Reliable Adaptable Network RAM

Tia Newhall, Daniel Amato, Alexandr Pshenichkin

Computer Science Department, Swarthmore College
Swarthmore, PA 19081, USA

Abstract—We present reliability solutions for adaptable Net- This disparity will likely continue to grow because disk sps
work RAM systems running on general-purpose clusters. Net- gre |imited by mechanical movement. As a result, swapping

work RAM allows nodes with over-committed memory to SWap 1, |ocal disk will be slower than using remote idle memor
pages over the network, storing them in the idle RAM of other 9 y

nodes and avoiding swapping to slow, local disk. An adaptabl as a "swap partitioni’ ar_]d transferring page§ over the faster
Network RAM system adjusts the amount of RAM currently —network. Further motivation for network RAM is supported by
available for storing remotely swapped pages in response to several studies [1], [3], [13] showing that large amountltef
changes in nodes’ local RAM usage. It is important that Netwdk cluster memory are almost always available (even when some
RAM systems provide reliability for remotely swapped page @fa. no4eg gre overloaded), and that large chunks are avaikable f
Without reliability, a single node failure can result in failure ignificant ts of fi A It Network RAM
of unrelated processes running on other nodes by losing thei signimcant amounts o 'mej S a resull, a Ne o.r
remote|y Swapped pages. Adaptab|e Network RAM Systems posesystem Should be able to f|nd usable amounts Of |d|e RAM
extra difficulties in providing reliability because each nade’s to store swapped pages.

capacity for storing remotely swapped pages changes ovemte, The amount and location of idle RAM in a cluster changes
and because pages may move from node to node in responsg,er time with changes in each node’s workload. Thus, it is
to these changes. Our novel dynamic RAID-based reliability . tant that a Network RAM t daot to th h
solutions use idle RAM for storing page and reliability data impor _an ata Networ Sys en_1 adaptio these changes,
avoiding using slow disk for reliability. They are designedto work ~ r€leasing RAM back to the local paging system when needed
with the adaptive nature of our Network RAM system (Nswap), by local processes, and finding and allocating RAM when it
allowing page and reliability data to migrate from node to nade pecomes idle. Without this type of adaptive behavior, a fixed
and allowing pages to be added to or removed from different 5,5unt of RAM would have to be permanently allocated on

parity groups. Additionally, page recovery runs concurrertly with - . .
cluster applications, so that cluster applications do not hve to each node, which could lead to an increase in the amount of

wait until all data from a failed node is recovered before resming ~ Cluster-wide swapping.
execution. We present results comparing Nswap to disk swajipg As the number of nodes in a cluster increases, it becomes
for a set of benchmarks running on our gigabit cluster. Our more likely that a node will fail or become unreachable. In a
results show that reliable Nswap is up to 32 times faster than Network RAM system a single node failure not only results
swapping to disk, and that there is virtually no impact on the . - . o
performance of applications as they run concurrently with page " losing processes running on 'Fhat node, buj[can additional
recovery. affect unrelated processes running on non-failed nodessy |
ing their remotely swapped page data. It is therefore ingmbrt
that a Network RAM system provide reliability for remotely
In general purpose clusters and in networks of workstatioesapped data.
there are likely to be imbalances in RAM usage across nodedAny reliability support will add extra time and space
as several parallel or parallel and sequential applicatamre overhead to network swapping. A good reliability solution
simultaneously running on the system. Even among the preil minimize these overheads. For example, a write-thtoug
cesses of a single parallel application there can be imbatanscheme is easy to implement, but it can significantly slow
in memory usage [7], and these memory imbalances can cadew/n network swapping because every swapped page is also
slowdowns in performance [7], [5]. Performance slowdownaritten to disk. In addition, it will interfere with local agbi-
will be significant if these imbalances result in swappingations doing disk I/O [15]. A better reliability solutioniiv
on some of the nodes. Swapping is more likely to occusse idle RAM for reliability data.
when some nodes are running applications that process larg@/e present reliability solutions that we have implemented i
amounts of data such as parallel scientific or multimediswap [15], our network RAM system for Linux clusters and
applications. networked Linux machines. Nswap transparently providés ne
Network RAM systems take advantage of imbalances imork RAM to applications running on these systems. Nswap
RAM usage and allow nodes with over-committed RAM taupports dynamic growing and shrinking of each node’s
locate and use the idle RAM of remote nodes as backing stoswap Cache (the set of RAM pages currently allocated for
pages are “swapped out” over a fast network and stored in tering remotely swapped page data) in response to thesiode’
idle RAM of other nodes. local memory use. When an Nswap node shrinks its Nswap
Using remote idle memory as a backing store for network&zhche, it may migrate some of the remotely swapped pages it
and cluster systems is motivated by the observation that netirrently stores to other Nswap nodes with available Nswap
work speeds are improving more quickly than disk speeds [1fache space. Nswap only reverts to swapping pages to disk

