parallel reads that lead to a faster run time.

VII. CONCLUSION AND FUTURE WORK

Nswap2L is our novel two-level device design that provides

a high-level interface of a single, fast, random storage device

on top of multiple fast random access storage media, namely

flash and Network RAM. By moving device-specific knowl-

edge into the top level of our system, OS subsystems and

policies do not need to be specialized for the heterogeneous

set of backing storage that is emerging in clusters. Our

experimental results support our design, and they show that

Nswap2L provides a fast swapping device for clusters. Even

in systems where flash is slower than Network RAM, we show

that when Nswap2L prefetches pages from Network RAM to

flash, there is an increase in parallel reads to our “device”

as reads are simultaneously handled by the underlying flash

and network devices. Our current prototype implementation

prevents us from achieving the performance improvements that

we anticipated from prefetching, but we show that with a better

implementation, Nswap2L will outperform flash or Network

RAM alone. Nswap2L with prefetching performs particularly

well for the parallel benchmarks, which match the typical

cluster workload better than our sequential benchmarks.

Our future work includes developing and testing a new

implementation of Nswap2L that removes the extremely high

overhead of the dmio interface between our top-level driver

and the flash driver. With a new implementation, we will be

able to obtain experimental results that are not hindered by

an implementation artifact. We also plan to further investigate

prefetching policies, in particular, examining on-line tuning of

prefetching polices based on current workload behavior, and

comparing dynamic and fixed policies for different workloads.

Finally, we plan to examine other system abstractions that

can use Nswap2L as backing store. In particular we will

extend Nswap2L so that it can be used as backing store

for local temporary file systems, and we will implement a

programmable API that can be used to support other ab-

stractions on top of Nswap. Because data persistence is a

requirement of general purpose file systems, and because data

stored in volatile Network RAM cannot implicitly meet these

persistence requirements, we do not foresee adding support for

general purpose file systems in the near future. However, by

extending Nswap2L so that it can be used to store temporary

files, Nswap2L could support a larger class of data intensive

cluster applications. In particular, applications that process

large amounts of data and store partial results in temporary

files, such as database query processing and libraries for

accessing large data sets [26], [27], will perform better using

an Nswap2L-backed temporary file system.

REFERENCES

[1] A. Acharya and S. Setia, “Availability and Utility of Idle Memory on
Workstation Clusters,” in ACM SIGMETRICS Conference on Measuring

and Modeling of Computer Systems, May 1999.
[2] R. H. Arpaci, A. C. Dusseau, A. M. Vahdat, L. T. Liu, T. E. Anderson,

and D. A. Patterson, “The Interaction of Parallel and Sequential Work-
loads on a Network of Workstations,” in ACM SIGMETRICS Conference

on Measurement and Modeling of Computer Systems, 1995.
[3] E. P. Markatos and G. Dramitinos, “Implementation of a Reliable

Remote Memory Pager,” in USENIX 1996 Annual Technical Conference,
1996.

[4] T. Anderson, D. E. Culler, D. A. Patterson, and the NOW Team, “A
case for NOW (networks of workstations),” IEEE Micro, Febuary 1999.

[5] L. Iftode, K. Petersen, and K. Li, “Memory Servers for Multicomputers,”
in IEEE COMPCON’93 Conference, Febuary 1993.

[6] G. Bernard and S. Hamma, “Remote Memory Paging in Networks of
Workstations,” in SUUG’94 Conference, April 1994.

[7] Michael J. Feeley and William E. Morgan and Frederic H. Pighinand
Anna R. Karlin and Henry M. Levy and Chandramohan A. Thekkath,
“Implementing Global Memory Management in a Workstation Cluster,”
in 15th ACM Symposium on Operating Systems Principles, Dec 1995.

