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1 Intr oduction

In 1999, Swarthmore’s waiter robot, Alfred, won the American Association for Artificial Intelli-
gence [AAAI] “Hors d’Oeuvres Anyone?” robot competition. This year, Alfred graduated to ital-
ian restaurant owner--changed his name to Alfredo--and went back to the competition with his
“sons” Santino and Mario. Alfredo was the maitre’d, Santino the waiter, and Mario the bus-boy

This year Alfredo was not a mobile robot, but a computer with a large monitor placed at the
waiter’s refill station. He had speakers and a video camera, and would respond to different kinds
of visualinput.Themonitordisplayedatalkingface,whoselips movein synchronizationwith the
speech.Hehadthreespecialcapabilities:1) hecouldtell whenyouheldyourpalmin front of the
camera and would give you a palm reading. 2) he would comment on the color of your shirt
(based on analysis of the video image), and 3) he would comment if you stayed in front of the
camera too long. Otherwise, Alfredo would talk about various things, responding to what he saw
in the camera.

Santino, the waiter, was a Nomad Super Scout II, a medium size mobile robot with an on-board
computer. Santinowasalsooutfittedwith two cameras,amicrophone,speakers,a6” LCD display
and a mechanical arm that could raise a tray up and down. Santino used the two cameras to look
for people, look for brightly colored badges, and to check when his tray was empty. He would
come up to a person, ask if they wanted an hors d’oeuvre and then lift the tray if they said yes.
When his tray was empty, he would make his way back to the refill station. When Santino was
happy a face on the LCD screen would smile. When he was grumpy or angry, it would frown.

Mario, thebus-boy, wasaRealWorld Interfaces[RWI] MagellanPro,ashortmobilerobotwith a
camera and speakers. His job was to provide entertainment by running around in the crowd. Dur-
ing thecompetition,healsohadaplateof cookiesonhisback.In addition,hewouldshuttleback
andforth betweenSantinoandAlfredo, attemptingto strikeupconversationswith them.Thetwo
mobile robots could identify one another by a red, white, and green flag that each carried (one
with the red side up, one with the red side down).

ThisyearSwarthmorenotonly competedin the“Hors d’OeuvresAnyone?”event,but alsoin the
UrbanSearchandRescue[USR] eventonastandardcoursepreparedby theNationalInstituteof
Standards and Technology [NIST]. The robot Mario explored one section of the course autono-
mously, built a map, and connected annotated 360˚ panoramic images of the scene to map loca-
tions. The annotations identified image areas of interest by highlighting motion and skin-color.
Mario then made its way out of the course within the allotted time limit (25 minutes).

Evenwith tenundergraduatestudentsworkingontheprojectfor eightweeks,doingbotheventsat
this level of performance was difficult. What made it possible, let alone successful, was that each



of the agents used the same overall software architecture for integrating navigation and control
with perceptual processing. Furthermore, this architecture was designed to be largely platform
independentandmodular, permittingdifferentagents--includingnon-mobileagents--tousediffer-
ent capabilities with few changes to the overall system.

Using the same architecture for each agent allowed us to distribute our efforts and focus on com-
mon capabilities such as visual information processing modules and facial animation modules
thatcouldbeusedonseveralplatforms.Thispermittedusto giveeachagentawide rangeof abil-
ities and then integrate them together effectively. The unique aspects of our hors d’oeuvres entry
this year included:

• The integration of multiple sensors and modes of interaction in a single agent,
• A powerful, general purpose, real-time color vision module,
• Fast, creative, entertaining, and robust human-agent interactions,
• Facial animation--including tracking faces with the eyes--in sync with the text,
• Shirt color detection and identification,
• Fast, safe navigation in a crowded space using a reactive algorithm, and
• Communication and interaction between agents.

The same architecture also managed our USR entry. The only difference between Mario the bus-
boy and Mario the rescue robot were the controlling modules. Otherwise, the vision, speech, and
navigation modules were identical. The strengths of our USR entry were:

• Completely autonomous function,
• A robust reactive wander mode and “get out” mode using sonar and IRs,
• Providing a map built by the robot with connected annotated images, and
• The vision module, which could identify motion and skin-color.

It’sworth takinga look atwhatwasunderthehood,sotherestof thispaperexaminestheoverall
architecture and highlights the most important pieces.

Figure 1Alfredo (center) and his two “sons”. Mario (left) is in his search and rescue uniform,
while Santino (right) is ready to serve hors d’oeuvres.



2 REAPER: an Intelligent Agent Architecture

Thesystemarchitecture--hereafterreferredto asREAPER[REflexiveArchitecturefor PErceptual
Robotics]--isbasedonasetof modules.Thepurposeof eachmoduleis to handleoneof: sensing,
reflexes, control, communication, and debugging. The fundamental concept behind REAPER is
that the central control module--whether it is a state machine or other mechanism--does not want
afloodof sensorydata.Nor doesit wantto have to make low-level decisionslikehow fastto turn
each wheel ten times per second. At the same times it does need real-time updates of symbolic
information indicating what the world around it is doing. The sensor and reflex modules gather
and filter information, handling all of the preprocessing and intermediate actions between high-
level commands or goals. This is similar to the way our brain deals with a request to pick up an
object. While we consciously think about picking up the object, our reflexes deal with actually
moving our hand to the proper location and grasping it. Only then does our conscious mind take
back control to decide what to do next.