I. INTRODUCTION

when there is no available idle RAM in the cluster. RAM, and Network RAM to disk. They discuss several design
The dynamic nature of Nswap is an important and powerfalternatives for such a system, some of which take fault
feature. Without it, nodes would be forced to relinquish adix tolerance into consideration. In their design for sharetual
amount of their RAM for storing remotely swapped page datmjemory systems, duplicate copies of a page can be stored in
which would result in more swapping on a node when its locaktwork RAM, allowing for page data to be recovered when
processes needed more RAM space. However, the dynawie copy is lost. Because the duplicate copy mechanism is
growing and shrinking of Nswap Cache space complicataader the control of the virtual shared memory system, it
reliability schemes as pages and reliability data can regraletermines fault tolerance for pages stored on memory ierve
from node to node. However, it does so by duplicating full page data, resulting
Our novel dynamic reliability schemes solve the problemsing twice as much RAM to store pages. Additionally, they
of efficiently using idle remote RAM for reliability in an discuss a write-through scheme for fault tolerance.
environment where capacity and page placement can changd.he third, Markatos and Dramitinos [13], describes relia-
We use an approach based on RAID [17] that stripes page dailiy schemes that use RAM for storing reliability data.eyh
and reliability data across idle cluster RAM, and avoidsigsi implement several RAID-based solutions and show that their
slow, local disk for reliability. Our solutions solve thegilem parity logging scheme performs best. In parity logginggmis
of efficiently providing reliability for remotely swappedage locally compute a parity page as pages are swapped out over
data in an adaptable Network RAM system. Our solutions dbe network. Complete parity pages are then sent to a parity
not require fixed placement of page or reliability data, naerver. By having the client compute the parity page, the
do they require fixed parity group assignment or fixed-sizaimber of page transfers to the parity server is signifigantl
capacity of each node’s available RAM for storing remotelseduced. However, their solution uses a fixed placement of
swapped data. We use dynamic parity groups where parnitgge and reliability data across servers, it requires that t
group membership and parity and data page placement is alignt keep track of parity group information, and it reasir
fixed; a page can move from one parity group to anothertlat old page data stay on servers until all pages in a parity
parity group’s pages can move from node to node, and the sgg@up are replaced, wasting RAM space that could be better
of a parity group can change. Our solutions are designed toused for storing active pages. By requiring fixed-placement
time and space efficient, adding minimal overhead to normaf remote page data on servers, remotely swapped page data
page swapping with an emphasis on minimizing overhead oan be swapped to servers’ disks. We use a technique similar
nodes that are actively swapping. In addition, our solgtiare to their parity logging to reduce the number of additional
designed to scale to large-sized clusters. messages on page swap-outs. However, our solution differs
In section Il we discuss related work. In section Il wdrom theirs in several ways. First, our solution does notinex)
present an overview of Nswap’s implementation. In sect\n Ithat clients keep parity group state. Second, we do not requi
we present our dynamic reliability solutions. In section ¥ wfixed parity group membership. Third, we do not require fixed
present results comparing Nswap with no reliability, feléa page or parity page placement on servers. Fourth, we do not
Nswap, and disk swapping for several workloads running ewap pages to a server’s disk. Fifth, we do not require that
our gigabit cluster. Finally, in section VI we conclude anglages from exited processes remain on remote servers until
discuss future directions for our work. all pages in their parity group have been freed. And finally,
our solution does not have the potential bottleneck of alsing
parity server.
There are several projects that examine using remote idle
memory as backing store in clusters or networks of worksta-
tions [20], [16], [6], [2], [13], [14], [12], [8], [10]. Relability Nswap [15] is our Network RAM system for Linux clusters
issues are addressed in three of these projects. The fieseyFeand networks of Linux machines. It is implemented as a
et. al. [14], views remote memory as a cache of netwolRadable kernel module that is easily added as a swap device
swapped pages that are also written through to disk; orify cluster nodes and runs entirely in kernel space on an
clean pages are remotely cached. Write-through is easyu@modified® Linux 2.6 kernel; Nswap transparently provides
implement, but it adds much more disk 1/0. In our previoudetwork swapping to applications, requiring no special re-
study [15] we found that disk swapping resulted in a significacompiling or linking with special libraries. Nswap is deséegl
slowdown over network swapping, and that workloads wittp be efficient, to adapt to changes in nodes’ RAM use, and
file 1/0 were even more negatively affected by disk swappinp scale to large-sized clusters.
By adding disk swapping overhead to every swap-out, write- Each Nswap node is an equal peer running both the Nswap
through will interfere with these types of workloads in &lient and the Nswap server (shown in Figure 1). The client
similar way as disk swapping does. is active when a node is swapping. The server is active when
The second, Iftode et. al [10], presents a memory sen@mode has idle RAM space that is available for storing page
for multicomputers. Network RAM s added as an extra currently, we require a re-compile of the the kernel to ekpap kernel
layer in the memory hierarchy between RAM and disk. Theél;/mbols SO ’that our module can read the kernel's swap slot forapur
modified virtual memory system pages from RAM to Networkdevice”, but no kernel code is modified

Il. RELATED WORK

I1l. NswAP OVERVIEW

Node A Node B

User Space
Kernel Space

swap out page j

| Nswap Cache | |)

Nswap Server P Tabl Nswap client | ’ ! Nswap client
T ave ;oo e | 'l A's page | P Table | |

i ' [hos{ am{socK | IShtadOW B | ! pag J | | 3
! " (B 44 1 slot map ! ! /1 ! ! !
s | | 1

| | .

| i] client threads $ 5 ¢ ¢ | : g § g § ?rﬁreva?drsi L

,,,

SWAP QUT

Fig. 1. Nswap System Architecturdlode A shows the details of the client including the shadoivrebp used to store information about which remote
servers store A’s pages. Node B shows the details of thersecleding the Nswap Cache of remotely swapped pages. lporese to the kernel swapping
out (in) a page to our Nswap device, a client thread issues AT (SWAPIN) request to write (read) the page to a remateeseThe server storing
the page is encoded in the shadow slot map entry.

data swapped to it from remote nodes. At any point in time@ache space, and a cache of open sockets to it that is used to
node is acting either as a client or a server, but typically navoid creating a new connection on every communicatfon.
as both simultaneously; its role changes based on its durré?iTable entries are modified when a node receives a periodic
local RAM usage. The client and server send messages udifigP broadcast from other nodes containing information &bou
the Nswap Communication layer that is an interface on tdapeir available Nswap Cache space.
different network implementations. The multi-threaded Nswap server is responsible for manag-
Nswap is designed to scale to large clusters using &g the portion of its RAM currently allocated for storing-re
approach similar to the Mosix [4] design for scalability. Tanotely swapped page data (the Nswap Cache). Server threads
find available remote swap space, each node uses only its o@eeive swap-in and swap-out messages from Nswap client
local information that does need to be complete nor comigletéiodes. On a Swap-in request, a server thread does a fast look-
accurate, and each node is responsible for managing juptof the page in its Nswap Cache and sends a copy of the page
its portion of local RAM that it currently has available forto the requesting client. The page also remains in the ssrver
storing pages swapped from other nodes. Because there idNswap Cache as this is still the valid backing store for the
central authority managing network RAM allocation, Nswapage. On a Swap-out request, a server thread allocates a free
will easily scale to large sized clusters. page in its Nswap Cache to store the remotely swapped page
The multi-threaded Nswap client is implemented as a devigeta. Multiple threads allow the Nswap server to conculyent
driver for our pseudo-swap device. A client thread is atéidga handle multiple swapping requests.
when the kernel makes a swap-in or swap-out request to oud he server is responsible for growing and shrinking the
swap “device” just as it would to a driver for a swap partitiogize of its Nswap Cache in response to local memory use:
on disk. For any swap device, the kernel has a data structwieen local processes need more RAM space, the Nswap
called a slot map used to keep track of allocated swap sp&eéver releases pages from its Nswap Cache back to the local
on the device. The Nswap client keeps additional infornmatid®@ging system; when idle RAM becomes available, the server
about each slot of swap space in a data structure called él@cates some of it, increasing the size of its Nswap Cache.
shadow slot map. There is one shadow slot map entry $enly when a node has idle RAM, does Nswap allocate some of
kernel slot map entry. Each entry stores the ID of the Nswé#do use to store remotely swapped page data from other nodes
server storing the page and some additional data encodif§en an Nswap server gives RAM back to the paging system,
usage of the swap slot that is used to detect and hant@¬ely swapped page data that is stored in that RAM are
conflicting operations to the same slot. migrated to other Nswap servers that currently have aJailab
When a client thread receives a swap-in request from thswap Cache space. If no available Nswap Cache space exits,
kernel, it looks-up the server ID from the correspondinti€ pages are migrated back to their owner's node and written
shadow slot map entry and sends a SWAP-IN request to f#i§eswap space on disk. Servers periodically UDP broadcast
Nswap server storing the page. When the client receivedhgir Nswap Cache sizes.
swap-out request from the kernel, it finds a good Nswap The migration protocol is shown in Figure 2. Server C sends
server candidate using information that it keeps in a snzath d @ MIGRATE request to server B. If B responds indicating that
structure called the IPTable, and sends a SWAP-OUT requéan take the page, C sends B a copy of page and now both
to the server (see Figure 1). Only when there is no availaffeand B store the page. After B receives the migrated page
Nswap Cache space in the system is the page swapped to diskends the page’s owner, A, an UPDATE message telling A

The IPTable is a small data structure that contains informiat it now stores its page. Node A updates its shadow slot

tion about s-ome (nOt necessar'ly aj”) nodes.ln the _SySte[m Ea 2Additionally, the IPTable could contain other statistidsoat nodes, such
entry contains a node’s IP, an estimate of its available lgswas CPU load, that could be used to select a “good” server.

