
Reliable Adaptable Network RAM
Tia Newhall, Daniel Amato, Alexandr Pshenichkin

Computer Science Department, Swarthmore College
Swarthmore, PA 19081, USA

Abstract—We present reliability solutions for adaptable Net-
work RAM systems running on general-purpose clusters. Net-
work RAM allows nodes with over-committed memory to swap
pages over the network, storing them in the idle RAM of other
nodes and avoiding swapping to slow, local disk. An adaptable
Network RAM system adjusts the amount of RAM currently
available for storing remotely swapped pages in response to
changes in nodes’ local RAM usage. It is important that Network
RAM systems provide reliability for remotely swapped page data.
Without reliability, a single node failure can result in fai lure
of unrelated processes running on other nodes by losing their
remotely swapped pages. Adaptable Network RAM systems pose
extra difficulties in providing reliability because each node’s
capacity for storing remotely swapped pages changes over time,
and because pages may move from node to node in response
to these changes. Our novel dynamic RAID-based reliability
solutions use idle RAM for storing page and reliability data,
avoiding using slow disk for reliability. They are designedto work
with the adaptive nature of our Network RAM system (Nswap),
allowing page and reliability data to migrate from node to node
and allowing pages to be added to or removed from different
parity groups. Additionally, page recovery runs concurrently with
cluster applications, so that cluster applications do not have to
wait until all data from a failed node is recovered before resuming
execution. We present results comparing Nswap to disk swapping
for a set of benchmarks running on our gigabit cluster. Our
results show that reliable Nswap is up to 32 times faster than
swapping to disk, and that there is virtually no impact on the
performance of applications as they run concurrently with page
recovery.

I. I NTRODUCTION

In general purpose clusters and in networks of workstations
there are likely to be imbalances in RAM usage across nodes
as several parallel or parallel and sequential applications are
simultaneously running on the system. Even among the pro-
cesses of a single parallel application there can be imbalances
in memory usage [7], and these memory imbalances can cause
slowdowns in performance [7], [5]. Performance slowdowns
will be significant if these imbalances result in swapping
on some of the nodes. Swapping is more likely to occur
when some nodes are running applications that process large
amounts of data such as parallel scientific or multimedia
applications.

Network RAM systems take advantage of imbalances in
RAM usage and allow nodes with over-committed RAM to
locate and use the idle RAM of remote nodes as backing store;
pages are “swapped out” over a fast network and stored in the
idle RAM of other nodes.

Using remote idle memory as a backing store for networked
and cluster systems is motivated by the observation that net-
work speeds are improving more quickly than disk speeds [11].

This disparity will likely continue to grow because disk speeds
are limited by mechanical movement. As a result, swapping
to local disk will be slower than using remote idle memory
as a “swap partition” and transferring pages over the faster
network. Further motivation for network RAM is supported by
several studies [1], [3], [13] showing that large amounts ofidle
cluster memory are almost always available (even when some
nodes are overloaded), and that large chunks are available for
significant amounts of time. As a result, a Network RAM
system should be able to find usable amounts of idle RAM
to store swapped pages.

The amount and location of idle RAM in a cluster changes
over time with changes in each node’s workload. Thus, it is
important that a Network RAM system adapt to these changes,
releasing RAM back to the local paging system when needed
by local processes, and finding and allocating RAM when it
becomes idle. Without this type of adaptive behavior, a fixed
amount of RAM would have to be permanently allocated on
each node, which could lead to an increase in the amount of
cluster-wide swapping.

As the number of nodes in a cluster increases, it becomes
more likely that a node will fail or become unreachable. In a
Network RAM system a single node failure not only results
in losing processes running on that node, but can additionally
affect unrelated processes running on non-failed nodes by los-
ing their remotely swapped page data. It is therefore important
that a Network RAM system provide reliability for remotely
swapped data.

Any reliability support will add extra time and space
overhead to network swapping. A good reliability solution
will minimize these overheads. For example, a write-through
scheme is easy to implement, but it can significantly slow
down network swapping because every swapped page is also
written to disk. In addition, it will interfere with local appli-
cations doing disk I/O [15]. A better reliability solution will
use idle RAM for reliability data.

We present reliability solutions that we have implemented in
Nswap [15], our network RAM system for Linux clusters and
networked Linux machines. Nswap transparently provides net-
work RAM to applications running on these systems. Nswap
supports dynamic growing and shrinking of each node’s
Nswap Cache (the set of RAM pages currently allocated for
storing remotely swapped page data) in response to the node’s
local memory use. When an Nswap node shrinks its Nswap
Cache, it may migrate some of the remotely swapped pages it
currently stores to other Nswap nodes with available Nswap
Cache space. Nswap only reverts to swapping pages to disk



when there is no available idle RAM in the cluster.
The dynamic nature of Nswap is an important and powerful

feature. Without it, nodes would be forced to relinquish a fixed
amount of their RAM for storing remotely swapped page data,
which would result in more swapping on a node when its local
processes needed more RAM space. However, the dynamic
growing and shrinking of Nswap Cache space complicates
reliability schemes as pages and reliability data can migrate
from node to node.

Our novel dynamic reliability schemes solve the problem
of efficiently using idle remote RAM for reliability in an
environment where capacity and page placement can change.
We use an approach based on RAID [17] that stripes page data
and reliability data across idle cluster RAM, and avoids using
slow, local disk for reliability. Our solutions solve the problem
of efficiently providing reliability for remotely swapped page
data in an adaptable Network RAM system. Our solutions do
not require fixed placement of page or reliability data, nor
do they require fixed parity group assignment or fixed-size
capacity of each node’s available RAM for storing remotely
swapped data. We use dynamic parity groups where parity
group membership and parity and data page placement is not
fixed; a page can move from one parity group to another, a
parity group’s pages can move from node to node, and the size
of a parity group can change. Our solutions are designed to be
time and space efficient, adding minimal overhead to normal
page swapping with an emphasis on minimizing overhead on
nodes that are actively swapping. In addition, our solutions are
designed to scale to large-sized clusters.

In section II we discuss related work. In section III we
present an overview of Nswap’s implementation. In section IV
we present our dynamic reliability solutions. In section V we
present results comparing Nswap with no reliability, reliable
Nswap, and disk swapping for several workloads running on
our gigabit cluster. Finally, in section VI we conclude and
discuss future directions for our work.

II. RELATED WORK

There are several projects that examine using remote idle
memory as backing store in clusters or networks of worksta-
tions [20], [16], [6], [2], [13], [14], [12], [8], [10]. Reliability
issues are addressed in three of these projects. The first, Feeley
et. al. [14], views remote memory as a cache of network
swapped pages that are also written through to disk; only
clean pages are remotely cached. Write-through is easy to
implement, but it adds much more disk I/O. In our previous
study [15] we found that disk swapping resulted in a significant
slowdown over network swapping, and that workloads with
file I/O were even more negatively affected by disk swapping.
By adding disk swapping overhead to every swap-out, write-
through will interfere with these types of workloads in a
similar way as disk swapping does.