Thetwo sensingmoduleshandleall visionandspeech--basedinteraction.Theirmaintaskis to act
as filters between the sensory data and the symbolic information required by the rest of the sys-
tem. The reflex modules--navigation and face--handle the motion and appearance of the robot.
Thenavigationmodulealsoincorporatessensing(sonarandinfraredsensors),but its primarytask
is to control the motion of the robot, not to filter the sensory information. Central control of the
robot is handled through a state module, and communication between robots is handled through
its own module. Finally, we created two modules for debugging purposes. One--the monitor--
showstext fieldsthatrepresentall of theinformationavailableto thesystem.Theother--thevisual
monitor--is designed to graphically show the information being provided by the vision module.
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Figure 2Logical diagram of the REAPER Architecture. Each module takes inputs from and
writes its outputs to the shared memory. The State module is the central controlling unit.



Themodulesonarobotcommunicatethroughasharedmemorystructure,whichprovidesaneffi-
cient means of sharing information. They are based on a common framework for communicating
andprogrammingthatusesahandshakingprotocolto ensurethatinformationandcommandsare
passed and read correctly. Communication between robots occurs through sockets between the
communication modules over a wireless ethernet system.

Central control of the robot was handled by a controller module, or state module. This module
wasstartedfirst, andit wouldstartupall of theothermodulesit needed--eachwhichof whichwas
its own program.Thestatemodulewould theninitiateastatemachineprocessthatspecifiedhow
therobotwould interactwith theworld, whatsensingandinteractionmodalitiesit woulduse,and
whatkindsof navigationit neededto accomplish.To specifywhattheothermodulesshoulddo it
used a handshaking protocol to send information and commands to them. The other modules, in
turn, would maintain blocks of output information that could be used by the state machine to
determine what to do next and when certain actions were complete.

The state machine design and implementation required careful planning and thinking. The most
difficult aspect of developing them was synchronization and timing. The state machine used a
handshakeprotocolinvolving two counters--onecontrolledby thestatemachine,oneby themod-
ule--to synchronize commands with a given module and ensure it didn’t send commands too
quickly. The state machine also had to be carefully constructed so that it didn’t switch between
states too quickly. Since the state machine did not include any of the low-level sensing or interac-
tion, it iterated extremely quickly and could move between states before other modules had any
chance to react to the previous state. Thus, it had to watch flags from the other modules to deter-
mine when actions completed before moving on or making a decision. The strength of this
approachis thatthestatemachinecansit backandsamplehigh-level informationasynchronously,
reacting to changes in the world smoothly and quickly.

2.1 Overall module structure

The non-controller modules all contained the same basic program structure. After startup and ini-
tialization, each would enter an event loop--initially in an idle state. Each time through the event
loop, the module would first test if the controller had issued a command. If so, the transition to
executingthatcommandwould takeplace.Otherwise,themodulewouldprocessthecurrentcom-
mand.Whenit completedthecurrentcommand,themodulewouldtransitionitself backto anidle
state and indicate to the controller via a flag that it was in an idle state. In some cases, such as
sensing commands, the module would continue to process and update sensory information until
told to do something else.

The goal of all of the modules was to make the event loop as fast as possible. In the navigation
module, the goal was to maintain a control loop of at least 10Hz; in the vision module, the goal
was to maintain 30Hz, or real-time visual processing.

2.2 Reflexes: Navigation

ThenavigationmodulesontheScoutandMagellanhadto beplatform-specificbecauseof thedif-
ferences between the two robot’s low level interfaces. From the point of view of the controller
modules,however, they appearedsimilar. Differentgroupsdevelopedthenavigationmodules,so,
while they both use a reactive architecture, they differ in the specifics.



2.2.1  Scout Navigation

The navigation requirements for the scout were simple. It had to move slowly and safely, be able
to getto agoallocation,andbeableto avoid obstaclesonthewaythere.In addition,it hadto have
a mode where it actually stopped for an obstacle in case it was a person to serve.

The navigation module was setup as a 2-layer reactive system. The sensors available to the navi-
gation module were the sonars and bump sensors, including five bump sensors on a low front
bumper we added to Santino. The bottom layer contained a set of behaviors that reacted directly
to these inputs. These behaviors included the following.

• Goal achieving
• Obstacle avoidance
• Wander
• Free-space finding
• Front bumper reaction

Each of these behaviors would return a fuzzy priority, speed, and heading. The controller layer
would then combine the speed and heading values based on its mode and the currently active
behaviors.

The modes/commands for the navigation system included: Idle, Stop now, Stop slowly, goto
avoid, goto attend (stop for obstacles), put the arm up, put the arm down, wander, track attend,
track avoid, and a set of commands for resetting the odometry and controlling orientation.

The most interesting of these modes were the track modes. The intention here was to create a
mode that would directly connect the vision system and the navigation system without controller
intervention. It could be used to follow a judge’s name-tag badge or track a target in real-time.
Oncethevisionmodulefoundabadgeor target,thecontrollercouldinitiate themodein boththe
vision and navigation modules. Once initiated, the vision module would continue to track the
objectandupdatetheobject’sposition.Thenavigationmodule,in turn,would reactasquickly as
possibleto thevisualinformationandtry to orientandfollow thetarget.It wouldcontinueto track
thetargetuntil eitherthetargetwaslost,thecontrollerendedthetracking,or anobstacleappeared
(in the case of Track Attend).

