
A Hybrid Connectionist and BDI Architecture for ModelingEmbedded Rational AgentsPresented at the Workshop on Cognitive Robotics at the AAAI Fall Symposium Series, MIT, October, 1998Deepak KumarDepartment of Math & Computer ScienceBryn Mawr CollegeBryn Mawr, PA 19010(610)526-7485dkumar@cc.brynmawr.edu Lisa MeedenComputer Science ProgramSwarthmore CollegeSwarthmore, PA 19081(610) 328-8618meeden@cs.swarthmore.eduAbstractIn this paper, our ongoing work on a hybrid connec-tionist and belief-desire-intention (BDI) based ratio-nal agent architecture is described. The architecturemakes speci�c commitments in order to achieve a har-mony among the tasks of reasoning and acting. Thearchitecture uses a bottom-up learning strategy to ac-quire rules for reactive behavior.Embedded Agents: From Reactive toPlanful BehaviorsIt has been the goal of most research on planning toembody the computational models in a physical robot.From the early attempts based on SHAKEY the robot,it has been clear that the richness and unpredictabil-ity of the real world poses signi�cant challenges to thedesign of robust physical agents (Nilsson 1984). Theintractability of classical representation and reasoningmodels only adds to the problem. Thus, while theclassical approach to reasoning and planning facilitatesgood goal-directed behavioral models, it falls short ontwo fundamental issues: the issue of reactivity and theresources required to carry out real-time deliberativebehavior. In order to drive e�cient goal-directed be-havior, it often becomes necessary to sacri�ce high-level models.There has also been the introduction of a diamet-rically opposite approach to goal-directed behavior.This approach, called subsumption architectures, ex-plicitly denies any high-level representation of knowl-edge as well as planning and acting modules (Brooks1991). Complex behavior is achieved by a combina-tion of very simple, low-level behaviors. While, notnecessarily, goal-directed, these models exhibit promis-ing reactive capabilities. It has since been argued thatthe synergy of both, a conceptual as well as a non-conceptual, representational paradigms may be neededin order to develop more robust, more powerful, andmore versatile architectures (Sun 1996). These con-siderations have led us towards the development of

a new architecture. We recognize the utility of bothapproaches: deliberative goal-directed behavior andreactive, learning behavior as facilitated by low-levelbehavior-based models. We are developing a hybrid,anytime architecture that tries to accommodate thebene�ts derived from both types of models in the con-text of physical mobile robots.It has been recognized that the design of autonomousagents have the following properties: (a) there shouldbe a relatively direct coupling between perception andaction; (b) control should be distributed and decentral-ized; and (c) there should be a dynamic, closed-loopinteraction between the environment and the agent(Maes 1991). While the desiderata of autonomousagent design has been laid out, there is little consen-sus about the nature of the computational models em-ployed to satisfy these criteria (Kirsh 1991; Sun 1995;1996). We are currently focusing on exploring a con-nectionist model coupled with a BDI architecture. Ourresearch is explicitly concerned with implemented the-ories and systems. The knowledge representation andreasoning formalism used is called SNePS, SemanticNetwork Processing System(Shapiro & Group 1989;Shapiro & Rapaport 1992). The learning component isa recurrent arti�cial neural network developed throughreinforcement learning. The physical agents are imple-mented on Khepera robots(Mondada, Franzi, & Ienne1993). Each of these components will be described be-low. BDI ArchitecturesOne objective of the work described here is to con-tribute to the evolution of belief-desire-intention (BDI)architectures that can be used to model embedded ra-tional agents capable of reasoning, acting, learning,and interacting based on unifying underlying princi-ples. Speci�cally, the work is driven by the following:1. In the classical approaches to knowledge represen-tation and planning, what are the relationships be-