The second, Iftode et. al [10], presents a memory server
for multicomputers. Network RAM is added as an extra
layer in the memory hierarchy between RAM and disk. Their
modified virtual memory system pages from RAM to Network

RAM, and Network RAM to disk. They discuss several design
alternatives for such a system, some of which take fault
tolerance into consideration. In their design for shared virtual
memory systems, duplicate copies of a page can be stored in
network RAM, allowing for page data to be recovered when
one copy is lost. Because the duplicate copy mechanism is
under the control of the virtual shared memory system, it
determines fault tolerance for pages stored on memory servers.
However, it does so by duplicating full page data, resultingin
using twice as much RAM to store pages. Additionally, they
discuss a write-through scheme for fault tolerance.

The third, Markatos and Dramitinos [13], describes relia-
bility schemes that use RAM for storing reliability data. They
implement several RAID-based solutions and show that their
parity logging scheme performs best. In parity logging, clients
locally compute a parity page as pages are swapped out over
the network. Complete parity pages are then sent to a parity
server. By having the client compute the parity page, the
number of page transfers to the parity server is significantly
reduced. However, their solution uses a fixed placement of
page and reliability data across servers, it requires that the
client keep track of parity group information, and it requires
that old page data stay on servers until all pages in a parity
group are replaced, wasting RAM space that could be better
used for storing active pages. By requiring fixed-placement
of remote page data on servers, remotely swapped page data
can be swapped to servers’ disks. We use a technique similar
to their parity logging to reduce the number of additional
messages on page swap-outs. However, our solution differs
from theirs in several ways. First, our solution does not require
that clients keep parity group state. Second, we do not require
fixed parity group membership. Third, we do not require fixed
page or parity page placement on servers. Fourth, we do not
swap pages to a server’s disk. Fifth, we do not require that
pages from exited processes remain on remote servers until
all pages in their parity group have been freed. And finally,
our solution does not have the potential bottleneck of a single
parity server.

III. N SWAP OVERVIEW

Nswap [15] is our Network RAM system for Linux clusters
and networks of Linux machines. It is implemented as a
loadable kernel module that is easily added as a swap device
to cluster nodes and runs entirely in kernel space on an
unmodified1 Linux 2.6 kernel; Nswap transparently provides
network swapping to applications, requiring no special re-
compiling or linking with special libraries. Nswap is designed
to be efficient, to adapt to changes in nodes’ RAM use, and
to scale to large-sized clusters.

Each Nswap node is an equal peer running both the Nswap
client and the Nswap server (shown in Figure 1). The client
is active when a node is swapping. The server is active when
a node has idle RAM space that is available for storing page

1Currently, we require a re-compile of the the kernel to export two kernel
symbols so that our module can read the kernel’s swap slot mapfor our
“device”, but no kernel code is modified



��
��
��
��

��
��
��
��

Nswap clientNswap client

host amt
B 44
C 17
D 20

. .
 .

. .
 .

. .
 .

IP Table
Nswap Server

User Space

SWAP OUT

swap out page j

Nswap Communication Layer

BCshadow
slot map

Node  A Node  B

Nswap Server

Nswap Cache

threads

IP Table
Nswap client

A’s page j

Nswap Comm. Layer

Kernel Space

client threads

sock

server

Fig. 1. Nswap System Architecture.Node A shows the details of the client including the shadow slot map used to store information about which remote
servers store A’s pages. Node B shows the details of the server including the Nswap Cache of remotely swapped pages. In response to the kernel swapping
out (in) a page to our Nswap device, a client thread issues a SWAPOUT (SWAPIN) request to write (read) the page to a remote server. The server storing
the page is encoded in the shadow slot map entry.

data swapped to it from remote nodes. At any point in time a
node is acting either as a client or a server, but typically not
as both simultaneously; its role changes based on its current
local RAM usage. The client and server send messages using
the Nswap Communication layer that is an interface on top
different network implementations.

Nswap is designed to scale to large clusters using an
approach similar to the Mosix [4] design for scalability. To
find available remote swap space, each node uses only its own
local information that does need to be complete nor completely
accurate, and each node is responsible for managing just
its portion of local RAM that it currently has available for
storing pages swapped from other nodes. Because there is no
central authority managing network RAM allocation, Nswap
will easily scale to large sized clusters.

The multi-threaded Nswap client is implemented as a device
driver for our pseudo-swap device. A client thread is activated
when the kernel makes a swap-in or swap-out request to our
swap “device” just as it would to a driver for a swap partition
on disk. For any swap device, the kernel has a data structure
called a slot map used to keep track of allocated swap space
on the device. The Nswap client keeps additional information
about each slot of swap space in a data structure called the
shadow slot map. There is one shadow slot map entry per
kernel slot map entry. Each entry stores the ID of the Nswap
server storing the page and some additional data encoding
usage of the swap slot that is used to detect and handle
conflicting operations to the same slot.

When a client thread receives a swap-in request from the
kernel, it looks-up the server ID from the corresponding
shadow slot map entry and sends a SWAP-IN request to the
Nswap server storing the page. When the client receives a
swap-out request from the kernel, it finds a good Nswap
server candidate using information that it keeps in a small data
structure called the IPTable, and sends a SWAP-OUT request
to the server (see Figure 1). Only when there is no available
Nswap Cache space in the system is the page swapped to disk.

The IPTable is a small data structure that contains informa-
tion about some (not necessarily all) nodes in the system. Each
entry contains a node’s IP, an estimate of its available Nswap

Cache space, and a cache of open sockets to it that is used to
avoid creating a new connection on every communication.2

IPTable entries are modified when a node receives a periodic
UDP broadcast from other nodes containing information about
their available Nswap Cache space.

The multi-threaded Nswap server is responsible for manag-
ing the portion of its RAM currently allocated for storing re-
motely swapped page data (the Nswap Cache). Server threads
receive swap-in and swap-out messages from Nswap client
nodes. On a Swap-in request, a server thread does a fast look-
up of the page in its Nswap Cache and sends a copy of the page
to the requesting client. The page also remains in the server’s
Nswap Cache as this is still the valid backing store for the
page. On a Swap-out request, a server thread allocates a free
page in its Nswap Cache to store the remotely swapped page
data. Multiple threads allow the Nswap server to concurrently
handle multiple swapping requests.

The server is responsible for growing and shrinking the
size of its Nswap Cache in response to local memory use:
when local processes need more RAM space, the Nswap
server releases pages from its Nswap Cache back to the local
paging system; when idle RAM becomes available, the server
allocates some of it, increasing the size of its Nswap Cache.
Only when a node has idle RAM, does Nswap allocate some of
it to use to store remotely swapped page data from other nodes.
When an Nswap server gives RAM back to the paging system,
remotely swapped page data that is stored in that RAM are
migrated to other Nswap servers that currently have available
Nswap Cache space. If no available Nswap Cache space exits,
the pages are migrated back to their owner’s node and written
to swap space on disk. Servers periodically UDP broadcast
their Nswap Cache sizes.