2.2.2  Magellan Navigation

The Magellan Pro--Mario--is a small round robot with symmetrically opposed wheels which
allow it to rotateon its axis.Thebasicsensorarrayconsistsof a threeringsof 16bump(contact),
sonar, and IR sensors mounted around the sides of the robot. In addition Mario has a Sony DV30
pan-tilt camera and external speakers. The on-board computer is a Pentium II running Linux
2.2.10, and communicates with the robot’s rFlex controller over a 9600 baud serial line.

Because of the lack of a low-level software library, we developed an interface for the Magellan
which we called Mage. Mage communicates directly with the rFlex controller of the robot. The
rFlex acceptsasimplesetof motorcontrolcommandsandis alsoresponsiblefor transmittingthe
sensor data of the robot back over the serial line. We were able to extract or deduce most of the
protocol for this communication from some example code that RWI provides for updating the
CMOSontherFlex. At our request,RWI sentuscodesnippetscontaininginformationrelevantto
theIR sensors,whichallowedusto enableandreadtheIR rangevalues.During this timewealso
developed and integrated a controller for the Sony pan-tilt-zoom camera on the robot, which was
controlled over a separate serial line.



In general the Mage API closely resembles the API for the Nomad SuperScout (due to the fact
that we have extensive experience with the scouts), although we implemented a simplified com-
mandsetanddecidedto maketheunitsof distancethousandthsof metersandtheunitsof rotation
thousandths of radians.

In keeping with the Nomad API, all sensor and motor control data is maintained in a large state
vector. For example, the statement State[STATE_SONAR_0] returns the most recent value of the
forward-pointing sonar sensor. This state vector is updated continuously by a thread which han-
dles new data passed from the robot controller. Although the rFlex controller supports a request-
basedprotocol,thesimplermethodis to askit to continuouslystreamdatafrom thesensorsasfast
as it can. This approach ensures that the sensor data is as up to date as possible. In order to send
motor commands, the API includes a method which sets the contents of an output buffer. The
samethreadwhichhandlesincomingdataalsowatchesthisbuffer andtransmitsits contentsto the
rFlex controller. As anote,thismotordatais transmittedimmediatelyif it changesandthentrans-
mitted periodically to keep the rFlex controller alive. The serial communications to the pan-tilt-
zoom mount of the camera is implemented in the same way.

The navigation module sits on top of the Mage API and is responsible for reporting the basic sen-
sor data and for actually getting the robot from point A to point B without running into anything.
In our implementation, the nav module had several different modes, but they were all based on a
reactive kernel. The robot decided how much to translate and rotate based on four lines of code.

• Translate = Translate - Distance to nearest object in front
• Translate = Translate + Distance to nearest object behind
• Rotate = Rotate - Distance to nearest object to the right (assuming clockwise rotation)
• Rotate = Rotate + Distance to nearest object to the left

To make therobotwander, we justhadto giveTranslatea forwardbias.To go to agoalpoint,we
calculated the Translation, Rotation bias required to push the robot towards the goal point. To
track an object, the navigation module monitored the relative position of the object (stored in the
visionmodule),andfed this informationstraightinto thebiases.Thisapproachprovedto bevery
robust as long as the biases did not exceed the maximum repulsion of obstacles.

To build a map in the USR event, the navigation module used an evidence grid approach [7]. We
integratedsonarreadingsinto aprobabilisticmapthatcouldthenbeclassifiedinto freespaceand
obstaclesfor interpretationby aperson.Theevidencegrid techniqueworkedwell in our testruns,
but in the actual event small objects on the floor and tight paths between obstacles caused suffi-
cientwheelslip to significantlythrow off theodometry. Thus,localareasof themapwerecorrect,
but globally it did not reflect the test situation.

2.3 Reflexes: Face

Robot-Human interaction is the key component that distinguishes the Hors d’Oeuvres Anyone?
competitionfrom otherrobotcompetitions.thegoalof creatingafully-functional intelligentagent
with thecapabilitiesof any averagehumanis far from realized.Yetourrobotteamthisyearbegan
to make strides in developing our own synthetic character to better solve the difficult task of the
competitionby incorporatingananimated,3-D graphicalmodelof ahumanheadwith interactive
capabilities.

A growing amount of work has been dedicated to the creation of synthetic characters with inter-
esting interactive abilities. Each year the competitors in the robot contest find better ways to



explicitly display complex interaction s with humans. We considered a number of graphical mod-
els with the capability to display emotion and the flexibility to add increasingly more complex
abilities.TheDragonWing, for example,is afacialmodelingandanimationsystemthatuseshier-
archical b-splines for the generation of complex surfaces [1]. The technique provides an incredi-
ble amount of flexibility , but was too complicated for our needs. Instead we utilized a muscle
model for facial animation and facial geometry data available on the web [9]. We ported the sys-
tem to OpenGL [8] on Linux.

The facial model is a simple polygon representation that uses 876 polygons. Only half the face is
actually described in the input data file since symmetry is assumed between the right and left
sides. Reading the data and rendering it is straightforward in OpenGL. The system we developed
permitted the user to view the face data in a number of ways, including: transparent, wire frame,
flat shading, and smooth shading. In addition, the face could be oriented and rotated by the user.