tween beliefs, desires, and intentions?2. What roles do these relationships play in the mod-eling of agents that are capable of reasoning, acting,as well as planning, in a uni�ed framework?3. Is it possible to apply a BDI approach to modelagents that are physically embedded in the world?4. What role can/does learning play for agents physi-cally embedded in the world?In this paper, we will describe some of the results wehave obtained in exploring these questions.Planning, Acting, and Inference: TheTeleological GapWe begin with the properties of the attitudes of be-lief, desires, and intention, the way they interrelate,and, most importantly, the ways they determine ra-tional behavior in a uni�ed fashion on a single, imple-mented platform. At the core of this approach are sev-eral knowledge representation issues, as well as issuesrelating to the architectures of planning and actingagents. We have observed that in most formalisms, it issomewhat awkward to do acting in reasoning systems,and it is awkward to study reasoning and representa-tional issues in systems designed for acting/planning.The most successful planning/acting systems are rela-tively unsuccessful at being knowledge representationand reasoning (KRR) systems and vice versa. Evenif a formalism were to use a common representationfor beliefs, acts, plans, it would still require separatemodules/processes for planning, acting, and inference.Consequently, it is typically the case that a KRRsystem is a subordinate module to planning, and act-ing systems. It is the planning and acting modules thatuse the reasoning modules. Reasoning seems to be car-ried out in service of planning and acting. This resultsin a gap between the acting, planning, and reasoningprocesses. We call this the representational-behavioralgap or, the teleological gap. An agent ought to be ableto act in service of inference. In our earlier work, wehave illustrated this using the following blocksworldexample:All red colored blocks are wooden.If you want to know the color of a block,look at it.In this example, looking is an action the agent can per-form on an object and it results in the agent knowingthe color of the object. The agent is able to exhibitthe following behavior:Is A wooden?

I wonder if A is wooden.I wonder if A is colored red.I wonder if A is a block.I know A is a block.Since A is a block I inferIf you want to know the color of A look at it.I intend to do the act look at A.I wonder if the act look at A has any preconditions.. . .Now doing: Look at A.Sensory-add: A is colored red.Since A is a block and A is colored redand all red colored blocks are woodenI infer A is wooden.Notice that a backward chaining query lead the agentto perform an action in order to answer the query.Thus, acting was performed in service of inference. Inwhat follows, we �rst provide an overview of the SNePSBDI architecture.The SNePS BDI ArchitectureThe belief-desire-intention architecture we have devel-oped is based on our analysis of the relationship be-tween beliefs, plans, acts, and the process of reasoningand acting. This has led us to make several commit-ments.Semantic CommitmentsLet us look closely at the mechanism of inference.Reasoning is the process of forming new beliefs fromother beliefs using inference rules. The connectives andquanti�ers of the inference rules govern the derivationof new beliefs. Reasoning can be looked at as a se-quence of actions performed in applying inference rulesto derive beliefs from other beliefs. Thus, an inferencerule can be viewed as a rule specifying an act|that ofbelieving some previously non-believed proposition|but the \believe" action is already included in the se-mantics of the connective. Thus, another way of char-acterizing an inference engine is as a mental actor ora mental acting executive. During backward chaining,the mental acting executive forms the intention of be-lieving the (queried) consequents of a rule if its an-tecedents are satis�ed (i.e., preconditions are ful�lled).Similarly for forward chaining. McCarthy has also sug-gested that inference can be treated as a mental action(McCarthy 1986).Alternatively, plans can be viewed as rules for acting.Reasoning rules pass a truth or a belief status fromantecedent to consequent, whereas acting rules pass