Node A Node B Node C

impact on the swapping node; to scale to large-sized chister
(1) MIGRATE i i i iahility- i

v @ to avouj using (slow) disk for reliability; and to work withé

(2) UPDATE dynamic adaptable nature of our system.

A updat;s shadow . . .
slot map entry to B A. Dynamic Mirroring

(3) INVALIDATE Our dynamic mirroring solution requires an Nswap client
to find two Nswap servers to store each swaped-out page. The
client's shadow slot map contains entries for both servérs.
Fig. 2. Page Migration(1) a MIGRATE from C to B, (2) triggers an UPDATE ON€ server fails, the page can be recovered from the other
from B to the page's owner A, (3) which in turn triggers an INMBATE server, and copied to a new server to restore reliabilityitfor
from A to C telling C that it can drop the page. When a page is migrated, the new server first checks to see
if it already has a copy of the page (it is the mirror for this

map entry for the page, indicating that B is the server for ﬂ{@g_e), and if SO’_it does _not accept the page migrati_on and the
page, and A sends C an INVALIDATE message. At this poirﬂ”g'nal server picks a different node to which to migrate th

C can safely drop its copy of the page. The migration protoch"g?' L dd reliabili .

is optimized for the owner of the page, ensuring that it can MI"orng |sﬁ.a. an easy way to add reliability. Ir-]lq\(/jvlever, It
always find its page quickly because its shadow slot map en\?ynOt very € |C|ept as It requires twice as much idle RAM .
always records a valid server storing the page. to store pages, since two copies of every page are stored in

To make the most efficient use of Nswap Cache spacetnF sygtem, and because it requires twice as m_uch network
bandwidth on each page swap-out as each page is sent to two

is important to ensure that it not fill up with “dead pages | h ivv-based itfiab
from exited processes. Because the kernel assumes that SWHYE'S: As_a result, we e?(pectt at our parity-based itjal
emes will be more efficient.

partitions are under local control, there is no call from the®
kernel to the swap device driver notifying it that a slot hag centralized Dynamic Parity

been freed. When a node is actively swapping, dead page

;‘)ur Centralized Dynamic Parity is based on RAID level 4.
are cleaned from the system as slots are reused. When a rg e . . .
wapped-out pages are organized into parity groups; eagh pa

is not actively swapping, Nswap periodically runs a garbage : : :
collector thread to scan through the kernel’s slot map a%r(ljaparlty group resides on a different Nswap server node, an

the shadow slot map finding slots that the kernel has freggngf:r?Seiztges;th;;‘(gse&'fﬁ?drginz Szrvee:j;?;;ﬁyﬁ]aert'a_
for which the shadow slot map still has valid mappings. THY group's pag

arbage collector sends messages to servers notifyin th@%a that identifies each page currently in the group. Bah th
?hat thge can drop the dead pa ges from their Nswa Cgchnumber of pages in a parity group and the specific set of pages
y P bag . P fhat make up a parity group can change over time as a result of
For performance reasons, Nswap allows multiple page oper- arati b lect . d shrinkif
ations to happen concurrently. This concurrency, howeaar, Ri%vzmlg;iﬁ%?fnaé agr(iet co rsﬁ Iogle?r(i)xvm(gcraer;ti: rc?:1e large
result in conflicting operations on the same page that must b P ! barity group ging 9 9

e, .
resolved. For example, a page may be being migrated WHﬂ%rlty_group out of several small, non—ove_rlappmg ongs).

. ; . A single cluster node serves as the designated parity server
at the same time a new swap-out of the page is occurrin id the other nodes are regular Nswap client/server nodes
When these two events overlap, it is important that the tliea% 9 P '

) |alike regular Nswap nodes, the parity server runs no aluste
does not lose the location of the newly swapped out page, aél lication processes. In large clusters, nodes are divide
it is important that the client not lose track of the locaf®n P P ' 9 '

of the old page before it is garbage collected. To solve theF%arlty pqrtltlons., .each .W'th a dedicated parity server. $ize
S Of a parity partition will vary from system to systefn The
problems, usage count and migration-count values stordd wi_ - . . . X .
ggty server is responsible for storing parity pages, anpl

each shadow slot map entry are also stored with each swa| :)
P y P ptmg the recovery algorithm to restore lost page datd, an

out page and are included as part of the page meta-data sen
pag b pag managing and controlling parity group membership. Regular

with Mmessages. These values are used to detect and Corr%s%ap nodes keep no state about parity groups other than the
handle conflicting operations like the one above. For mo[s of the parity server

details about the Nswap system see [15]. 1) Creating Parity Groups:Parity groups are first created
IV. RELIABILITY SOLUTIONS by Nswap clients as pages are swapped out. When a page

Making Nswap reliable involves modifying and extendind® swapped to an unused swap slot (i.e. there is not a page
the core system to generate and store redundant informat&sgociated with an older use of the swap slot stored at an
that is necessary for recovering remotely swapped page ddfgvap server), the page becomes part of a new parity group.
lost in a node crash. Our solutions apply a RAID-like apptoad/Ve use a technique similar to Markatos and Dramitinos’ parit
to distributing page and reliability data across idle RAMiie L0gging [13] to reduce the number of additional page sends
cluster. The goals of our reliability solutions are: to miiee _ _ o

Through a simulation study, we found that our gigabit clyste to 64

the amOL.mt_ _Of e>§tra Com_pUtat'on and _State qgcgssary I}gﬁes can be in the same parity partition before commuoicatith the parity
added reliability, with a particular emphasis on minimgihe server becomes a bottleneck.

C drops its copy of page

Node A Node B Node C Node N Parity Server

. pages o Ve | | m | L 7 | parity
Parity Pool SWAP OUT ! % - % L % /ﬂ | aroup
DRSS LT B e A I B I
! & I XOR
N SWAP OUT
sy
sy
% SWAP OUT
1 I PARITY PAGE

Fig. 3. A Page Swap-out to an Unused Slkie client's Parity Pool is used to add the page to a new pagigup. The Parity Pool consists of some number
of in-progress parity pages. Before the client (Node A) smapt a page, the page data are added to one of the parity pag#iParity Pool (page data
are XOR’ed into a parity page and the page’s meta-data is dfid®nly when a parity page in the Parity Pool is full is the jpampage sent to the Parity
Server (resulting in one page send to the parity server pewblpsouts). After sending the parity page, the client knoathing about this parity group.