The model we used included a simple muscle model to animate the face. A second data file
definesthemusclesby specifyingthebeginningandendingpoints,aswell asazoneof influence.
Each muscle can be relaxed or contracted, affecting all those vertices within its specific zone of
influence. We created a set of predefined expressions which consisted of a set of contractions for
each muscle in the facial structure. We could move between expressions by interpolating the dif-
ferences in the expression vectors. Our system used a total of 18 different muscles and 6 unique
expressions.

Beyondthestructureof theface,weaddedacoupleof featuresto increasetheinteractivity of the
system.First,wegave thejaw theability to move in orderto synchronizemouthmovementalong
with speechgeneration.Thejaw wasableto rotateverticallyby specifyingjaw polygonsandthen
rotating them about a central axis. The mouth was also able to move horizontally from puckered
lips to a wide mouth by adding a virtual muscle that contracted the polygons of the mouth. Our
speech generation program, IBM’s ViaVoice™ Outloud, generated a mouth data structure--con-
taining mouth height and width--in parallel to the sound synthesis. We passed this information to
the face module and used it to update the mouth state in synchronization with the robot’s speech.

The second capability we added was to give the face eyes--half-spheres colored appropriately
with aniris andpupil. Wethentransformedtheeyesaccordingto theoutputof thevisionmodule.
This simulated the effect of the eyes tracking people’s faces or focusing on their conference
badges.

WepresentedthefacesonSantinoandMario usingcolorLCD displaysataresolutionof 640x480
in 8-bit color. On Alfredo--a dual processor workstation--we presented the face on a 17” monitor
with 8-bit colorata resolutionof 800x600pixels.Thecompleteanimationcapabilitieswereonly
usedonAlfredo becauseof themorelimited processingpoweron themobilerobots.OnAlfredo,

Figure 3The faces of Santino. From left to right: anger, disgust, fear, happy, sad, surprised.



with the full capabilities--and the vision module running simultaneously--the rendering system
was able to run at approximately 9 Hz, which was at the low end of acceptable quality.

Overall, the facial animation system greatly enhanced the interactively capability of the trio of
intelligent agents. It gave people a central focus when interacting with the robots and helped to
keep their interest throughout the interaction.

2.4 Senses: Speech

To serve people, a server must be capable of interacting with those being served. This interaction
can take several forms, but somehow communication must take place. The server must signal his/
herpresenceandoffer theobjectsbeingserved,theserveemustbeableto signalacceptance,and
the server must serve. On Santino, we chose to make the main modality of communication
speech. To create a full interaction, we wanted Santino to be capable of asking people if they
wanted an hors d’oeuvre, and responding correctly to their response. This required that we use
both speech generation and recognition. We elected to use commercially available development
software to accomplish both of these goals. For recognition, we elected to largely build on the
developmentdonefor Alfred atthe1999competition,developmentbasedonViaVoice™SDK for
Linux. For speech synthesis, we decided that ViaVoice™ Outloud enabled us to do all the things
we wished to do in addition to being easy to integrate with the ViaVoice™ recognition system.

There were several major problems to be overcome in developing the complete speech module.
We decided that doing speech recognition in the actual competition was extremely important,
thoughverydifficult. ViaVoice™softwareis designedfor highly specificcircumstances:asingle
person speaking clearly into a microphone in a mostly quiet room. The hors d’oeuvres competi-
tion was certainly not that. Instead, we could expect several hundred people chatting amongst
themselves, and some people not knowing to speak directly into the microphone. Therefore, we
needed to keep recognition interactions extremely brief and do whatever we could to get a clear
sound signal for recognition.

Given that recognition even on monosyllables was going to be difficult, we wanted to make sure
thattherobotcouldbeaninterestingconversationalist.Wewantedto avoid astereotypicalrobotic
voice,yetenabledialogueto beeasilywrittenandadded.Additionally, it wasimportantto usthat
the voice be able to express different emotions, especially as we planned to closely link speech
with theexpressivefacemodule.Fortunately, Outloudenabledusto implementall thesesynthesis
features.

Finally, weneededto makegenerationandrecognitionwork ontheactualmobilerobot,with little
processing power, system noise, and a poor sound card. Making ViaVoice™ and Outloud work
together with poor audio processing equipment turned out to require extra levels of care.

2.4.1  Santino’s speech module

Ourapproachto recognitionwasmuchthesamethisyearasin 1999[5]. ThoughViaVoice™can
be made to recognize complex grammars with large vocabularies, it has difficulty with recogni-
tion in noisy environments. Therefore, doing anything approaching complex speech recognition
was not reasonable under the competition circumstances. We decided therefore that the robot pri-
marily neededto understandsimpleyes-notyperesponses,andsimplepolitewords,likepleaseor
thanks. Therefore we tailored our efforts in recognition towards getting high recognition rates on
these monosyllables, rather than attempt to hold a more complex conversation.



One of the major improvements on the speech system that was suggested by last year’s hors
d’oeuvres competition was to allow our robotic waiter agent be able to detect when the back-
ground noise exceeded a threshold and made it undesirable for speech recognition. With this
added ability, we could program our robotic waiter to simply shut down its speech recognition
componentandswitchinto adifferentmodethatonly usedspeechsynthesis.Thisnoisedetection
ability would greatly improve speech recognition rates since the robot would attempt recognition
only in reasonable environments.