The migration protocol is shown in Figure 2. Server C sends
a MIGRATE request to server B. If B responds indicating that
it can take the page, C sends B a copy of page and now both
C and B store the page. After B receives the migrated page
it sends the page’s owner, A, an UPDATE message telling A
that it now stores its page. Node A updates its shadow slot

2Additionally, the IPTable could contain other statistics about nodes, such
as CPU load, that could be used to select a “good” server.



��
��
��
��

���
���
���
���

Node  A Node C

(1) MIGRATE

Node B

(2) UPDATE

(3) INVALIDATE

C drops its copy of page

A updates shadow 
slot map entry to B

Fig. 2. Page Migration.(1) a MIGRATE from C to B, (2) triggers an UPDATE
from B to the page’s owner A, (3) which in turn triggers an INVALIDATE
from A to C telling C that it can drop the page.

map entry for the page, indicating that B is the server for the
page, and A sends C an INVALIDATE message. At this point
C can safely drop its copy of the page. The migration protocol
is optimized for the owner of the page, ensuring that it can
always find its page quickly because its shadow slot map entry
always records a valid server storing the page.

To make the most efficient use of Nswap Cache space, it
is important to ensure that it not fill up with “dead pages”
from exited processes. Because the kernel assumes that swap
partitions are under local control, there is no call from the
kernel to the swap device driver notifying it that a slot has
been freed. When a node is actively swapping, dead pages
are cleaned from the system as slots are reused. When a node
is not actively swapping, Nswap periodically runs a garbage
collector thread to scan through the kernel’s slot map and
the shadow slot map finding slots that the kernel has freed
for which the shadow slot map still has valid mappings. The
garbage collector sends messages to servers notifying them
that they can drop the dead pages from their Nswap Cache.

For performance reasons, Nswap allows multiple page oper-
ations to happen concurrently. This concurrency, however,can
result in conflicting operations on the same page that must be
resolved. For example, a page may be being migrated while
at the same time a new swap-out of the page is occurring.
When these two events overlap, it is important that the client
does not lose the location of the newly swapped out page, and
it is important that the client not lose track of the location(s)
of the old page before it is garbage collected. To solve these
problems, usage count and migration-count values stored with
each shadow slot map entry are also stored with each swapped
out page and are included as part of the page meta-data sent
with messages. These values are used to detect and correctly
handle conflicting operations like the one above. For more
details about the Nswap system see [15].

IV. RELIABILITY SOLUTIONS

Making Nswap reliable involves modifying and extending
the core system to generate and store redundant information
that is necessary for recovering remotely swapped page data
lost in a node crash. Our solutions apply a RAID-like approach
to distributing page and reliability data across idle RAM inthe
cluster. The goals of our reliability solutions are: to minimize
the amount of extra computation and state necessary for
added reliability, with a particular emphasis on minimizing the

impact on the swapping node; to scale to large-sized clusters;
to avoid using (slow) disk for reliability; and to work with the
dynamic adaptable nature of our system.

A. Dynamic Mirroring

Our dynamic mirroring solution requires an Nswap client
to find two Nswap servers to store each swaped-out page. The
client’s shadow slot map contains entries for both servers.If
one server fails, the page can be recovered from the other
server, and copied to a new server to restore reliability forit.
When a page is migrated, the new server first checks to see
if it already has a copy of the page (it is the mirror for this
page), and if so, it does not accept the page migration and the
original server picks a different node to which to migrate the
page.

Mirroring is a an easy way to add reliability. However, it
is not very efficient as it requires twice as much idle RAM
to store pages, since two copies of every page are stored in
the system, and because it requires twice as much network
bandwidth on each page swap-out as each page is sent to two
servers. As a result, we expect that our parity-based reliability
schemes will be more efficient.

B. Centralized Dynamic Parity

Our Centralized Dynamic Parity is based on RAID level 4.
Swapped-out pages are organized into parity groups; each page
in a parity group resides on a different Nswap server node, and
parity pages reside on a dedicated parity server node. A parity
page consists of the XOR of the group’s page data and meta-
data that identifies each page currently in the group. Both the
number of pages in a parity group and the specific set of pages
that make up a parity group can change over time as a result of
page migrations, garbage collection, growing and shrinking of
Nswap Caches, and parity group merging (creating one large
parity group out of several small, non-overlapping ones).

A single cluster node serves as the designated parity server
and the other nodes are regular Nswap client/server nodes.
Unlike regular Nswap nodes, the parity server runs no cluster
application processes. In large clusters, nodes are divided into
parity partitions, each with a dedicated parity server. Thesize
of a parity partition will vary from system to system3. The
parity server is responsible for storing parity pages, imple-
menting the recovery algorithm to restore lost page data, and
managing and controlling parity group membership. Regular
Nswap nodes keep no state about parity groups other than the
IP of the parity server.

1) Creating Parity Groups:Parity groups are first created
by Nswap clients as pages are swapped out. When a page
is swapped to an unused swap slot (i.e. there is not a page
associated with an older use of the swap slot stored at an
Nswap server), the page becomes part of a new parity group.
We use a technique similar to Markatos and Dramitinos’ Parity
Logging [13] to reduce the number of additional page sends

3Through a simulation study, we found that our gigabit cluster, up to 64
nodes can be in the same parity partition before communication with the parity
server becomes a bottleneck.



���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

����
����
����

����
����
����

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���

���
���
���

����
����
����
����

Node  A

Parity Pool

Node  B

XOR

Node  C

. . .

Node N Parity Server

PARITY PAGE

SWAP OUT

SWAP OUT

SWAP OUT
parity
group

pages

Fig. 3. A Page Swap-out to an Unused Slot.The client’s Parity Pool is used to add the page to a new paritygroup. The Parity Pool consists of some number
of in-progress parity pages. Before the client (Node A) swaps out a page, the page data are added to one of the parity pages in the Parity Pool (page data
are XOR’ed into a parity page and the page’s meta-data is added). Only when a parity page in the Parity Pool is full is the parity page sent to the Parity
Server (resulting in one page send to the parity server per N swap-outs). After sending the parity page, the client knows nothing about this parity group.

during swap-outs. Each Nswap client keeps a pool of in-
progress parity pages. As a page is swapped out, it is added
into one of the pages in the pool (see Figure 3). When a parity
page in the pool becomes full (determined by the max parity
group size,N, for the cluster) it is flushed to the parity server
resulting in only one additional page send per everyN swap-
outs. When the parity server receives a new parity page, it
becomes the only entity that knows anything about the parity
group; once the client sends a full parity page to the parity
server, the client keeps no state about that parity page nor
does it keep any state about to which parity groups its pages
belong. The max parity group sizeN, can be almost as large as
the parity partition size. However, because each node’s Nswap
Cache size varies, there is no guarantee that a parity group’s
pages can be stripped across all nodes in the partition. As a
result, a newly formed parity group’s size depends both on
the number of nodes with free Nswap Cache space currently
available in the system and on the max size N.