Node A

Node B

ACK

B e]

Parity Server

during swap-outs. Each Nswap client keeps a pool of in-
progress parity pages. As a page is swapped out, it is added
into one of the pages in the pool (see Figure 3). When a parity
page in the pool becomes full (determined by the max parity
group sizeN, for the cluster) it is flushed to the parity server
resulting in only one additional page send per eMdrgwap-
outs. When the parity server receives a new parity page, it
becomes the only gntity that knows anything about the parp/. 4. A Page Swap-out to an In-Use Sl@nly if a page is swapped
group; once the client sends a full parity page to the par'@Mqt to a slot already in use (an older version of the page isestat some
server, the client keeps no state about that parity page mswap Server) does the parity server need to be involvedeirstrap-out.

; ; ; ; en server B gets a new copy of the page, it computes the X@ ofd
does it keep any state about to which parity groups its padgn% new page data and send it to the parity server to updatgdniy page

belong._ The max pa_rity group si2¢ can be almost as large asontaining this data page. B also sends an ACK to the cliergnihis safe
the parity partition size. However, because each node’saljdswor the client to re-use the memory storing the swapped-agemata.

Cache size varies, there is no guarantee that a parity group’

pages can be stripped across all nodes in the partition. As a

result, a newly formed parity group’s size depends both G@fity server receives the message containing the XOR.

the number of nodes with free Nswap Cache space currently?@ges can be removed from a parity group when a dead

available in the system and on the max size N. page is garbage collected. When the server receives a garbag
collection message from the client, it sends a message con-

2) How Parity Groups ChangeThere are several waystaining the dead page’s data and meta-data to the paritgrserv
in which a parity group can change. One way is that tHeefore removing the dead page from its Nswap Cache. The
parity page data and meta-data are updated as new versjoansty server then removes the page data and meta-data from
of pages are swapped out or as dead pages are remdt&garity group, and the resulting parity group size is one
from parity groups. When a page is swapped-out to a slemaller.
that contains a valid mapping (i.e. a page associated wih th Page migration also results in changes to the parity group.
previous swap-out to the slot is stored at an Nswap servéfjhen a page is migrated from one server to another, the parity
the client swaps-out the new copy of the page to the sensarver must be notified of the page’s new location. To the
storing the older copy (this is exactly how Nswap with nonigration protocol shown in Figure 2, two additional messag
reliability behaves). The server will overwrite the old pagare added (shown as (4) and (5) in Figure 5). When the old
with the new one. However, it first sends a message to therver C) receives the INVALIDATE message, it sends to the
parity server with the XOR of the old and new page data amdrity server an UPDATEPARITY message containing meta-
meta-data. The parity server applies the XOR to the paritiata for the old and new page. The parity server then updates
page, taking the old page out and adding the new page itih@ meta-data associated with the page’s parity page anid sen
the parity page (see Figure 4). Immediately after sendieg th DROP PAGE message to the old server telling it that it is
parity server the XOR, the old server sends the client an AGtow safe to drop its copy of the page.
to its SWAP_OUT request notifying the client that it can safely Parity group membership can change as a result of a page
reuse the memory page. At this point if there is a node crasfigration that causes a conflict in parity. For example, in
the parity server has received the XOR of the old and ndwigure 6, a page from parity group 2 is being migrated to
data, so every page in the parity group can be recovered. Baever C that already has a page in parity group 2. This type
ACK to the client does not need to wait to be sent until thef conflict is detected when the parity server receives the UP
parity server applies the XOR, it just needs to wait until thBATE_PARITY message from the old server. To resolve the

SWAPQUT

UPDATE XOR

applies XOR
B computes XOR

of old and new page

Node A NOdeB(l) MIGRATE Node C send the parity server page data, the pages are XORed out

(2) UPDATE iz of a copy of the parity page to recover the lost page. The
parity server then finds a new Nswap server that can store
the recovered page, possibly moving the recovered page to a
different parity group. To accomplish this, the parity sarv
uses a protocol similar to the regular migration protocloé t
parity server sends a MIGRATIRECOVER message and the
page to a new server and drops its copy of the page; the new
(4) UPDATE PARITY server sends an UPI_DA[BECOVER message to t_he page’s
owner who updates its shadow slot map entry with the new
server’s ID. The client does not need to send an INVALIDATE

C drops its copy of page updates meta dat message to the parity server, because the parity server has

with parity page already dropped its copy of the recovered page data. We can

Fig. 5. Page Migration and the Parity Servéo. the basic page migration dQ this because if the new server fails befqre It §ends the
proiocbl, messages (4) and (5) are added: (4) the old sergtfies the Parity client an UPDATERECOVER message, the client will detect
Server of the new location of the page; and (5) the parity eetells the old it when it tries to swap the page and will send the parity serve

(3) INVALIDATE

Node A Node B Node C PARITY SERVER

(5) DROP PAGE

server it is safe to drop its copy of the page. a RECOVER message. This is identical to the client’s belavio
if the client swaps to the old server before the page has been
recovered.

conflict, the parity server sends the old server a PAGATA During recovery the parity server and regular Nswap Nodes

message requesting a copy of the page, which it removes freeep track of which nodes are currently being recovered so
Group 2 and adds to another parity group (shown as additioRght the parity server does not get swamped with RECOVER
messages Al and A2 in Figure 6). By having the parity servgfessages as Nswap nodes keep detecting that the failed node
resolve parity group conflicts that arise from page migrationgs failed. If a failed node is rebooted, it gets a new unique
we do not add extra overhead on regular Nswap nodes fggntifier consisting of its IP and its new boot time, allogin
handling this atypical case. the parity server to detect which data needs to be recovered

Parity group membership also changes when the parfjd which data is newly stored on the rebooted node.
server periodically merges several small, non-overlappar- 4) Parity Server Recoverytf the parity server fails, then
ity groups into a single larger one. This is necessary b&aygl information about parity groups is lost, including alf o
page migration with conflicts and garbage collection canltesthe parity pages. Because no other node in the system keeps
in many small parity groups wasting RAM on the parityany state about parity groups, it is not at all important that
server. Because the regular Nswap nodes need know nothiig parity groups be reconstructed as they were before be the
about parity groups, parity group merging is an entirelyaloc parity server failure; any set of N pages on N different Nswap
operation on the parity server. servers can be put into a newly constructed parity groupduri

The parity server uses page meta-data to resolve confligie recovery phase. When the parity server comes back up, or
that can occur when a page migration overlaps with othgrstand-by node becomes the new parity server, all Nswap
operations on the page. For example, if a swap-out to the ne#rvers with pages in their Nswap Cache send the new parity
server overlaps with the page’s migration, the page’s meterver their page data. The new parity server creates néty par
data are used to delay applying the XOR from the swap-agitoups to recover lost reliability data.
to the new server until the PAGPATA request from the page Having each Nswap server send the entire contents of its
migration has been handled and the page has been movef¢wap Cache can use a large amount of network bandwidth.
a new parity group. However, the likelihood that the parity server is the nods th