We were able to implement this background noise detection feature through a simple signal pro-
cessing technique [3]. We implemented a routine that calculated the average power of a ten sec-
ond sound recording from an omni-directional microphone and compared it to threshold values.
These threshold values were determined at the conference hall some minutes before the competi-
tion. In determining appropriate threshold values, the peak power of a sound waveform was used
as a guide to prevent us from specifying a threshold that would never be exceeded. Our threshold
value was such that speech recognition could still occur with some amount of background noise.

In addition to making our speech module more robust, a simple Finite Impulse Response band-
passfilter wasimplementedto eliminatefrequenciesthatwerebeyondaspecifiedrange(~200Hz
- 2kHz) [3]. Mechanical objects--like ventilation fans in a conference hall--mainly produce the
low frequencies, while high frequencies occur from electrical interference in the sound card--
which is integrated on a single board computer. To ensure module independence and speed, we
modified the ViaVoice™ Speech Recognition audio library to include the band--pass filtration.
Thisbypassedthenecessityto first recordthespeechutteranceto apulsecodemodulated(PCM)
wave file, perform filtration and then pass the output to the recognition engine.

The most important part of the competition for Santino was interacting with a person during a
servingscenario.As doingcomplex speechrecognitionwasnotapossibility, wedevotedmostof
our energy to developing the robots spoken personality.   We attempted to make the robot sound
emotional, and to say properly emotional things. Originally, we planned to make emotion a very
important part of speech, and have the robot enter each interaction with an emotional state, per-
haps even having that emotional state change as a result of the interaction. In the end, we did not
haveenoughtimeto tie emotionsto causeswithin theenvironment,thoughthatwill certainlybea
future goal. The robot still sounded emotional, and said emotionally charged things, but the emo-
tional state was randomly determined.

There were several classes of spoken phrases used during the each serving scenario. When the
state machine signaled speech to begin an interaction, it would say something that asked the per-
son if they would like something to eat, often in an interesting and occasionally rude way. When
therobotfinishedspeaking,therecognitionenginewouldbegivencontrolof thesounddevice,to
record the response of the person. If a yes or no response was registered, the speech module
would report the response to state, who would then instruct speech to respond appropriately and
end the interaction. If there was a failed recognition, the robot would either say something about
the color of the persons shirt--if vision had managed to detect shirt color--or something non-com-
mittal. Santino would then ask the person again if they wanted an hors d’oeuvre and listen for a
response.A secondfailurewouldcausespeechto saysomethingto justgetoutof theinteraction,
and state would look for someone else to serve. If the robot heard nothing at all, the speech mod-
ule would comment that the person was probably a box being mistakenly served and move on.



When Santino was not in an interaction, he muttered, which was a running commentary about
whatevertherobotwasdoingatthatmoment.Whentherobotwasin theGOTO_SERVE stateand
not serving anyone, it would mutter about all the food that it had to give. In the GOTO_REFILL
state,it wouldmutterandtell peopleto notbotherit; therewasno food to behad.Wehadto over-
comeseveralproblemsto getthis to functionproperlyontheactualrobot.In particular, wehadto
make synchronous calls to both ViaVoice™ programs telling them to stop controlling the audio
device in order to deal with a slow turnaround time switching from input to output on the sound
card.

Thespeechmoduleacquitteditself verywell at thecompetition.Recognitionratesin thecrowded
hall werefairly high,atabout70-75%,which includedmisrecognitionsof peoplenot talking into
the microphone, or saying something with absolutely no resemblance to yes-no responses. Given
theloudnessandthelargenumbersof people,therobotdid justa little worsethanahumanmight
have in the same circumstance. The worst mistakes were made when it appeared that a variable
was not getting properly cleared, causing the robot to respond to a no response as if it were a yes
response, but this only seemed to happen once or twice. Most problems had been isolated during
extensive testing of speech apart from the other modules, where it performed almost perfectly.

2.4.2  Mario’s speech module

BecauseMario did notattemptspeechrecognition,its speechmodulewasasimplifiedversionof
Santino’s. The speech module mainly served a diagnostic function, encoding information about
the internal state of the robot into natural-sounding phrases, as well as a means for the robot to
communicate its goals and interact with humans. The speech output is expressed as strings and
then we render the speech using IBM’s ViaVoice™ Outloud. Although the speech module does
have the functionality to read and speak a phrase directly from the state module, we often used a
more flexible mutter mode. In the mutter mode the speech module monitors the shared memory
information fields and makes its own decisions about what to say. Once properly configured, the
mutter mode picks an appropriate phrase out of a pool of possibilities every few seconds. To a
practicedearthis is informativeabouttherobot’s internalstatebut at thesametime it reducesthe
risk of hearing the same boring phrase over and over.

2.5 Senses: Vision

Being able to sense the visual world gives numerous advantages to a robot, especially one
involvedin humaninteraction.Visualcapabilityallowstherobotto find andlocateobjects,detect
motion, and identify visual object characteristics. One of our goals in both contests was to make
therobotsreactto theirworld asquickly aspossible.Thus,thenavigationmodulemaximizedthe
number of times per second it executed the control loop. Likewise, our goal in the vision module
was to maximize the frame rate while still providing a rich array of information.

The structure of the vision module was similar to the others. After initialization, the event loop
checked if there was a pending command from the controller. If there was, it would transition to
thenew stateaccordingto thecommand.Otherwise,it wouldcontinueto executethecurrentcom-
mand set.