2) How Parity Groups Change:There are several ways
in which a parity group can change. One way is that the
parity page data and meta-data are updated as new versions
of pages are swapped out or as dead pages are removed
from parity groups. When a page is swapped-out to a slot
that contains a valid mapping (i.e. a page associated with the
previous swap-out to the slot is stored at an Nswap server),
the client swaps-out the new copy of the page to the server
storing the older copy (this is exactly how Nswap with no
reliability behaves). The server will overwrite the old page
with the new one. However, it first sends a message to the
parity server with the XOR of the old and new page data and
meta-data. The parity server applies the XOR to the parity
page, taking the old page out and adding the new page into
the parity page (see Figure 4). Immediately after sending the
parity server the XOR, the old server sends the client an ACK
to its SWAP OUT request notifying the client that it can safely
reuse the memory page. At this point if there is a node crash
the parity server has received the XOR of the old and new
data, so every page in the parity group can be recovered. The
ACK to the client does not need to wait to be sent until the
parity server applies the XOR, it just needs to wait until the

��
��
��

��
��
��

��
��
��
��

���
���
���

���
���
���

Node  A Node B

SWAPOUT

Parity Server

UPDATE XOR

applies XOR 
B computes XOR

of old and new page

ACK

Fig. 4. A Page Swap-out to an In-Use Slot.Only if a page is swapped
out to a slot already in use (an older version of the page is stored at some
Nswap Server) does the parity server need to be involved in the swap-out.
When server B gets a new copy of the page, it computes the XOR ofthe old
and new page data and send it to the parity server to update theparity page
containing this data page. B also sends an ACK to the client when it is safe
for the client to re-use the memory storing the swapped-out page data.

parity server receives the message containing the XOR.
Pages can be removed from a parity group when a dead

page is garbage collected. When the server receives a garbage
collection message from the client, it sends a message con-
taining the dead page’s data and meta-data to the parity server
before removing the dead page from its Nswap Cache. The
parity server then removes the page data and meta-data from
its parity group, and the resulting parity group size is one
smaller.

Page migration also results in changes to the parity group.
When a page is migrated from one server to another, the parity
server must be notified of the page’s new location. To the
migration protocol shown in Figure 2, two additional messages
are added (shown as (4) and (5) in Figure 5). When the old
server (C) receives the INVALIDATE message, it sends to the
parity server an UPDATEPARITY message containing meta-
data for the old and new page. The parity server then updates
the meta-data associated with the page’s parity page and sends
a DROP PAGE message to the old server telling it that it is
now safe to drop its copy of the page.

Parity group membership can change as a result of a page
migration that causes a conflict in parity. For example, in
Figure 6, a page from parity group 2 is being migrated to
server C that already has a page in parity group 2. This type
of conflict is detected when the parity server receives the UP-
DATE PARITY message from the old server. To resolve the



���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

Node  A Node B Node C

(3) INVALIDATE

Node  A Node B Node C

(1) MIGRATE

(2) UPDATE

C drops its copy of page

PARITY SERVER

(4) UPDATE PARITY

(5) DROP PAGE

updates meta data
with parity page

Fig. 5. Page Migration and the Parity Server.To the basic page migration
protocol, messages (4) and (5) are added: (4) the old server notifies the Parity
Server of the new location of the page; and (5) the parity server tells the old
server it is safe to drop its copy of the page.

conflict, the parity server sends the old server a PAGEDATA
message requesting a copy of the page, which it removes from
Group 2 and adds to another parity group (shown as additional
messages A1 and A2 in Figure 6). By having the parity server
resolve parity group conflicts that arise from page migration,
we do not add extra overhead on regular Nswap nodes for
handling this atypical case.

Parity group membership also changes when the parity
server periodically merges several small, non-overlapping par-
ity groups into a single larger one. This is necessary because
page migration with conflicts and garbage collection can result
in many small parity groups wasting RAM on the parity
server. Because the regular Nswap nodes need know nothing
about parity groups, parity group merging is an entirely local
operation on the parity server.

The parity server uses page meta-data to resolve conflicts
that can occur when a page migration overlaps with other
operations on the page. For example, if a swap-out to the new
server overlaps with the page’s migration, the page’s meta-
data are used to delay applying the XOR from the swap-out
to the new server until the PAGEDATA request from the page
migration has been handled and the page has been moved to
a new parity group.

3) Page Recovery:The parity server is completely respon-
sible for recovering lost page data. The recovery algorithm
proceeds concurrently with regular Nswap swapping activity,
and the parity server resolves conflicts that result from this
concurrency. When a node discovers that another node is un-
reachable, it sends a RECOVER message containing the failed
node’s IP to the parity server. The parity server scans through
its set of parity pages, identifying parity groups that contain
pages on the failed server and wakes up recovery threads
to handle page recovery. For each parity group containing
a lost page, a parity thread requests the page data from the
non-failed nodes in the parity group using a PAGESDATA
message to request a set of page data from Nswap nodes
that will be used to recover lost pages. As Nswap servers

send the parity server page data, the pages are XORed out
of a copy of the parity page to recover the lost page. The
parity server then finds a new Nswap server that can store
the recovered page, possibly moving the recovered page to a
different parity group. To accomplish this, the parity server
uses a protocol similar to the regular migration protocol: the
parity server sends a MIGRATERECOVER message and the
page to a new server and drops its copy of the page; the new
server sends an UPDATERECOVER message to the page’s
owner who updates its shadow slot map entry with the new
server’s ID. The client does not need to send an INVALIDATE
message to the parity server, because the parity server has
already dropped its copy of the recovered page data. We can
do this because if the new server fails before it sends the
client an UPDATERECOVER message, the client will detect
it when it tries to swap the page and will send the parity server
a RECOVER message. This is identical to the client’s behavior
if the client swaps to the old server before the page has been
recovered.

During recovery the parity server and regular Nswap Nodes
keep track of which nodes are currently being recovered so
that the parity server does not get swamped with RECOVER
messages as Nswap nodes keep detecting that the failed node
has failed. If a failed node is rebooted, it gets a new unique
identifier consisting of its IP and its new boot time, allowing
the parity server to detect which data needs to be recovered
and which data is newly stored on the rebooted node.