3) Page RecoveryThe parity server is completely responfails is very low, so the high use of network bandwidth to
sible for recovering lost page data. The recovery algorithhandle this extremely uncommon case is not a performance
proceeds concurrently with regular Nswap swapping agtivittconcern. Also, data compression can be used to reduce the
and the parity server resolves conflicts that result frors thamount of data transfered. Another solution would be be to
concurrency. When a node discovers that another node is have a primary and back-up parity server. The primary and
reachable, it sends a RECOVER message containing the faibedtk-up parity servers would receive the same data from
node’s IP to the parity server. The parity server scans titrouregular Nswap nodes and construct and manage parity groups
its set of parity pages, identifying parity groups that e@mt for these data. It is possible that the primary and backup
pages on the failed server and wakes up recovery threamsles would construct different parity groups for the same
to handle page recovery. For each parity group containisgt of pages, which is fine, because the parity server is the
a lost page, a parity thread requests the page data from ¢imdy entity that keeps parity group information, so thathié t
non-failed nodes in the parity group using a PAGBEBTA back-up becomes the primary, its version is now the official
message to request a set of page data from Nswap nodession. The main problem with this approach is that it reggii
that will be used to recover lost pages. As Nswap servexgice the bandwidth for regular communication with the pari

Node A Node B Node C Node N Parity Server

] N S = i
N N A SN | Peveme
% % (1) MIGRATE | % ce % Parity grp 2
- (2) UPDATE
(3) INVALIDATE (4) UPDATE PARIT
S R — - — (A1) PAGE DATA
(A2) ——f---- .
B (5) DROP PAGE

Fig. 6. Example Page Migration Requiring Parity Group CleafigNode N migrates a page currently in parity group 2 to Nodett@® page can no longer

stay in parity group 2 (the parity server must take the migdapage out of group 2 and could add it into group 1). Two adddl messages are added to
the normal migration protocol: (Al) the parity server addd’AGE DATA message to the old server N and (A2) the old servelssihe page data to the
parity server so that the page can be taken out of parity grdignd added into a new parity group.

server as now all data are sent to the primary and the batkat limit the set of nodes to which an Nswap client can swap.
up parity servers. As a result, we chose to minimize network
bandwidth use for regular operation, and require full Nswdp- Decentralized Dynamic Parity
Cache flushes to recover the parity server data on the uplikel Our Decentralized Dynamic Parity solution is loosely based
event that the parity server fails. on RAID level 5. Much like the Centralized Dynamic Parity
As the parity server recovers from failure, regular Nswagolution, parity group membership and parity group size can
nodes continue to send normal communication to it. Thghange over time as a result of page migration, invalidation
parity server, however, cannot apply the actions (e.g. UBf dead pages, and parity group merging. However, in the
DATE_XOR) until the lost parity information for the associ-decentralized approach every cluster node acts as both a
ated page has been recovered. Thus, during recovery, all megular Nswap client/server node and as a parity server;node
actions on parity pages must be queued until the lost parfswap nodes store both remotely swapped page data and
data for an associated action’s pages has been recovered.parity pages. As in regular Nswap, at any point in time a node
5) Problems with the Centralized Parity Approaciihere is either acting as an Nswap client (a consumer of Nswap
are two main problems with the centralized parity solutiorf€ache space) or it is acting as a combined Nswap server
The first is that the parity server has a fixed-sized RAM arahd parity server (a provider of Nswap Cache space). The
can thus only store a fixed number of parity pages. This chenefits of the distributed scheme are that recovery data and
limit the amount of free RAM in the system that regulacommunication to the parity server is distributed across al
Nswap nodes can make available for network swapping. Miodes in the cluster, and that the number of parity pages that
scale to large-sized clusters, the centralized solutiog tba can be stored in the system is limited only by the amount of
create parity partitions. Without partitioning nodes irsttvay, available Nswap Cache space in the cluster.
a single parity server could not store all the parity pagebén 1) Keeping Track of Parity GroupsBecause there is no
system in its RAM, and would have to swap some to its locakntral parity server, additional information must be kejih
disk, severely limiting performance. In parity partitiogi each swapped-out page including its current parity seer |
each partition consists of some fixed, disjoint subset dftelu (the IP and last boot time of the node currently storing its
nodes and a dedicated parity server for that subset; there parity page) and its current parity group ID. A page’s parity
multiple parity server nodes, each serving as the centréypagroup ID is first created by the client as it computes the parit
server for one partition. The problem with this approacthé& t page in its parity page pool. It consists of the client's IRl an
memory usage between parity partitions is likely not badahc a unique count value incremented each time a node creates a
and as a result, there can be available Nswap Cache spaceew parity group. When a client starts a new parity group, it
the cluster that cannot be used by nodes that are currerifgt makes sure that a server can be found to store the parity
swapping because they are not in the same parity partitiongye for the group; the client sends a SWARJT request
the nodes with available Nswap Cache space. to a server, and if the server responds with YES, the client
The second problem with the centralized approach is thatows a new parity page to be computed (keeping the server
communication with the parity server can become a bottldiread waiting for the parity page data until the parity pege
neck. However, our experiments show that the physical RAMII and sent to it). Once a parity page has been sent to the
limitations of the parity server become the limiting factoNswap server, the client keeps no state about it nor does it
before communication does. A better solution would be teep state about to which parity groups its pages belong; the
distribute parity server functionality across all Nswapdes pages making up the parity group can change, and a page’s
in the system. This would eliminate the potential bottldnett parity group ID can change.
the centralized solution, and it would remove parity panis When a node enters a phase of shrinking its Nswap Cache, it