an intention status from earlier acts to later acts. Inorder to exploit this relationship between inference andacting we must make an architectural commitment.Architectural CommitmentsThe above discussion suggests that we may be able tointegrate our models of inference and acting by elimi-nating the acting component of the architecture. Whileit may sound appealing to rede�ne all the inferencemechanisms as a bunch of explicit plans (under thenew interpretation, this is theoretically possible), wehave refrained from doing so. The trade-o� here isthat of the long-standing tradition of inference beinga basic primitive in an AI system as well as the op-timized implementation of inference (where previousdeductions are not repeated, if valid), which is a neces-sity. The resulting uni�ed acting and reasoning engine,which we are calling a rational engine, has to operateon beliefs as well as acts(Kumar 1993b). This poses achallenge to the underlying knowledge representationscheme, which leads us to the epistemological commit-ments described in the next section.The SNePS Rational Engine, called SNeRE(Ku-mar 1993a; 1996), is an integrated reasoning and act-ing module that uses a logic called SWM(Martins &Shapiro 1988). It is the module responsible for theagent's reasoning processes. It is also the module re-sponsible for the agent's acting and planning behavior.It employs an assumption-based truth maintenance(ATMS) system(Martins & Shapiro 1988). Thus, in-ferences, once drawn, are retained by the agent as longas their underlying support persists. The ATMS is alsoemployed for implementing the extended STRIPS as-sumption(George� 1987) for acting(Kumar & Shapiro1993). Moreover, the rational engine is capable ofmodeling reactive as well as belief acquisition behavior(cases where inference can lead to acting).Epistemological CommitmentsThe key to success lies not only in making the abovesemantic and architectural commitments but also animportant Epistemological commitment: all knowledgerequired by the agent for reasoning, planning, and act-ing should be represented in a single formalism. In ourprevious work, we imposed an additional requirementthat the modeled agent be capable of interaction usingnatural language.The modeled agent's beliefs, plans, acts, and rulesare represented in the SNePS semantic network for-malism(Shapiro & Rapaport 1992). SNePS is anintentional, propositional semantic network system.Nodes in the semantic network represent concep-tual entities|individuals, and structured individuals.Structured individuals can be propositions, which are

used to represent beliefs, or acts and plans. Repre-senting beliefs as well as acts as conceptual entitiesprovides the central uniform framework for the archi-tecture. Any conceptual entity represented in the sys-tem can be the object of a belief, plan, or act. Bythe same token, it can be reasoned about (or actedupon, as the case may be) and discussed by the agentrepresenting it.Acts can be primitive or complex (ones that willhave to be decomposed into a plan) and are clas-si�ed as physical, mental, or control acts. Physicalacts are domain speci�c acts (like PICKUP or PUT).Mental acts are the acts of believing (or disbeliev-ing) a proposition (i.e., they bring about changes inthe agent's belief space). Control acts are used tostructure plans (i.e., they control the agent's inten-tions). Our repertoire of control acts includes actsfor sequencing (linear plans), conditional acts, itera-tive acts, nondeterministic choice and ordering acts,and quali�er acts|acts whose objects are only de-scribed and not yet fully identi�ed (see (Kumar 1993a;1996)).Transformers In addition to standard beliefs thatan agent is able to represent, we also de�ne a spe-cial class of beliefs called transformers. A transformeris a propositional representation that subsumes vari-ous notions of inference and acting. Being proposi-tions, transformers can be asserted in the agent's beliefspace; they are also beliefs. In general, a transformeris a pair of entities|(h�i; h�i), where both h�i and h�ican specify beliefs or acts. Thus, when both parts ofa transformer specify beliefs, it represents a reasoningrule. When one of its parts speci�es beliefs and theother acts, it can represent either an act's precondi-tions, or its e�ects, or a reaction to some beliefs, andso on. What a transformer represents is made explicitby specifying its parts. When believed, transformerscan be used during the acting/inference process, whichis where they derive their name: they transform acts orbeliefs into other beliefs or acts and vice versa. Trans-formations can be applied in forward and/or back-ward chaining fashion. Using a transformer in forwardchaining is equivalent to the interpretation \after theagent believes (or intends to perform) h�i, it believes(or intends to perform) h�i." The backward chain-ing interpretation of a transformer is, \if the agentwants to believe (or know if it believes) or perform h�i,it must �rst believe (or see if it believes) or performh�i." There are some transformers that can be usedin forward as well as backward chaining, while oth-ers may be used only in one of those directions. Thisdepends upon the speci�c proposition represented bythe transformer and whether it has any meaning when