The vision module included a rich set of operators for converting images into symbolic informa-
tion. The three general classes of operators were: object detection, motion detection, and object
characteristic analysis. Each command to the vision module indicated a general mode and the set
of operators that should be turned on. The controller could then scan the relevant output fields of



the vision module for positive detections, motion, or object characteristics. Each output field
included information about where an object was detected in the image and when it was detected
as determined by a time stamp. The controller could then decide what information required a
response.

The set of operators we implemented included:
• Person detection based on skin color and gradients
• Motion detection across multiple frames
• Color blob detection, focused on conference badge detection
• P-similar pattern detection
• Red, white, and green flag detection
• Palm detection
• Orange arrow detection
• Shirt color analysis (dependent upon detecting a person)
• Person identification (dependent upon detecting a person)
• Calculation of how much food was on the robot’s tray (using the tray camera)
• Take a panoramic image (on Mario only)

Which operators were available depended on the mode the controller selected. The modes rele-
vant to the competition were: IDLE, LOOK, TRAY, and PANO. The LOOK mode was the pri-
marymodeof operationandpermittedall but thelasttwo operatorsto beactive.TheTRAY mode
activatedthesecondcamerainputandanalyzedhow muchof thetraywasfilled. ThePANO mode
worked with the pan-tilt-zoom camera on Mario to generate a 180˚ panoramic image that concat-
enated eight frames together while simultaneously applying the motion and person detection
operators.

While in theLOOK mode,therewasclearlynowaywecouldmaintainahigh framerateandexe-
cute all of these operators on each image. Our solution was to devise a scheduling algorithm that
only applied a few operators to each frame. This came about because of the realization that the
controllerdidn’t reallyneedto know thattherewasabadgein view--or whateverotherobject--30
times per second. That was a lot faster than the robot could react to things since reactions gener-
ally involvedphysicalactionsor speaking.Runningthebadgedetection2-6 timespersecondwas
probably still overkill. Likewise, most of the other operators did not benefit from continuous
application. Since we supplied a time stamp with each piece of information, the controller could
decide based on the time stamp whether a piece of information was recent enough to warrant a
response.

Our scheduling algorithm was based on the premise running two operators per frame would not
reduce the frame rate. This put an upper bound on operator complexity, although in the case of
motion analysis we got around the limitation by pipelining the process. In the standard LOOK
mode,themodulewould randomlyselecttwo of theactiveoperatorsbasedonaprobabilitydistri-
bution.To createtheprobabilitydistribution,eachprocesswasweighted,with processesrequiring
higherframeratesreceiving higherweights.Mostof theoperatorsreceivedsmall,relatively equal
weights. Once selected, the module would execute the two operators and update the relevant
information. On average, each operator would be executed according to the probability distribu-
tion.

The motion detection operator was the most difficult operator to develop within this framework
becauseit requiresmultiple frames--atleastthreefor robustprocessing--andrequiresasignificant



amount of processing for each frame. Our algorithm used Sobel gradient operators to calculate
edge images, and then subtracted adjacent (in time) edge images to locate edges that moved. It
then located the bounding box of areas of motion that exceeded a certain threshold. We have
found this algorithm to be quite successful at locating people in the hors d’oeuvres event [6][5].

Wedidn’t wantto breaktheoverall structure,sowepipelinedthealgorithmacrossmultipleevent
loops.Themotionalgorithmtookfiveeventloopsto calculatea result--withthefirst threecaptur-
ing images and calculating the Sobel results. To ensure the motion algorithm was called fre-
quently enough, we gave it a high weight in the probability distribution. On average, the motion
algorithm produced a result 5-6 times per second. When it was active, it was usually selected as
one of the two scheduled operators.

A secondary mode with the LOOK mode permitted tracking using one operator in addition to
looking for other objects. To engage tracking, the controller would specify a single tracking oper-
atorandtheregularlist of otheractiveoperators.Theoperatorschedulerwould thenput thetrack-
ing operator in one of the two execution slots and randomly select the other operator from the
active list. This guaranteed that the vision module would look for the object being tracked every
frame,providing thefastestupdateratepossible.As notedabove,in thetrackingmodethenaviga-
tion module could look directly at the vision module output and adjust its control of the robot
accordingly. Mario used this ability to follow badges during the competition.

The scheduling algorithm and overall structure were extremely successful as a way to manage a
robotvisionsystem.Evenwith all of theotherrobotmodulesrunning,thevisionmodulewasable
to maintain a frame rate of at least 20Hz. Information updates occurred regularly enough that the
robot was able to attend to multiple aspects of its environment with real time reactions.

The interesting new capabilities and algorithms we developed this year were: person detection
and identification, shirt color identification, food tray analysis, and Italian flag detection. For
details on the motion, color blob, and P-similar pattern detection see [6], [5], and [10].

2.5.1  Person detection and identification

Person detection is one of the most important capabilities for an interactive robot to possess. We
used two independent techniques to accomplish this: motion and face detection. Our motion
detectorwasstraightforwardandis describedabove,but wetookaslightly novel approachto face
detection that resulted in a fairly robust technique in the hors d’oeuvres domain.

The basis of our face detection system is skin-color blob detection. The key to skin detection is
effective training,sincelighting conditionscanstronglyaffect theappearanceof colors.Wedevel-
oped a fast, interactive training algorithm that gives the user direct feedback about how well the
systemis goingto performunderexistingconditions.Theoutputof thetrainingalgorithmis anrg
fuzzy histogram, where r and g are defined as in (1).