tries to migrate some proportion of its set of data pagestsndtio which node stores its parity page, creating, merging, or
set of parity pages. The idea is to maintain a balanced systspiitting an existing parity group requires notifying athdaes
by distributing parity and data pages somewhat evenly atoustoring pages in the effected group(s) with changes in their
the system. When a page is migrated, the old server sendsphéaty group ID or in changes to the server storing the geup’
server storing the parity page the UPDATHARITY message parity page.
much like in the centralized solution. When a parity page is The decentralized approach has the advantages of dis-
migrated, additional small messages must be sent to all thibuting the parity server load and avoiding the need for a
pages in the parity group notifying them of the new locatiodedicated parity server(s). However, because the cerddhli
of their parity page. If modifications to the parity page arscheme scales well by using parity partitioning, the extra
made during its migration, the migration protocol is extethd complexity of the decentralized approach may not result in
to propagate all changes to the new location of the paritgpagnuch performance improvement over the centralized scheme.
Each node performs recovery, parity group conflict resolu-
tion, and parity group splitting and merging. If an Nswap @od
creates a new parity group as a result of one of these actiongs a first step in evaluating our dynamic parity solutions,
it assigns a new unique parity group ID using its local IP arile implemented and tested our Centralized Dynamic Parity
unique parity group counter. solution. We present performance results of our recovery
2) Advantages of the Decentralized Approaur decen- algorithm and results comparing swapping to disk, Nswah wit
tralized dynamic parity approach solves problems with oo reliability, and Centralized Dynamic Parity Nswap foiotw
centralized approach. It allows parity group managemedt apets of benchmark programs running on a cluster. The first are
page recovery to be distributed among the regular Nswapset of kernel benchmarks designed to range from the best
nodes and it puts no restriction on the set of Nswap node@ssible case for disk swapping to less favorable caseseThe
to which a given node can swap or store its parity pages; amjll show how well Nswap does for cases when swapping to
free Nswap Cache page can be used to store any remo@BK is optimal and for cases where disk swapping is likely to
swapped page or parity page. The decentralized scheme &gbperform well. The second set consist of applicationsfro
maintains the goals of the centralized scheme by ensuratg tfhe Splash2 [19] [9], and Linpack HPL [18] benchmark suites.
clients need not keep any state about which parity groups TtBis set is designed to evaluate how well Nswap does on a
pages belong, and need not be involved in the recovery af thearallel workload. All experiments are run on a eight node
pages. cluster, each node running version 2.6.8 of the Linux kernel
3) Problems with the Decentralized Approaciihere are and connected to a 1 Gigabit Ethernet swifch
some difficulties with the decentralized approa}ch. First; bA. Implementation
cause every node implements the functionality of both a) . o
regular Nswap client/server node and a Nswap parity server, N€ parity server runs on a dedicated cluster node; it is
each node is more complex and needs to maintain more sti &lso a regular Nswap client/server node, nor does it run
We minimize the amount of extra state by sharing the dat4'Ster application processes. The parity server providss
structures for finding and managing page data and parityspa%kf”p of the parity pages it stores based on page meta-data
on each node. To support this, we add extra fields to strudf&t iS sent to it with most messages, it has a data structure
that define pages and parity pages in the system. similar to the Nswap nodes’ IPTabIQ t.hat is .used to cache
Second, page migrations are more complicated in tH®eN so_ckets to Nswap nodes, and it is multl—thr_ead so that
scheme due to parity page migration. For example, we mifs€an simultaneously handle requests from multiple Nswap
ensure that concurrent modifications to the migrated parfipdes. In addition, it has special recovery threads thadlean
page (e.g. UPDATEXOR) are not lost during migration. To Pge recovery and a memory management thread that performs

V. RESULTS

handle these cases, we propagate changes made to the 8§y group merging. _ o
at the old server node to the new node as the final step in e centralized solution requires minimal changes to agul
migration. Nswap nodes. Nswap clients need only keep a pool of in-

Finally, recovery is more complicated because when aRjo9ress parity pages, which they send to the parity server
node fails it loses both data and parity pages. Data pa§gen full. Nswap server migration and garbage collection
recovery works as it does in the centralized scheme, bLuyparﬁ’fOtOC°|S need to communicate with the parity server, ard th
page recovery is more complicated. Due to concurrent paglignt and server need to send RECOVERY messages to the
migrations, it may not be possible to reconstruct the exde@Mty server when they detect a failed node.
parity groups at the time of a node failure. Because our mogg! kernel Workload Results

is such that the node storing the parity page for a group dscid . .
if the group will be merged or split, it is fine the recovery Table | shows the runtime, in seconds, of several workloads

algorithm reconstructs a different set of parity pages for Gmparing swapping fo disk, Nswap, and Reliable Nswap

set of data pages (and possibly a different number of parH?mg the Centralized Dynamic Parity solution. We ran one

groups) for parity information |OS.t in the crash. However, 4Each node has a Pentium4 processor, 80GB Seagate Barra00diDE
because every swapped out parity page keeps a guessiisksirive, and 512MB of RAM. The parity server has 1GB of RAM.

TABLE |
KERNELWORKLOAD RESULTS. Comparing Swapping to Disk, Nswap without Reliability, ad&lvap with Centralized Dynamic Parity. The rows are 1 and
2 process runs of each workloads. Time, in seconds, is thegv®f 10 runs. Speed-up over disk swapping is in parenshese

[Workload (#procs)]| Disk | Nswap (speed-up) [Reliable Nswap (speed-uf)
WL1 (1) 220.31 secs| 116.28 secs (1.9) 117.10 secs (1.9
WL1 (2) 338.90 secs| 113.61 secs (2.9) 116.80 secs (2.9
WL2 (1) 2462.90 secs| 105.24 secs (23.4) 109.15 secs (22.6
WL2 (2) 1214.11 secs| 76.50 secs (15.9) 84.60 secs (14.4
WL3 (1) 3561.66 secs 105.50 secs (33.8] 110.19 secs (32.3
WL3 (2) 2995.44 secs] 95.90 secs (31.2) 91.89 secs (32.6

and two process versions of each workload with one no##L and SPLASH2 benchmarks that would compile and run
acting as the client and five nodes acting as servers. We atsoour small system and that processed a large amount of
disabled Nswap Cache growing and shrinking to reduce tHata resulting in some swapping. Each application was run
amount of variation between timed runs. on two or four cluster nodes, leaving the remaining nodes to
Workload 1 consists of a process that performs a numbet as Nswap server nodes. This configuration was designed
of iterations of a large sequential write to memory followetb simulate the types of imbalances in RAM usage that can
by a large sequential read. It is designed to be the best caseur in general purpose clusters that run multiple pdralie
for swapping to disk; because of the way in which Linuyarallel and sequential applications at any one time. In our
allocates swap space, there will be a minimal amount of diskperiments, the nodes running the application procesges a
head movement in the swap partition. Workload 2 consists afrrently acting as Nswap clients (users of remote RAM for
a process that performs random writes followed by randoswap space) and are not currently acting as Nswap seners (i.
reads to a large chunk of memory. It stresses disk headne of their RAM is allocated for Nswap Cache space, it is all
movement within the swap partition. Workload 3 consists @fllocated to the application processes running on theses)od
two processes. The first runs a Workload 2 application and thike nodes that are not running the parallel benchmarks, are
second performs a large sequential write to a file. Workloada8ting as Nswap servers (i.e. part of their RAM is allocated
further stresses disk head movement with concurrent file Ifor Nswap Cache space to be used to store remotely swapped
and swap /O to different disk partitions. The total number age data from the nodes running the parallel applications)
pages swapped differs for each workload, so only results Aalditionally, we turned off growing and shrinking of Nswap
the same row should be compared. The two process versi@he sizes so that there would be less variation from run to
of each workload access the same total size of memory as the of each benchmark program.
one process versions, but memory is divided between the twogach row in Table Il shows the time in seconds and

They are designed to represent a slightly more realististefu the amount of swap space used on each node to run the
workload. application. The columns show results for swapping to disk,
For the single process version of Workload 1 (first row i@wapping to Nswap with no reliability, and swapping to Nswap
Table 1), swapping to disk has the potential to outperforijith Centralized Dynamic Parity. For the Nswap runs, the
Nswap because the application accesses its swapped pageedup values over disk are listed in parentheses, and the
in sequential order on the disk swap partition, minimizingumber of swap-outs and swap-ins are listed (these were
disk arm movement. However, even for this unlikely best cag@tained from performance counters in the Nswap module).
scenario, both Nswap and Reliable Nswap outperform digk BYThe data in Table Il were run on Nswap nodes whose swap
a factor of 1.9. For the other workloads, Nswap and Reliablg,titions are the same size as the disk partition, howéeer t
Nswap perform significantly better than swapping to disk; fqnemory footprint of the kernel is slightly larger for Nswap
example, Workload 3 runs 34 times faster when using NsWgR ase it includes the Nswap loadable kernel module, and

VS. swapping to disk. These results iIIustratg the pe_rfcmcrea Reliable Nswap is larger than Nswap due to the parity pool
penalty of disk arm movement when swapping to disk. 5t consists of a few additional pages of RAM.