4) Parity Server Recovery:If the parity server fails, then
all information about parity groups is lost, including all of
the parity pages. Because no other node in the system keeps
any state about parity groups, it is not at all important that
the parity groups be reconstructed as they were before be the
parity server failure; any set of N pages on N different Nswap
servers can be put into a newly constructed parity group during
the recovery phase. When the parity server comes back up, or
a stand-by node becomes the new parity server, all Nswap
servers with pages in their Nswap Cache send the new parity
server their page data. The new parity server creates new parity
groups to recover lost reliability data.

Having each Nswap server send the entire contents of its
Nswap Cache can use a large amount of network bandwidth.
However, the likelihood that the parity server is the node that
fails is very low, so the high use of network bandwidth to
handle this extremely uncommon case is not a performance
concern. Also, data compression can be used to reduce the
amount of data transfered. Another solution would be be to
have a primary and back-up parity server. The primary and
back-up parity servers would receive the same data from
regular Nswap nodes and construct and manage parity groups
for these data. It is possible that the primary and backup
nodes would construct different parity groups for the same
set of pages, which is fine, because the parity server is the
only entity that keeps parity group information, so that if the
back-up becomes the primary, its version is now the official
version. The main problem with this approach is that it requires
twice the bandwidth for regular communication with the parity



���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

(1) MIGRATE

Node  A Node  B Node  C

(4) UPDATE PARITY(3) INVALIDATE

. . .

. . .

. . .

Parity grp 2

Parity grp 1

Parity ServerNode N

(A1) PAGE DATA
(A2)

(2) UPDATE

(5) DROP PAGE

Fig. 6. Example Page Migration Requiring Parity Group Change. If Node N migrates a page currently in parity group 2 to Node C,the page can no longer
stay in parity group 2 (the parity server must take the migrated page out of group 2 and could add it into group 1). Two additional messages are added to
the normal migration protocol: (A1) the parity server adds aPAGE DATA message to the old server N and (A2) the old server sends the page data to the
parity server so that the page can be taken out of parity group2 and added into a new parity group.

server as now all data are sent to the primary and the back-
up parity servers. As a result, we chose to minimize network
bandwidth use for regular operation, and require full Nswap
Cache flushes to recover the parity server data on the unlikely
event that the parity server fails.

As the parity server recovers from failure, regular Nswap
nodes continue to send normal communication to it. The
parity server, however, cannot apply the actions (e.g. UP-
DATE XOR) until the lost parity information for the associ-
ated page has been recovered. Thus, during recovery, all new
actions on parity pages must be queued until the lost parity
data for an associated action’s pages has been recovered.

5) Problems with the Centralized Parity Approach:There
are two main problems with the centralized parity solution.
The first is that the parity server has a fixed-sized RAM and
can thus only store a fixed number of parity pages. This can
limit the amount of free RAM in the system that regular
Nswap nodes can make available for network swapping. To
scale to large-sized clusters, the centralized solution has to
create parity partitions. Without partitioning nodes in this way,
a single parity server could not store all the parity pages inthe
system in its RAM, and would have to swap some to its local
disk, severely limiting performance. In parity partitioning,
each partition consists of some fixed, disjoint subset of cluster
nodes and a dedicated parity server for that subset; there are
multiple parity server nodes, each serving as the central parity
server for one partition. The problem with this approach is that
memory usage between parity partitions is likely not balanced,
and as a result, there can be available Nswap Cache space in
the cluster that cannot be used by nodes that are currently
swapping because they are not in the same parity partition as
the nodes with available Nswap Cache space.

The second problem with the centralized approach is that
communication with the parity server can become a bottle-
neck. However, our experiments show that the physical RAM
limitations of the parity server become the limiting factor
before communication does. A better solution would be to
distribute parity server functionality across all Nswap nodes
in the system. This would eliminate the potential bottleneck of
the centralized solution, and it would remove parity partitions

that limit the set of nodes to which an Nswap client can swap.

C. Decentralized Dynamic Parity

Our Decentralized Dynamic Parity solution is loosely based
on RAID level 5. Much like the Centralized Dynamic Parity
solution, parity group membership and parity group size can
change over time as a result of page migration, invalidation
of dead pages, and parity group merging. However, in the
decentralized approach every cluster node acts as both a
regular Nswap client/server node and as a parity server node;
Nswap nodes store both remotely swapped page data and
parity pages. As in regular Nswap, at any point in time a node
is either acting as an Nswap client (a consumer of Nswap
Cache space) or it is acting as a combined Nswap server
and parity server (a provider of Nswap Cache space). The
benefits of the distributed scheme are that recovery data and
communication to the parity server is distributed across all
nodes in the cluster, and that the number of parity pages that
can be stored in the system is limited only by the amount of
available Nswap Cache space in the cluster.

1) Keeping Track of Parity Groups:Because there is no
central parity server, additional information must be keptwith
each swapped-out page including its current parity server ID
(the IP and last boot time of the node currently storing its
parity page) and its current parity group ID. A page’s parity
group ID is first created by the client as it computes the parity
page in its parity page pool. It consists of the client’s IP and
a unique count value incremented each time a node creates a
new parity group. When a client starts a new parity group, it
first makes sure that a server can be found to store the parity
page for the group; the client sends a SWAPOUT request
to a server, and if the server responds with YES, the client
allows a new parity page to be computed (keeping the server
thread waiting for the parity page data until the parity pageis
full and sent to it). Once a parity page has been sent to the
Nswap server, the client keeps no state about it nor does it
keep state about to which parity groups its pages belong; the
pages making up the parity group can change, and a page’s
parity group ID can change.

When a node enters a phase of shrinking its Nswap Cache, it



tries to migrate some proportion of its set of data pages and its
set of parity pages. The idea is to maintain a balanced system
by distributing parity and data pages somewhat evenly around
the system. When a page is migrated, the old server sends the
server storing the parity page the UPDATEPARITY message
much like in the centralized solution. When a parity page is
migrated, additional small messages must be sent to all the
pages in the parity group notifying them of the new location
of their parity page. If modifications to the parity page are
made during its migration, the migration protocol is extended
to propagate all changes to the new location of the parity page.

Each node performs recovery, parity group conflict resolu-
tion, and parity group splitting and merging. If an Nswap node
creates a new parity group as a result of one of these actions,
it assigns a new unique parity group ID using its local IP and
unique parity group counter.

2) Advantages of the Decentralized Approach:Our decen-
tralized dynamic parity approach solves problems with our
centralized approach. It allows parity group management and
page recovery to be distributed among the regular Nswap
nodes and it puts no restriction on the set of Nswap nodes
to which a given node can swap or store its parity pages; any
free Nswap Cache page can be used to store any remotely
swapped page or parity page. The decentralized scheme also
maintains the goals of the centralized scheme by ensuring that
clients need not keep any state about which parity groups its
pages belong, and need not be involved in the recovery of their
pages.