. (1)

A fuzzy histogram is a histogram with entries in the range [0, 1] that indicate membership in the
colorsof interest.Youcancreateafuzzyhistogramby takingastandardhistogram--whichcounts
the occurrences of each rg pair--and dividing each bucket by the maximum bucket value in the
histogram [11].
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We use fuzzy histograms to convert standard images into binary images that contain only pixels
whose colors have high fuzzy membership values. For skin-color blob detection we train the
fuzzy histogram on skin-color regions of some training images and then keep only pixels with
membership values above a specified threshold. To get blobs we run a 2-pass segmentation algo-
rithm on the binary image and keep only regions larger than a certain size.

Theresultof blobdetectionis asetof regionsthatcontainskin-color. In previouscompetitionswe
ran into trouble using just blob detection because the walls of the hors d’oeuvres competition
areasin 1998and1999wereflesh-tones.While thiswasnot thecasein the2000,therewereother
sources of skin-color besides people in the environment.

Our solution to this problem was to multiply a gradient image with the skin-color probability
image prior to segmentation. The gradient image, however, was pre-filtered to remove high gradi-
entvalues(i.e.strongedges).Theresultwasagradientimagewheremild gradientswerenon-zero
and all other pixels were zero or close to it. Faces are not flat and contain mild gradients across
mostof theirsurface.However, they donot tendto containstrongedges.Thus,includingthemild
gradient values effectively eliminates walls--which are flat and tend to be featureless--but leaves
faces. We found the combination to be robust and it reduced our false positive rate to near zero
while still reliably locating people.

In the 1999 competition our robot--Alfred--tried to remember people based on texture and color
histograms. This worked ok at the competition, but it relied on the person standing directly in
front of the camera, which was rarely the case. This year we decided to integrate the person iden-
tification with the face detection and shirt color identification. We also decided not to store a per-
manentdatabaseof persons,but insteadto only recallpeoplefor ashorttimeperiod.Thepurpose,
therefore, of the person identification was to discover if a particular person was standing in front
of the robot/agent for an extended period of time.

After asuccessfulfacedetection,if thememoryfeaturewasactivatedandcalledthenthememory
algorithm extracted a bounding box around the person’s body based on the location of their face.
It then extracted a short feature vector from that box to represent that person’s identity. The fea-
turevectorwasthetopfivebucketsin anrg histogram--asdefinedin (1)--thetopfivebucketsin an
IB (Intensity, Blue) histogram, the average edge strength as determined by X and Y Sobel opera-
tors, the number of strong edge pixels, and the number of significant colors in the rg histogram.
These 12 numbers provide a nice key with which we can compare people’s appearance.

Once the system extracted a key, it compared the key to all other keys recently seen. The system
storedthe100mostrecentuniquekeys.If it foundaprobablematch,thenit wouldsendthis to an
outputfilter. If it foundnomatch,it wouldaddthekey to thedatabaseandthencall theoutputfil-
ter. The output filter simply returned the most common key identified in the past 10 calls. If no
singlekey hadat leastthreematchesin thepast10,anull result(nomatch)wasreturned.Theout-
put filter guaranteed that, even in the presence of a person’s motion and schizophrenic face detec-
tion results (jumping between people), if a person was standing in front of the camera for an
extended period of time their key would register consistently.

Weendedupusingthis informationwith Alfredo. If apersonwasstandingin front of Alfredo for
a minimum period of time, he would comment that they should go do something else. Clearly
there are other applications, but we could not pursue them for lack of time.



2.5.2  Shirt color identification

The shirt color recognition depended upon a successful face (skin) detection. Once a face was
detected, the algorithm selected a section of the image below the face that corresponded to the
person’s shirt. The algorithm then analyzed a histogram of this region to determine the dominant
color. The difficult aspects of this task were selecting a histogram space to use, and attaching
color labels to regions of that space.

Based on experimentation, we selected the rgI histogram space to represent color, where

(2)

I is intensity, and r and g are the normalized coordinates defined by (1).

Figure 4Examples of the vision module in action. A) Successful face detection and the corre-
spondingboxusedfor shirtcolorandpersonidentification.B) Successfulflagdetection.C) Train-
ing system for face detection system. D) Panoramic image from the USR contest: the green and
blue boxes indicate possible motion and skin color respectively. Note that the skin-color on the
manniquin’s arm--on which we trained--is grey, which is why the walls and floor get highlighted.

(a) (b)

(c)

(d)
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(R, G, B) are the raw pixels values returned by the camera for a given pixel. The benefit of using
thergI spaceis thatthecolor--representedasrg--is thenindependentof theintensity--represented
in the I axis. We used 20 buckets in each of r and g, and 4 buckets in I.

Because different camera settings and different lighting affect where a color sits in the rgI space,
wecalibratedthesystemusingaMacBeth™colorchartprior to eachsituationin which therobot
would interact.Usingapictureof thecolorchartundertheappropriateilluminationwe identified
the centroid in the rgI space for each of the 24 colors on the color chart.

After identifying the region of interest--i.e. the shirt region--the system identified the most com-
mon color in the rgI histogram. The system then found the closest--in a Euclidean sense--color
centroid and returned its text color label as the output. Alfredo used this system to great effect
during the competition. It correctly identified numerous shirts, including Dr. Maxwell’s mother,
who was wearing a purple shirt. It made the computer appear cognizant of its surroundings in an
engaging manner.