used in the chaining process. Since both h�i and h�ican be sets of beliefs or an act, we have four typesof transformers|belief-belief, belief-act, act-belief, andact-act.Belief-Belief Transformers: These are standardreasoning rules (where h�i is a set of antecedent be-lief(s) and h�i is a set of consequent belief(s)). Suchrules can be used in forward, backward, as well as bidi-rectional inference to derive new beliefs. For exam-ple, a class of transformers that represent antecedent-consequent rules is called AntCq transformers. In thispaper, rather than drawing semantic networks, we willuse the linear notationh�i ! h�ito write them. For example \All blocks are supports"is represented as8x[Isa(x; BLOCK)! Isa(x; SUPPORT)]In addition to the connective above (which is alsocalled an or-entailment), our current vocabularyof connectives includes and-entailment, numerical-entailment, and-or, thresh, and non-derivable. Otherquanti�ers include the existential, and the numericalquanti�ers (see (Shapiro & Group 1989)).Belief-Act Transformers: These are transformerswhere h�i is a set of belief(s) and h�i is a set of acts.Used during backward chaining, these can be proposi-tions specifying preconditions of actions, i.e. h�i is aprecondition of some act h�i. For example, the sen-tence \Before picking up A it must be clear" may berepresented asPreconditionAct(Clear(A); PICKUP(A))Used during forward chaining, these transformerscan be propositions specifying the agent's desires toreact to certain situations, i.e. the agent, upon comingto believe h�i will form an intention to perform h�i.For example, a general desire like \Whenever some-thing is broken, �x it" can be represented as8x[WhenDo(Broken(x); FIX(x))]Act-Belief Transformers: These are the proposi-tions specifying e�ects of actions as well as those spec-ifying plans for achieving goals. They will be denotedActEffect and PlanGoal transformers respectively.The ActEffect transformer will be used in forwardchaining to accomplish believing the e�ects of act h�i.For example, the sentence, \After picking up A it is nolonger clear" is represented asActEffect(PICKUP(A);:Clear(A))

It can also be used in backward chaining during theplan generation process (classical planning). ThePlanGoal transformer is used during backward chain-ing to decompose the achieving of a goal h�i into aplan h�i. For example, \A plan to achieve that A isheld is to pick it up" is represented asPlanGoal(PICKUP(A); Held(A))Another backward chaining interpretation that canbe derived from this transformer is, \if the agent wantsto know if it believes h�i, it must perform h�i," whichis represented as a DoIf transformer. For example,\Look at A to �nd out its color" can be represented asDoIf(LOOKAT(A); Color(A; ?color))Act-Act Transformers: These are propositionsspecifying plan decompositions for complex actions(called PlanAct transformers), where h�i is a complexact and h�i is a plan that decomposes it into simpleracts. For example, in the sentence, \To pile A on B�rst put B on the table and then put A on B" (wherepiling involves creating a pile of two blocks on a table),piling is a complex act and the plan that decomposesit is expressed in the propositionPlanAct(SEQUENCE(PUT(B; TABLE); PUT(A; B)); PILE(A; B))The Rational Engine As shown above, we are ableto represent beliefs, acts, reasoning rules, and plans us-ing the same knowledge representation formalism. Theformalism makes appropriate semantic distinctions be-tween various conceptual entities. A single operatingmodule, the rational engine, carries out inference aswell as acting. The abstract interface of the resultingsystem is that of a tell-ask-do architecture, where onecan either tell the modeled agent a fact, ask a queryabout one, or request the agent to form an intention todo something. Typically, a tell leads to forward chain-ing inference and ask leads to backward chaining. Thesatisfying of intentions is carried out by an inferenceengine.Modeling Embedded Rational AgentsWhile we were experimenting with the design ofSNeRE and considering various commitments that leadto it, we were mainly using software agents operatingon controlled software environments (blocksworld, geo-graphical information systems). The agent, using nat-ural language interactions, was told about the domain,and how to act in it. In our more recent work, we havebeen working with a Khepera robot. In one of the basicexperiments, the modeled agent exhibits simple navi-gational behavior (move around without colliding into