3) Problems with the Decentralized Approach:There are
some difficulties with the decentralized approach. First, be-
cause every node implements the functionality of both a
regular Nswap client/server node and a Nswap parity server,
each node is more complex and needs to maintain more state.
We minimize the amount of extra state by sharing the data
structures for finding and managing page data and parity pages
on each node. To support this, we add extra fields to structs
that define pages and parity pages in the system.

Second, page migrations are more complicated in this
scheme due to parity page migration. For example, we must
ensure that concurrent modifications to the migrated parity
page (e.g. UPDATEXOR) are not lost during migration. To
handle these cases, we propagate changes made to the copy
at the old server node to the new node as the final step in
migration.

Finally, recovery is more complicated because when any
node fails it loses both data and parity pages. Data page
recovery works as it does in the centralized scheme, but parity
page recovery is more complicated. Due to concurrent page
migrations, it may not be possible to reconstruct the exact
parity groups at the time of a node failure. Because our model
is such that the node storing the parity page for a group decides
if the group will be merged or split, it is fine the recovery
algorithm reconstructs a different set of parity pages for a
set of data pages (and possibly a different number of parity
groups) for parity information lost in the crash. However,
because every swapped out parity page keeps a guess as

to which node stores its parity page, creating, merging, or
splitting an existing parity group requires notifying all nodes
storing pages in the effected group(s) with changes in their
parity group ID or in changes to the server storing the group’s
parity page.

The decentralized approach has the advantages of dis-
tributing the parity server load and avoiding the need for a
dedicated parity server(s). However, because the centralized
scheme scales well by using parity partitioning, the extra
complexity of the decentralized approach may not result in
much performance improvement over the centralized scheme.

V. RESULTS

As a first step in evaluating our dynamic parity solutions,
we implemented and tested our Centralized Dynamic Parity
solution. We present performance results of our recovery
algorithm and results comparing swapping to disk, Nswap with
no reliability, and Centralized Dynamic Parity Nswap for two
sets of benchmark programs running on a cluster. The first are
a set of kernel benchmarks designed to range from the best
possible case for disk swapping to less favorable cases. These
will show how well Nswap does for cases when swapping to
disk is optimal and for cases where disk swapping is likely to
not perform well. The second set consist of applications from
the Splash2 [19] [9], and Linpack HPL [18] benchmark suites.
This set is designed to evaluate how well Nswap does on a
parallel workload. All experiments are run on a eight node
cluster, each node running version 2.6.8 of the Linux kernel
and connected to a 1 Gigabit Ethernet switch4.

A. Implementation

The parity server runs on a dedicated cluster node; it is
not also a regular Nswap client/server node, nor does it run
cluster application processes. The parity server providesfast
look-up of the parity pages it stores based on page meta-data
that is sent to it with most messages, it has a data structure
similar to the Nswap nodes’ IPTable that is used to cache
open sockets to Nswap nodes, and it is multi-thread so that
it can simultaneously handle requests from multiple Nswap
nodes. In addition, it has special recovery threads that handle
page recovery and a memory management thread that performs
parity group merging.

The centralized solution requires minimal changes to regular
Nswap nodes. Nswap clients need only keep a pool of in-
progress parity pages, which they send to the parity server
when full. Nswap server migration and garbage collection
protocols need to communicate with the parity server, and the
client and server need to send RECOVERY messages to the
parity server when they detect a failed node.

B. Kernel Workload Results

Table I shows the runtime, in seconds, of several workloads
comparing swapping to disk, Nswap, and Reliable Nswap
using the Centralized Dynamic Parity solution. We ran one

4Each node has a Pentium4 processor, 80GB Seagate Barracuda7200 IDE
disk drive, and 512MB of RAM. The parity server has 1GB of RAM.



TABLE I
KERNEL WORKLOAD RESULTS. Comparing Swapping to Disk, Nswap without Reliability, andNswap with Centralized Dynamic Parity. The rows are 1 and

2 process runs of each workloads. Time, in seconds, is the average of 10 runs. Speed-up over disk swapping is in parentheses.

Workload (#procs) Disk Nswap (speed-up) Reliable Nswap (speed-up)

WL1 (1) 220.31 secs 116.28 secs (1.9) 117.10 secs (1.9)
WL1 (2) 338.90 secs 113.61 secs (2.9) 116.80 secs (2.9)
WL2 (1) 2462.90 secs 105.24 secs (23.4) 109.15 secs (22.6)
WL2 (2) 1214.11 secs 76.50 secs (15.9) 84.60 secs (14.4)
WL3 (1) 3561.66 secs 105.50 secs (33.8) 110.19 secs (32.3)
WL3 (2) 2995.44 secs 95.90 secs (31.2) 91.89 secs (32.6)

and two process versions of each workload with one node
acting as the client and five nodes acting as servers. We also
disabled Nswap Cache growing and shrinking to reduce the
amount of variation between timed runs.

Workload 1 consists of a process that performs a number
of iterations of a large sequential write to memory followed
by a large sequential read. It is designed to be the best case
for swapping to disk; because of the way in which Linux
allocates swap space, there will be a minimal amount of disk
head movement in the swap partition. Workload 2 consists of
a process that performs random writes followed by random
reads to a large chunk of memory. It stresses disk head
movement within the swap partition. Workload 3 consists of
two processes. The first runs a Workload 2 application and the
second performs a large sequential write to a file. Workload 3
further stresses disk head movement with concurrent file I/O
and swap I/O to different disk partitions. The total number of
pages swapped differs for each workload, so only results in
the same row should be compared. The two process versions
of each workload access the same total size of memory as the
one process versions, but memory is divided between the two.
They are designed to represent a slightly more realistic cluster
workload.

For the single process version of Workload 1 (first row in
Table I), swapping to disk has the potential to outperform
Nswap because the application accesses its swapped pages
in sequential order on the disk swap partition, minimizing
disk arm movement. However, even for this unlikely best case
scenario, both Nswap and Reliable Nswap outperform disk by
a factor of 1.9. For the other workloads, Nswap and Reliable
Nswap perform significantly better than swapping to disk; for
example, Workload 3 runs 34 times faster when using Nswap
vs. swapping to disk. These results illustrate the performance
penalty of disk arm movement when swapping to disk.

Adding reliability to Nswap results in a small amount of
additional overhead. The largest slowdown from Nswap to
reliable Nswap is 4% for Workload 3 (105.24 seconds vs.
110.19 seconds). This is significantly better than overheads of
between 18% and 100% that we found in our Dynamic Mir-
roring solution. In addition, the Dynamic Centralized Parity
scheme uses much less idle cluster RAM for reliability data
then Mirroring does.