A.d.dmg reliability to Nswap results in a small amount of Overall, the results show both Nswap and Reliable Nswap
addmonal overh_ead.o The largest slowdown from Nswap %)utperform swapping to disk by a factor of between 1.6
reliable Nswap is 4% for Workload 3 (105.24 seconds vs. 2 ;)

SR and 8.5. The application with the lowest speed-up (FFT at
110.19 seconds). This is significantly better than overbedd 1.6 and 1.7) is the shortest running application. The longer
0 0 . ol . .
bet_ween 18.A) and 100.4] that we foundlln our Dynamlc Iv!lrrunning applications with more swapping benefit more from
roring solution. In addition, the Dynamic Centralized Bari swap (e.g. LU with speed-ups of 8.2 and 8.5). The speed-up
fﬁgﬁrpﬂ?rrisrﬁs rg(t:gg less idle cluster RAM for reliability daa‘\”lre less than those for the kernel benchmarks because these
9 ' applications spend a smaller fraction of their total rumtim

C. Parallel Benchmark Results swapping.

The second set of results evaluate Nswap’s performance foReliable Nswap adds a small amount of overhead compared
parallel workloads. We selected applications from the hitlp to Nswap with no reliability (the largest being 3% for LU).

TABLE Il
PARALLEL WORKLOAD RESULTS. Total Time, Speedup over disk swapping, and amount of thp pasition used in Mbytes for Swapping to Disk (column
2), Nswap without reliability (column 3), and Dynamic Cetized Parity Nswap (column 4). Times are shown in secomedup over disk swapping in
parentheses, and approximate amount of swap used on eaeh(rmahded to the nearest MB). For the Nswap runs, the totatbmer of swap-ins and
swap-outs is also listed. Rows are times for the Linpack Hehcbmark, and SPLASH2 benchmarks.

Workload Disk Nswap Reliable Nswap

time swap used| time (speed-up) swap used time (speed-up) swap used

Linpack 1745.05 secs 493MB 418.26 secs (4.2) 450MB 415.02 secs (4.2) 441MB
swapped in: 307K swapped out: 294K swapped in: 324K swapped out:311K

LU 33464.99 secs 519MB| 3940.12 secs (8.5) 519MB| 4082.19 secs (8.2) 519MB
swapped in: 3875K swapped out: 4140K swapped in; 4243K swapped out: 4267K

Radix 464.40 secs 518MB| 96.01 secs (4.8) 518MB 97.65 secs (4.8) 518MB
swapped in: 234K swapped out: 204K swapped in: 235K swapped out: 204K

FFT 156.58 secs 390MB 94.81 secs (1.7) 390 MB 95.95 secs (1.6) 390MB
swapped in: 357K swapped out: 371K swapped in: 351K swapped out: 362K

. . . . TABLE Il
Reliable Nswap should result in slightly more swapping thagecyrion TIMES FOR APPLICATIONS RUN WITH NO CONCURRENT PAGE

Nswap without reliability because the memory footprint of RECOVERY AND DURING CONCURRENT PAGE RECOVERTIME is in
Reliable Nswap is inghtIy Iarger than Nswap without reilliab seconds, and the average and standard deviation valuesfaéberuns.
ity. However, for SPLASH FFT, Nswap with no reliability has Application time std dev | ave recovery
more swapping than Reliable Nswap (362K vs. 371K swap- appT W/ o Tecovery || 2241 secsl 012 t;\rl‘)f
outs)._Because there are two processes running on eacl_1 c_Iien appl wiconcurrent 5548 secs| 020 576 SecS
node in the FFT benchmark, there was much more variation | page recovery
between runs; the amount of swapping can differ between runs

as a result of the interaction between process schedulidg an

the applications’ memory reference patterns in combimatio

with Linux page replacement policy. We suspect that this | Pages; before recovery the page is still available froen t

the cause of the anomaly between reliable Nswap and Nswig€d” node, and after recovery it is available from arerth

in EET. Nswap server node. We made this simplification to reduce the
Another anomaly occurs in the Linpack results; reliab@Mount of variation from run to run of an application. Withou
Nswap does more swapping than Nswap with no reliabiliﬁfl“s _S|m_pI|f|cat|_on there is too much variation betvyeen rahs
(311K swapped-out vs. 294K) but it is also slightly fastefPPlications with concurrent recovery (i.e. there is no way
(415.02 vs. 418.26). This is caused by differences in tf&SUre that the application waits for the exat_:t same ses of _|t
distribution of swapping activity between Nswap and ReéiabPages to be recovered at exactly the same point in its executi
Nswap runs, which are likely caused by the Linux page r&0m run to run). _ o
placement policy for this application. Both versions of gy 1able Ill shows results of a sequential application from
use the same number of client threads, but in the Reliaflir first set of experiments during which we triggered page
Nswap runs, more of the threads are active simultaneou&gFovery of one “failed” node. Because we did not actually
than in the Nswap runs. This implies that in Reliable Nswaguse node failure, the application can always find a copy of
swapping occurs in larger bursts than it does in NswalsS Page (either by grabbing it from the “failed” node or the
The result is that Reliable Nswap is able to achieve mofeW server it was migrated to after recovery). Thus, theltesu
concurrency when swapping by keeping more client threalisTable Il measure thg amount of slowdown concurrent page
busy at the same time. Thus, even though the Nswap HRFOVery has on applications that do not try to access lost
has less swapping, there are fewer concurrent swaps thaP3ge data before those data have been recovered. The results
reliable Nswap, resulting in slightly faster Reliable Nw,ashow no slowdown in the application due to concurrent page

runs. recovery on the Parity server: 22.41 seconds for runs with
no concurrent page recovery vs. 22.48 seconds for runs with
D. Recovery Results concurrent page recovery (with standard deviations of rik®

We present results from experiments measuring the timeQe).
recover pages lost on a failed node, and results from experi-Table IV shows the amount of time it takes to recover lost
ments measuring application slowdown caused by concurr@aige data for different numbers of total pages lost in a node
page recovery. crash. Not surprisingly, the total time increases as thal tot

We simulate node failure by writing a “failed” node’s IPnumber of pages to recover increase. However, the per page
to a file in /proc that triggers an Nswap node to send racovery time (shown in the second to last column) stays
RECOVERY message to the parity server to recover all pagedatively constant as the total number of pages recovered
that are stored in the Nswap Cache of the “failed” node. Oincreases. The differences in per page recovery times can be
recovery algorithm is complete except that because a nagle httributed to the average size of the parity groups. When the
not really failed, an Nswap client can always find a copy of aflarity group size is close to five, four pages need to be fetche

TABLE IV
PAGE RECOVERY TIMES. Each row lists the total recovery time in seconds (columntt®), per-page recovery time in milliseconds (column 3), drel t
average parity group size (column 4) for recovering some bbemof pages (column 1). The time values are in seconds.