obstacles): that of a Braitenberg Vehicle. The behaviorcan be easily described by the following procedure:DO foreverIF left is blocked THEN turn rightIF right is blocked THEN turn leftELSE go straightConsidered one of the simplest robotic behaviors,it reveals several issues as well as options whenmodeled in the BDI architecture described above.First, the agent needs to have beliefs that describethe world adequately enough for it to carry outthe behavior: Blocked(LEFT), Blocked(RIGHT), andClear(FRONT). We could use three primitive actions:TURNLEFT, TURNRIGHT, and GOSTRAIGHT. One may evendecide to have the preconditions: Blocked(RIGHT),Blocked(LEFT), and Clear(FRONT), respectively, forthe three actions. The e�ects of the three actions couldsimply be to eliminate their preconditions, in the spiritof traditional planning models.The issue of sensing/perception comes next. In thissimple example, we could do with a simple PERCEIVEaction, the result of which would be the assertion ofone of three beliefs described above, depending on thecurrent situation of the robot. However, one has todecide if PERCEIVE is going to be an act we wouldlike the agent to explicitly intend. We realize that,as far as sensing goes, our model should accommodatesynchronous as well as asynchronous sensing facilitiesin an agent. By synchronous sensing, we mean anexplicitly modeled act of sensing (there may be sev-eral). Here again there are at least two possibilities:the agent performs the explicit sensing act as a partof its acting schema (as in a perceive-reason-act cycle);alternatively, the agent explicitly intends to perform aperception act (as in the blocksworld example, above).For the latter case, we could model the behavior of aBraitenberg vehicle as follows:SNITERATE(true,SNSEQUENCE(PERCEIVE,SNIF((Blocked(LEFT), TURNRIGHT),(Blocked(RIGHT), TURNLEFT),(Clear(FRONT), GOSTRAIGHT))))If we were to incorporate the preconditions of actionsas described above, the speci�cations in the conditionalcontrol action would be redundant. One could, instead,use the plan:SNITERATE(true,SNSEQUENCE(PERCEIVE,DOONE(TURNRIGHT, TURNLEFT, GOSTRAIGHT)))

If, on the other hand, the action schema were suchthat sensing was performed as a part of the schemaitself, we could write:SNITERATE(true,DOONE(TURNLEFT, TURNRIGHT, GOSTRAIGHT))If one were to employ an asynchronous sensing mod-ule, the agent should expect a urry of assertions towhich it would be expected to react. In this case, thefollowing rules would su�ce:WhenDo(Blocked(LEFT); TURNRIGHT)WhenDo(Blocked(RIGHT); TURNLEFT)WhenDo(Clear(FRONT); GOSTRAIGHT)As you can see, decisions on the kind of sensing in-volved impacts the way the agent's plans or desires areencoded. In the case of the simple Braitenberg Vehicleone could get the desired behavior by employing severalrepresentations. Some would employ control actions,and some would make use of transformers (most no-tably, WhenDo), and some would need both. It is ourbelief that an embedded BDI architecture would facili-tate all of these perceptory models. Within our hybridsystem, the behavior developed at the lower level bythe learning component should constrain the represen-tational choices at the higher level.Learning to Act in the Real WorldConducting learning on physical robots is a time con-suming process. Often, for reasons of practicality, therobots used are quite small. This allows the task en-vironment to be set up on a desktop with the robottethered to a computer for data collection and tetheredto an electrical outlet for power. One popular plat-form for conducting learning experiments is the Khep-era robot. Khepera is circular in shape and miniature(diameter 55 mm, height 30 mm, and weight 70g). Ithas two motors which control two wheels that can bepowered from -10 (full reverse) to 10 (full forward). It'sstandard sensory apparatus consists of eight infra-redproximity sensors which also measure ambient light.Six of these sensors are arranged in an arc across thefront of the robot while the other two sensors are inthe back. The proximity sensors measure reectance;when this measure is high an obstacle is close. Therange of these sensors depends on the reexivity of theobstacle, but is generally about 30{40 mm.Given this platform, we can now reconsider the nav-igation task discussed above in more detail. Dealingwith a physical robot rather than a simulated modelrequires you to make some very speci�c choices. For