[8] L. Xiao, X. Zhang, and S. A. Kubricht, “Incorporating Job Migration
and Network RAM to Share Cluster Memory Resources,” in Ninth IEEE

International Symposium on High Performance Distributed Computing

(HPDC’00), 2000.
[9] J. Oleszkiewicz, L. Ziao, and Y. Liu, “Parallel network RAM: Effectively

utilizing global cluster memory for large data-intensive parallel pro-
grams,” in IEEE 2004 International Conference on Parallel Processing

(ICPP’04), 2004.
[10] S. Liang, R. Noronha, and D. K. Panda, “Swapping to remote memory

over infiniband: an approach using a high performance network block
device,” in IEEE Cluster Computing, 2005.

[11] M. Dahlin, R. Wang, T. E. Anderson, and D. A. Patterson, “Cooperative
caching: Using remote client memory to improve file system perfor-
mance,” in Operating Systems Design and Implementation, 1994.

[12] D. Roberts, T. Kgil, and T. Mudge, “Integrating nand flash devices onto
servers,” Commun. ACM, vol. 52, pp. 98–103, April 2009.

[13] R. Weiss, “Exadata smart flash cache and the
sun oracle database machine,” Oracle White Paper,
http://www.oracle.com/database/exadata.html, October 2009.

[14] M. Saxena and M. M. Swift, “FlashVM: virtual memory management
on flash,” in Proceedings of the 2010 USENIX conference on USENIX

annual technical conference, 2010.
[15] S. Park and K. Shen, “A performance evaluation of scientific I/O work-

loads on flash-based SSDs,” in Worshop on Interfaces and Architectures

for Scientific Data Storage, 2009.
[16] A. M. Caulfield, J. Coburn, T. Mollov, A. De, A. Akel, J. He, A. Ja-

gatheesan, R. K. Gupta, A. Snavely, and S. Swanson, “Understanding
the impact of emerging non-volatile memories on high-performance,
IO-intensive computing,” in Proceedings of the 2010 ACM/IEEE In-
ternational Conference for High Performance Computing, Networking,

Storage and Analysis, ser. SC ’10. Washington, DC, USA: IEEE
Computer Society, 2010.

[17] T. Newhall, S. Finney, K. Ganchev, and M. Spiegel, “Nswap: a network
swapping module for linux clusters,” in Lectures in Computer Science,
2003, proceedings of Euro-Par’03 International Conference on Parallel
and Disributed Computing.

[18] T. Newhall, D. Amato, and A. Pshenichkin, “Reliable adaptable network
ram,” in Proceedings of IEEE Cluster’08, 2008.

[19] B. A., L. O., and S. A., “Scalable Cluster Computing with MOSIX for
Linux,” in Proceedings of Linux Expo ’99, Raleigh, N.C., May 1999,
pp. 95–100.

[20] S. Ko, S. Jun, Y. Ryu, O. Kwon, and K. Koh, “A new linux swap system
for flash memory storage devices,” in Proceedings of the 2008 Inter-
national Conference on Computational Sciences and Its Applications.
Washington, DC, USA: IEEE Computer Society, 2008, pp. 151–156.

[21] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological considera-
tions,” Proc. the 22nd International Symposium on Computer Architec-
ture, June 1995.

[22] Hongzhang Shan, “MPI port of SPLASH2 benchmarks.”
[23] Van der Wijngaart, R. F., “NAS parallel benchmarks version 2.4,” NASA

Advanced Supercomputing (NAS) Division Technical Report NAS-02-
007, October 2000.

[24] A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary, “HPL - a
portable implementation of the high-performance linpack benchmark for
distributed-memory computers,” http://www.netlib.org/benchmark/hpl/,
January 2004.

[25] R. Hat, “device mapper,” http://sources.redhat.com/dm/, 2009.
[26] D. E. Vengroff and J. Scott Vitter, “Supporting i/o-efficient scientific

computation in tpie,” in Proceedings of the 7th IEEE Symposium on

Parallel and Distributeed Processing, ser. SPDP ’95. IEEE Computer
Society, 1995.

[27] R. Dementiev, L. Kettner, and P. Sanders, “Stxxl: standard template
library for xxl data sets,” Softw. Pract. Exper., vol. 38, pp. 589–637,
May 2008.