Total Number of || Total Recovery Per Page| Ave Parity
Pages Recovere Time | Recovery Time| Group Size
5,196 0.75 secs 0.144 ms 4.99

7,910 1.19 secs 0.151 ms 4.99

9,182 1.81 secs 0.197 ms 5.97

14,477 2.15 secs 0.148 ms 4.99

15,629 2.88 secs 0.184 ms 5.98

25,802 4.69 secs 0.181 ms 5.94

71,792 13.02 secs 0.181 ms 5.97

from Nswap servers to recover each lost page, resultingrin pg] A. Barak, O. La'adan, and A. Shiloh. Scalable Cluster @ating with
page recovery times of about 0.15 ms. When the average parity m%s'ﬁgrl'-g'ggx- In Proc. Linux Expo "9 pages 95-100, Raleigh,
group size is closer to six, five data pages need to b_e fe.tCh?ﬂ A. Batat and D. G. Feitelson. Gang scheduling with memwogsider-
from Nswap servers to recover each lost page, resultingrin pe ations. InProc. 14th Intl. Parallel and Distributed Processing Symp.

page recovery times of about 0.18 ms. May 2000. .
[6] G. Bernard and S. Hamma. Remote Memory Paging in Networfks
VI. CONCLUSIONS ANDFUTURE WORK Workstations. InProc. SUUG'94 ConferenceApril 1994.

]] o) [7] Douglas C. Burger, Rahmat S. Hyder, Barton P. Miller, dvalvid A.
Our Dynamic Parity reliability solutions solve the problem Wood. Paging tradeoffs in distributed-shared-memory ipraitessors.

of efficiently providing reliability to remotely swapped pa In Proc. 1994 conference on Supercomputipgges 590-599, 1994.

. 8] Michael Dahlin, Randolph Wang, Thomas E. Anderson, amdi® A.
data in an adaptable Network RAM system. Our results ShO\B\I Patterson. Cooperative caching: Using remote client menooimprove

that our Centralized Dynamic Parity solution adds minimal file system performance. I®perating Systems Design and Implemen-
overhead to Nswap without reliability, and that applicaio _, aton pages 267-280, 1994.

. . égb] Hongzhang Shan. MPI port of SPLASH2 benchmarks.
run up to 32 times faster on reliable Nswap than they deo) Liviu Iftode, Karin Petersen, and Kai Li. Memory Sersefor Multi-

with disk swapping. Additionally, our results show that pag computers. IrProc. IEEE COMPCON'93 Conferenc€&ebuary 1993.

; inati ; 1] John L. Hennessy and David A. Pattersdbomputer Architectures A
recovery has no impact on cluster applications running cut Quantitative Approach, 3rd EditionMorgan Kaufman, 2002.

r_ently With page recovery, and that our per-page recoveiy) shuang Liang, Ranjit Noronha, and Dhabaleswar K. PaSdapping to
times are independent of the number of pages being recavered remote memory over infiniband: an approach using a high peence

As networking technology continues to improve, Nswap wi network block device. IHEEE Cluster Computing2005.

. . tll%] Evangelos P. Markatos and George Dramitinos. Impleatem of
increasingly perform better than systems that use only diSK’ 5 Reliable Remote Memory Pager. Rroc. USENIX 1996 Annual

swapping. In fact, a study that examined the performance Technical Conferencel996. o
of Network RAM over Infiniband [12] suggests that reliablél4] Michael J. Feeley and William E. Morgan and Frederic kghfhand

.. . Anna R. Karlin and Henry M. Levy and Chandramohan A. Thekkath
Nswap over Infiniband would result in even better perfornganc Implementing Global Memory Management in a Workstations@ In

than we saw with reliable Nswap over 1Gb Ethernet. Proc. 15th ACM Symposium on Operating Systems Pringiplesember
Because our results support our dynamic parity approaﬂ]31 1995,

. . . T. Newhall, S. Finney, K. Ganchev, and M. Spiegel. Nswap
we plan to implement and test our Decentralized DynamiC" network swapping module for linux clusters. 2003. Proc.c=Rar03

Parity solution as part of our future work. Additionally, we International Conference on Parallel and Disributed Cdingu

plan to investigate predictive schemes for determiningrwhé'8] John Oleszkiewicz, Li Ziao, and Yunhao Liu. Parallekmerk RAM:
Effectively utilizing global cluster memory for large dataensive

to grow or shrink Nswap Cache sizes, and we plan to run parallel programs. IrProc. IEEE 2004 International Conference on
Nswap on larger clusters to evaluate our scalable design. Parallel Processing (ICPP’04)2004.
[17] David A. Patterson, Garth Gibson, and Randy H. Katz. Aecéor
VIlI. ACKNOWLEDGMENTS redundant arrays of inexpensive disks (raid).Pimc. SIGMOD’88 the
. . 1988 ACM SIGMOD international conference on Managementatd, d
We thank Hongzhang Shan for providing us with MPI ports pages 109-116, New York, NY, USA, 1988. ACM Press.
of the SPLASH2 benchmarks. And we thank Jenny Barrii8] A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary. HPla

; ; i : portable implementation of the high-performance linpaekdhmark for
America HoIIoway and Heather Jones for their participation distributed-memory computers. http://www.netlib.oeyibhmark/hpl/,

in Reliable Nswap. January 2004.
[19] S.C.Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Guptse PLASH-
REFERENCES 2 programs: Characterization and methodological coraiiders. Proc.

[1] A. Acharya and S. Setia. Availability and Utility of Idiédemory the 22nd International Symposium on Computer Architectuhene

. 1995.
on Workstation Clusters. IProc. ACM SIGMETRICS Conference on N ; ; .
: - [20] Li Xiao, Xiaodong Zhang, and Stefan A. Kubricht. Incorpting Job
2] I’\EAe:r?éjgrns%r?r;?]ygdlslgg?eotb\ioen;pluotgtii%sct)?Fr:?t\;grisl?_:%T'\ggznzif;g. Migration and Network RAM to Share Cluster Memory Resourdes
' : : p ’ Ninth IEEE International Symposium on High Performancetiiated
Report CSD-98-1000, UC Berke)e}998. Computing (HPDC’0Q) 2000
[3] Remzi H. Arpaci, Andrea C. Dusseau, Amin M. Vahdat, LokLTu, ’
Thomas E. Anderson, and David A. Patterson. The Interadtiétarallel
and Sequential Workloads on a Network of WorkstationsPioc. ACM
SIGMETRICS Conference on Measurement and Modeling of Cempu
Systemspages 267-278, 1995.