perceiving, what does it mean for the Khepera to beblocked? We could designate Blocked(LEFT) to meanthe front leftmost sensors are reading the maximumvalue or the front leftmost sensors are reading abovesome threshold. For acting, what does it mean for theKhepera to turn? We could designate TURNLEFT to bemotors(-10,10), motors(-5,10), or motors(0,10). Oncewe make these decisions we have restricted the possiblesolutions to the task at hand.Rather than making these choices apriori, we can al-low a learning system to have direct access to the rawsensor readings and the motor controls. Then givengeneral feedback about how to solve the task, the learn-ing system will discover when it is appropriate to turnand by how much.In initial experiments on learning this task, feed-back was based on three factors: speed, straightness ofmotion, and obstacle avoidance. Ultimately we wantthe robot to explore as much of the accessible envi-ronment without getting stuck. By rewarding speedand straight motion, in addition to obstacle avoidance,this should be achieved(?). Each of these factors wasnormalized to be between 0 and 1 (with high valuesindicating good behavior) and multiplied together toproduce an overall �tness score on each time step. Forspeed, the value was based on the average speed of thetwo wheels. For straightness, the value was based onthe di�erence between the speed of the two wheels. Forobstacle avoidance, the value was based on the maxi-mum proximity reading.Using this bottom-up reinforcement technique, theresulting behavior is more varied then one might expectwhen considering the problem only from the top-down.In one solution, as the Khepera approached an obsta-cle, it reacted to it when one of its proximity sensorswas maxed out and another was beginning to increase.Then it would maintain a sharp turn (motors(-9,9) forseveral time steps, eventually switching to a much moregradual turn (motors(8,9)). Finally, it would returnto straight motion (motors(9,9), but would sometimeshave to make another small turning adjustment de-pending on the width of the obstacle. The reactionsof the robot were smooth and appropriate to the envi-ronment.In a second set of experiments, the learning systemwas given only abstracted features of the environment(on input, whether the robot was blocked on its left orright; on output, whether to turn left, turn right, or gostraight). The resulting behavior was not as successful,receiving less reward overall and exhibiting a tendencyto get stuck.These preliminary �ndings seem to indicate that al-lowing a learning system to explore the full range of

possible behaviors is essential to �nding robust solu-tions. Once a learning system has discovered usefuldistinctions about the world, it then becomes fruitfulto pass on these �ndings to a higher-level reasoningsystem.Connecting Reacting and PlanningMeeden has shown that by using a connectionist frame-work adapted through reinforcement learning, it is pos-sible to build physical, as well as simulated autonomousagents that, after a series of training sessions, exhibitplan-like, goal-directed behavior (Meeden, McGraw, &Blank 1993; Meeden 1996). The control networks dis-played a large repertoire of navigational strategies foraccomplishing the given goals. In fact, the hidden layerrepresentations di�erentiated each strategy, even thosewith only subtle di�erences. This was proved by do-ing cluster analysis of the hidden layer activations thatcorresponded to speci�c behaviors. The hidden layeractivations of the recurrent network controller can po-tentially contain a compressed history of the past, in-cluding goals, perceptions, and actions taken. Thestrategies embodied within the hidden layer activationswere termed protoplans. These protoplans can serve asa building blocks to planning at the deliberative level(Meeden 1994).Our exercise of explicating the issues of deciding thebest BDI representations for a simple Braitenberg Ve-hicle can now be combined with an examination of thekinds of protoplans such a vehicle would learn, if itwere to be purely driven by a connectionist network.It is our working hypothesis that the goal of automatictransfer of protoplans into higher-level symbolic repre-sentations would provide the needed direction for chos-ing amongst the various options.We are currently working on the integration of thismodel with the higher-level symbolic BDI architecture.It is expected that the combination of a deliberative ar-chitecture, good for goal-directed reasoning and actingbehavior modeling, with a reactive and learning behav-ior would be a viable attempt to overcome the short-comings of both styles of architectures. There is also adeeper scienti�c motivation for this work|the learningexhibited by the connectionist architecture can formthe basis for the emergence of cognitive concepts atthe deliberative level. This is a promising new direc-tion. So far, most attempts at hybrid architectureshave concentrated on a top-down ow of information(Hexmoor, Kortenkamp, & Horswill 1997). That is,goals and behaviors at the symbolic level are trans-ferred to lower-level, motor activities. Other modelsprovide a bottom-up path for information, but focuson basic situation-action rules. In our work, we are
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