C. Parallel Benchmark Results

The second set of results evaluate Nswap’s performance for
parallel workloads. We selected applications from the Linpack

HPL and SPLASH2 benchmarks that would compile and run
on our small system and that processed a large amount of
data resulting in some swapping. Each application was run
on two or four cluster nodes, leaving the remaining nodes to
act as Nswap server nodes. This configuration was designed
to simulate the types of imbalances in RAM usage that can
occur in general purpose clusters that run multiple parallel or
parallel and sequential applications at any one time. In our
experiments, the nodes running the application processes are
currently acting as Nswap clients (users of remote RAM for
swap space) and are not currently acting as Nswap servers (i.e.
none of their RAM is allocated for Nswap Cache space, it is all
allocated to the application processes running on these nodes).
The nodes that are not running the parallel benchmarks, are
acting as Nswap servers (i.e. part of their RAM is allocated
for Nswap Cache space to be used to store remotely swapped
page data from the nodes running the parallel applications).
Additionally, we turned off growing and shrinking of Nswap
Cache sizes so that there would be less variation from run to
run of each benchmark program.

Each row in Table II shows the time in seconds and
the amount of swap space used on each node to run the
application. The columns show results for swapping to disk,
swapping to Nswap with no reliability, and swapping to Nswap
with Centralized Dynamic Parity. For the Nswap runs, the
speedup values over disk are listed in parentheses, and the
number of swap-outs and swap-ins are listed (these were
obtained from performance counters in the Nswap module).

The data in Table II were run on Nswap nodes whose swap
partitions are the same size as the disk partition, however the
memory footprint of the kernel is slightly larger for Nswap
because it includes the Nswap loadable kernel module, and
Reliable Nswap is larger than Nswap due to the parity pool
that consists of a few additional pages of RAM.

Overall, the results show both Nswap and Reliable Nswap
outperform swapping to disk by a factor of between 1.6
and 8.5. The application with the lowest speed-up (FFT at
1.6 and 1.7) is the shortest running application. The longer
running applications with more swapping benefit more from
Nswap (e.g. LU with speed-ups of 8.2 and 8.5). The speed-up
are less than those for the kernel benchmarks because these
applications spend a smaller fraction of their total runtime
swapping.

Reliable Nswap adds a small amount of overhead compared
to Nswap with no reliability (the largest being 3% for LU).



TABLE II
PARALLEL WORKLOAD RESULTS. Total Time, Speedup over disk swapping, and amount of the swap partition used in Mbytes for Swapping to Disk (column
2), Nswap without reliability (column 3), and Dynamic Centralized Parity Nswap (column 4). Times are shown in seconds, speedup over disk swapping in

parentheses, and approximate amount of swap used on each node (rounded to the nearest MB). For the Nswap runs, the total number of swap-ins and
swap-outs is also listed. Rows are times for the Linpack HPL benchmark, and SPLASH2 benchmarks.

Workload Disk Nswap Reliable Nswap
time swap used time (speed-up) swap used time (speed-up) swap used

Linpack 1745.05 secs 493MB 418.26 secs (4.2) 450MB 415.02 secs (4.2) 441MB
swapped in: 307K swapped out: 294K swapped in: 324K swapped out:311K

LU 33464.99 secs 519MB 3940.12 secs (8.5) 519MB 4082.19 secs (8.2) 519MB
swapped in: 3875K swapped out: 4140K swapped in: 4243K swapped out: 4267K

Radix 464.40 secs 518MB 96.01 secs (4.8) 518MB 97.65 secs (4.8) 518MB
swapped in: 234K swapped out: 204K swapped in: 235K swapped out: 204K

FFT 156.58 secs 390MB 94.81 secs (1.7) 390 MB 95.95 secs (1.6) 390MB
swapped in: 357K swapped out: 371K swapped in: 351K swapped out: 362K

Reliable Nswap should result in slightly more swapping than
Nswap without reliability because the memory footprint of
Reliable Nswap is slightly larger than Nswap without reliabil-
ity. However, for SPLASH FFT, Nswap with no reliability has
more swapping than Reliable Nswap (362K vs. 371K swap-
outs). Because there are two processes running on each client
node in the FFT benchmark, there was much more variation
between runs; the amount of swapping can differ between runs
as a result of the interaction between process scheduling and
the applications’ memory reference patterns in combination
with Linux page replacement policy. We suspect that this is
the cause of the anomaly between reliable Nswap and Nswap
in FFT.

Another anomaly occurs in the Linpack results; reliable
Nswap does more swapping than Nswap with no reliability
(311K swapped-out vs. 294K) but it is also slightly faster
(415.02 vs. 418.26). This is caused by differences in the
distribution of swapping activity between Nswap and Reliable
Nswap runs, which are likely caused by the Linux page re-
placement policy for this application. Both versions of Nswap
use the same number of client threads, but in the Reliable
Nswap runs, more of the threads are active simultaneously
than in the Nswap runs. This implies that in Reliable Nswap
swapping occurs in larger bursts than it does in Nswap.
The result is that Reliable Nswap is able to achieve more
concurrency when swapping by keeping more client threads
busy at the same time. Thus, even though the Nswap run
has less swapping, there are fewer concurrent swaps than in
reliable Nswap, resulting in slightly faster Reliable Nswap
runs.

D. Recovery Results

We present results from experiments measuring the time to
recover pages lost on a failed node, and results from experi-
ments measuring application slowdown caused by concurrent
page recovery.

We simulate node failure by writing a “failed” node’s IP
to a file in /proc that triggers an Nswap node to send a
RECOVERY message to the parity server to recover all pages
that are stored in the Nswap Cache of the “failed” node. Our
recovery algorithm is complete except that because a node has
not really failed, an Nswap client can always find a copy of all

TABLE III
EXECUTION TIMES FOR APPLICATIONS RUN WITH NO CONCURRENT PAGE

RECOVERY AND DURING CONCURRENT PAGE RECOVER. Time is in
seconds, and the average and standard deviation values are of 5 runs.

Application time std dev ave recovery
time

appl w/ no recovery 22.41 secs 0.12 NA
appl w/concurrent 22.48 secs 0.20 2.46 secs
page recovery

its pages; before recovery the page is still available from the
”failed” node, and after recovery it is available from another
Nswap server node. We made this simplification to reduce the
amount of variation from run to run of an application. Without
this simplification there is too much variation between runsof
applications with concurrent recovery (i.e. there is no wayto
ensure that the application waits for the exact same set of its
pages to be recovered at exactly the same point in its execution
from run to run).

Table III shows results of a sequential application from
our first set of experiments during which we triggered page
recovery of one “failed” node. Because we did not actually
cause node failure, the application can always find a copy of
its page (either by grabbing it from the “failed” node or the
new server it was migrated to after recovery). Thus, the results
in Table III measure the amount of slowdown concurrent page
recovery has on applications that do not try to access lost
page data before those data have been recovered. The results
show no slowdown in the application due to concurrent page
recovery on the Parity server: 22.41 seconds for runs with
no concurrent page recovery vs. 22.48 seconds for runs with
concurrent page recovery (with standard deviations of 0.12and
0.2).

