
Distributed File Systems

NFS 3 vs. Sprite FS

Stateful vs. Stateless

• Client - Server model : clients use server resources

• Files of a remote computer mounted locally (transparent)

• Mobility of files (transparent), one spacey central server.

• E.g: Lab machines mount home dir from allspice.
They use Network File System protocol (NFS).

foo
foo

foo

Intro:Distributed File Systems

foo
foo

foo

Intro:Distributed File Systems

• Multiple users (readers and writers) possibly of the same file

• Client side caching for speed

• A problem with caching : global consistency

• Consistency: Having only one version of a file.

• Unix model: Let the user deal with consistency. (also NFS)

NFS 3

• Stateless

• Client writes back immediately.(write through)

• Client pings back to check state of file
 a. Local cache is current => continue
 b. Local cache is old => invalidate

NFS 3
Example: shared file foo

foo
foo

foo

Writer

Writer

Server

Write through Periodic checks

Consistency Guarantees?
No!

Stateless write through policy

-
1. No consistency
guarantee

2. Network traffic (often

wasteful: single R/W, temp files)

3. Server bottle-neck

4. Writer is blocked
until completion

+
1. Simplicity

2. Crash recovery
(NFS Clients could still lose data
since it isn’t strict write through)

Stateless write through policy

Network Traffic:
•Writethrough every few secs, ~30 secs.
•Unnecessary for temp files or for singly shared files.
•Expensive: Computationally, network traffic
•Traffic causes server bottle-neck

Speed:

• Slowed down by network and,
• synchronous write: To guarantee write before proceeding.
(NFS doesn’t do this! = problems with consistency/ data loss)

Stateless write through policy

Consistency:
File writes can occur in the 30 sec gap.

UNIX’s level of consistency

Fault Tolerance:

As good as UNIX’s.

Little data is lost.

Spritely NFS

• Stateful : maintains a state of all open files.

• Open/Close() calls give server information:
read/write mode, keep track of number of clients, versions of files

• Callback : Server can issue calls to clients
for sake of consistency.

Spritely NFS

• Eliminate useless write-through:
Unless write shared, no write-through

• Version number: During open, refresh local
cache only if current version is old

• Guaranteed consistency through call-backs and
version checking.

Having file state, SNFS can improve efficiency.

SNFS 3
Example: shared file foo

foo
foo

foo

Writer

Writer

Server

Callback State Table

 Conditional caching/ Writethrough

From State To State When Caching Callback

Closed 1 reader Open for R Enabled None

Closed 1 writer Open for W Enabled None

1 reader Write shared
Open for W by

new
Disabled Invalidate

1 reader Multi Readers
Open for R by

new
Enabled None

1 writer Write shared
Open for R/W

by new
Disabled

Write-back and
invalidate

Cachable/ Uncachable files

SNFS 3
Example: shared file foo

State Transitions

Performance
Which is faster?

NFS SNFS

Read/ Scan (one
less RPC)

Write, Temp files
(make)

Which is less work?

Delayed write allows parallelism
No significant increase in computation

SNFS: Fewer RPCs over the life of a file

Andrew Benchmark: SNFS ~ 2x faster

Fault Tolerance

NFS SNFS

Easy recovery, not much loss
because of write-through

None implemented
complex
slow down
However, consistency can be maintained

NFS 4

• Stateful

• File locking (required for consistency)

• Delayed write, Open & Close.

• Other enhancements:
 RPC bundle (compound procedure)

• Lease: delegation of open/close/locking