2.5.3  Food tray analysis

The food tray analysis was a simple, but effective algorithm. We used an Osprey 100 framegrab-
bercardwith multiplecompositevideoinputs.UponenteringtheTRAY mode,thevisionmodule
wouldswitchto analyzingtheinput from asmallgreyscalecameramountedon thetray. Weused
a white napkin to cover the tray and served dark brown or black cookies.

The tray analysis algorithm worked on the middle 1/2 of the image, in which the tray dominated
thescene.Thenwesimplycountedthenumberof darkpixelsandcalculatedthepercentageof the
visible tray that was full. By having pre-calculated minimum and maximum value, we could con-
trol aflag thatspecifiedFULL, EMPTY, or apercentagein between.This turnedout to beagood
proxy for how many cookiesremained.Sincethesmallcameraincludedanauto-gain feature,this
method worked even when someone blocked the direct lighting by leaning over the tray or stand-
ing so it was in shadow.

Based on the percentage full values returned by the vision module, the controller was able to
smoothlytransitionfrom pureserving,to servingwhile headingtowardstherefill station,to head-
ing directly to the refill station because the tray was empty.

2.5.4  Vertical Italian flag (r ed-white-green) detection

Oneof thecapabilitieswegave therobotsfor thehorsd’oeuvreseventwastheability to strikeup
conversations with one another. To make this realistic it should only happen when the robots are
close to one another. To ensure this we decided to give the robots the ability to recognize one
another. Weoriginally consideredputtingp-similarpatterns--easilyrecognizabletargets--oneach
robot. However, this would have detracted from the robot’s appearance, which was something
close to formal dress.

SinceourthemewasanItalianrestaurant,wedecidedto usetheitalianflagcolors--red,white,and
green--as our identifying feature. Santino had a flag draped vertically from his serving tray, and
Mario had one placed on an antenna about 4 feet above the ground. Alfredo could also initiate
conversations when he saw one of the mobile robots in his camera. To differentiate the two we
reversed the order of the colors for Mario and Santino from top to bottom.

The technique we used for recognition was based on traversing columns--since the colors were
arranged vertically. Along each column a state machine tracked the order of the pixels. The state



machine would only output a positive identification if it found a vertical series of red, white, and
green pixels (or in reversed order). Each color had to be mostly continuous and contain a suffi-
cient number of pixels. The state machine allowed a certain number of invalid (not red, white, or
green) pixels as it traversed the colors. However, too many invalid pixels invalidated that particu-
lar state traversal.

This method, since it was based on single columns, turned out to be extremely robust and could
executein realtime.Therecognitionsystemworkedwell bothin testrunsandin thecompetition.
BecauseSantinowasalmostcontinuouslyengagedin servingduringthecompetition,however, it
was never able to respond to Mario. For us, watching the robots engage one another prior to the
competition was one of the highlights of the experience.

3 Lessons learned and looking to the future

The products of our experience that we will continue--and are continuing--to use are the overall
architecture, the navigation modules, the face module, and the vision module. All of these pro-
videduswith genericscaffolding on topof whichwearebuilding othercapabilitiesandsystems.
All of them are extendable and easily integrated with one another. We also now have excellent
debugging tools that permit us to track all of the information and messages that pass between
modules during execution. For us, this infrastructure is the real outcome.

Whatwealsolearnedis thatdesigningthecontrollermoduleis still moreart thanscience.Froma
practical point of view, if we continue to use the state machine approach we will need to build a
setof standardtechniquesfor managingandpassinginformationaroundthesystem.Someof this
wehavealreadystarted,but it needsto beapproachedin amoreformalmanner. Onealternative is
to start building a generic state controller that uses a knowledge management system and a set of
rules to determine its actions. This method would implement a three-layer architecture where the
controller sits between a reactive system and a deliberative symbolic system [4].

Looking to the future, if the Hors d’Oeuvres Anyone? event continues then the challenge is to
push the envelope. On the interaction front, one challenge is to develop a more generic speech
interactionsystemthatcanengagein andfollow conversations,albeitwithin a limited domain.A
second is to fully implement an emotional subsystem that can affect the whole range of robot
behaviors. A third is to more closely link visual recognition of features--such as shirt color--with
theinteractionsin anaturalmanner. Wecamecloseto thatgoalthisyear, but to besmoothit must
be integrated with a more generic speech interaction system.

On the navigation front, coverage of the serving area has only been achieved by Mario, mostly
because he never stopped to talk. Combining Mario’s ability to move in a crowd with a more
effective Santino will be difficult, because at some point the robot has to take the initiative and
move on.

Finally, the multi-robot system proved to be both entertaining and successful at solving the task.
Future competitions should encourage multiple robot interaction--two teams attempted it this
year. They will have to dealwith thefactthatit is difficult for therobotsto getto oneanother, but
it should be possible.

In the USR task, the challenge is clear. The autonomous entries covered only a small amount of
thetestarea,mostlybecauseof limitationsin theirability to senseandinterprettherealitiesof the
situation. The tele-operated entry, on the other, did not give much responsibility to the robots.



Building meaningful maps, correctly flagging important features or injured people, and simply
getting out of the test area within the time limit should be minimal goals for future entries. We
believethetechniquesexist to accomplishthesegoals,but their integrationin asinglepackagehas
yet to be done.
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