Table IV shows the amount of time it takes to recover lost
page data for different numbers of total pages lost in a node
crash. Not surprisingly, the total time increases as the total
number of pages to recover increase. However, the per page
recovery time (shown in the second to last column) stays
relatively constant as the total number of pages recovered
increases. The differences in per page recovery times can be
attributed to the average size of the parity groups. When the
parity group size is close to five, four pages need to be fetched



TABLE IV
PAGE RECOVERY T IMES. Each row lists the total recovery time in seconds (column 2),the per-page recovery time in milliseconds (column 3), and the

average parity group size (column 4) for recovering some number of pages (column 1). The time values are in seconds.

Total Number of Total Recovery Per Page Ave Parity
Pages Recovered Time Recovery Time Group Size

5,196 0.75 secs 0.144 ms 4.99
7,910 1.19 secs 0.151 ms 4.99
9,182 1.81 secs 0.197 ms 5.97

14,477 2.15 secs 0.148 ms 4.99
15,629 2.88 secs 0.184 ms 5.98
25,802 4.69 secs 0.181 ms 5.94
71,792 13.02 secs 0.181 ms 5.97

from Nswap servers to recover each lost page, resulting in per
page recovery times of about 0.15 ms. When the average parity
group size is closer to six, five data pages need to be fetched
from Nswap servers to recover each lost page, resulting in per
page recovery times of about 0.18 ms.

VI. CONCLUSIONS ANDFUTURE WORK

Our Dynamic Parity reliability solutions solve the problem
of efficiently providing reliability to remotely swapped page
data in an adaptable Network RAM system. Our results show
that our Centralized Dynamic Parity solution adds minimal
overhead to Nswap without reliability, and that applications
run up to 32 times faster on reliable Nswap than they do
with disk swapping. Additionally, our results show that page
recovery has no impact on cluster applications running cur-
rently with page recovery, and that our per-page recovery
times are independent of the number of pages being recovered.
As networking technology continues to improve, Nswap will
increasingly perform better than systems that use only disk
swapping. In fact, a study that examined the performance
of Network RAM over Infiniband [12] suggests that reliable
Nswap over Infiniband would result in even better performance
than we saw with reliable Nswap over 1Gb Ethernet.

Because our results support our dynamic parity approach,
we plan to implement and test our Decentralized Dynamic
Parity solution as part of our future work. Additionally, we
plan to investigate predictive schemes for determining when
to grow or shrink Nswap Cache sizes, and we plan to run
Nswap on larger clusters to evaluate our scalable design.

VII. A CKNOWLEDGMENTS

We thank Hongzhang Shan for providing us with MPI ports
of the SPLASH2 benchmarks. And we thank Jenny Barry,
America Holloway and Heather Jones for their participation
in Reliable Nswap.

REFERENCES

[1] A. Acharya and S. Setia. Availability and Utility of IdleMemory
on Workstation Clusters. InProc. ACM SIGMETRICS Conference on
Measuring and Modeling of Computer Systems, pages 35–46, May 1999.

[2] E. Anderson and J. Neefe. An exploration of network RAM. In Technical
Report CSD-98-1000, UC Berkeley, 1998.

[3] Remzi H. Arpaci, Andrea C. Dusseau, Amin M. Vahdat, Lok T.Liu,
Thomas E. Anderson, and David A. Patterson. The Interactionof Parallel
and Sequential Workloads on a Network of Workstations. InProc.ACM
SIGMETRICS Conference on Measurement and Modeling of Computer
Systems, pages 267–278, 1995.

[4] A. Barak, O. La’adan, and A. Shiloh. Scalable Cluster Computing with
MOSIX for Linux. In Proc. Linux Expo ’99, pages 95–100, Raleigh,
N.C., May 1999.

[5] A. Batat and D. G. Feitelson. Gang scheduling with memoryconsider-
ations. InProc. 14th Intl. Parallel and Distributed Processing Symp.,
May 2000.

[6] G. Bernard and S. Hamma. Remote Memory Paging in Networksof
Workstations. InProc. SUUG’94 Conference, April 1994.

[7] Douglas C. Burger, Rahmat S. Hyder, Barton P. Miller, andDavid A.
Wood. Paging tradeoffs in distributed-shared-memory multiprocessors.
In Proc. 1994 conference on Supercomputing, pages 590–599, 1994.

[8] Michael Dahlin, Randolph Wang, Thomas E. Anderson, and David A.
Patterson. Cooperative caching: Using remote client memory to improve
file system performance. InOperating Systems Design and Implemen-
tation, pages 267–280, 1994.

[9] Hongzhang Shan. MPI port of SPLASH2 benchmarks.
[10] Liviu Iftode, Karin Petersen, and Kai Li. Memory Servers for Multi-

computers. InProc. IEEE COMPCON’93 Conference, Febuary 1993.
[11] John L. Hennessy and David A. Patterson.Computer Architectures A

Quantitative Approach, 3rd Edition. Morgan Kaufman, 2002.
[12] Shuang Liang, Ranjit Noronha, and Dhabaleswar K. Panda. Swapping to

remote memory over infiniband: an approach using a high performance
network block device. InIEEE Cluster Computing, 2005.

[13] Evangelos P. Markatos and George Dramitinos. Implementation of
a Reliable Remote Memory Pager. InProc. USENIX 1996 Annual
Technical Conference, 1996.

[14] Michael J. Feeley and William E. Morgan and Frederic H. Pighinand
Anna R. Karlin and Henry M. Levy and Chandramohan A. Thekkath.
Implementing Global Memory Management in a Workstation Cluster. In
Proc. 15th ACM Symposium on Operating Systems Principles, December
1995.

[15] T. Newhall, S. Finney, K. Ganchev, and M. Spiegel. Nswap: a
network swapping module for linux clusters. 2003. Proc. Euro-Par’03
International Conference on Parallel and Disributed Computing.

[16] John Oleszkiewicz, Li Ziao, and Yunhao Liu. Parallel network RAM:
Effectively utilizing global cluster memory for large data-intensive
parallel programs. InProc. IEEE 2004 International Conference on
Parallel Processing (ICPP’04), 2004.

[17] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for
redundant arrays of inexpensive disks (raid). InProc. SIGMOD’88 the
1988 ACM SIGMOD international conference on Management of data,
pages 109–116, New York, NY, USA, 1988. ACM Press.

[18] A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary. HPL- a
portable implementation of the high-performance linpack benchmark for
distributed-memory computers. http://www.netlib.org/benchmark/hpl/,
January 2004.

[19] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-
2 programs: Characterization and methodological considerations. Proc.
the 22nd International Symposium on Computer Architecture, June
1995.

[20] Li Xiao, Xiaodong Zhang, and Stefan A. Kubricht. Incorporating Job
Migration and Network RAM to Share Cluster Memory Resources. In
Ninth IEEE International Symposium on High Performance Distributed
Computing (HPDC’00), 2000.


