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Abstract
A sensory mapping method, called “Staggered Hierar-

chical Mapping (SHM),” and its developmental algorithm
are described in this paper. SHM is a model motivated
by human early visual pathways including processing per-
formed by the retina, Lateral Geniculate Nucleus (LGN)
and the primary visual cortex. The work reported here
concerns not only the design of such a series of processors
but also their autonomous development. A new Incremen-
tal Principal Component Analysis (IPCA) method is used
to automatically develop orientation sensitive and other
needed filters. A set of staggered receptive fields model the
pattern of positioning of processing cells. From sequen-
tially sensed video frames, the proposed algorithm devel-
ops a hierarchy of filters, whose outputs are uncorrelated
within each layer, but with increasing scale of receptive
fields from low to high layers. To study the completeness of
the representation generated by the SHM, we experimen-
tally show that the response produced at any layer is suf-
ficient to reconstruct the corresponding “retinal” image to
a great degree. In our experiment, we show that SHM can
be used to perform local analysis.

1 Introduction
Computational visual perception faces several major

challenges arising from the high dimension of pixel array
and the complex relationship between the environmental
factors and the pixel value. Attention in computer vision
aims to select just the relevant aspects from the broad vi-
sual input, which is essential for generalization. A sys-
tem cannot generalize well if it makes decision using a
part of irrelevant information. The sensory mapping pro-
posed here for developmental robots is motivated by bio-
logical sensory cortices. Although not all the functions of
a sensory cortex are known, one possible use is performing
local information processing based on classical and non-
classical receptive field.

Identification of a local view from a field of view re-
quires processing units whose receptive fields are located
at the corresponding position of the partial view with a

proper size. Since the local view can potentially be lo-
cated at any position inside the field of view with any size,
a visual processing system need processing elements ded-
icated to any position with all possible sizes. In practice,
however, only computation for a finite number of positions
and sizes is possible, resulting in a set of finite samples in
positions and sizes of receptive fields. It is well known that
the biological visual pathway consists of processing cells
for receptive fields at different positions and with different
sizes.

Since the measurement and study of the response of
neural cells in early visual pathways by D.H.Hubel and
T.N.Wiesel [1], more detailed studies have been made in
modelling the complex cells and architecture organization.
A single neuron by itself is not sufficient to code necessary
information. An ensemble of cell population is needed. In
their recent study, Stanley et al. reconstructed cat’s retina
sensory input from recorded LGN responses [2]. Atick and
Redlich [3] proposed that the retina and LGN are dedicated
to recoding and whiten the input signals. It is now known
that neural cortex is organized in location and scale, but ex-
act detail of such organization is unknown. In cortex, each
neuron has a receptive field centered at a specific location,
while earlier cortex has neurons with a smaller receptive
field than those in a later cortex. An overview of sensory
maps is available in an excellent work by Kandel, Schwartz
and Jessell [4].

Is sensory mapping completely determined by human
genes? The answer is negative. As early as 1970, Blake-
more and Cooper [5] reported that the kittens’ visual cor-
tex does not have cells sensitive to edged orientations that
they did not observe, if they lived in a controlled environ-
ment after birth, in which only edges of a certain orienta-
tion were presented. Recent studies by Sur and cowork-
ers [6] have shown that input signal can fundamentally de-
termine the filters generated under development. The au-
ditory cortex of ferrets show orientation sensitive cells if
they receives visual signals early in life.

Many studies have been done to model the cerebral
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cortex with hierarchical models and artificial neural net-
works. Fukushima et al., proposed a neural network named
“Neocognitron” [7]. The Neocognitron is a hand designed
multilayered network consisting of cascaded connections
of many layers of cells. The information of the stimu-
lus pattern given to the input layer is processed step-by-
step through stages of the network. The synapses between
the neurons are updated by a supervised learning method.
After training, the neurons in the higher layer have the
tendency to respond selectively to some complicated fea-
tures despite the variance in the same feature samples.
Weng et al., in 1996 proposed a dynamic neural network
model called “Cresceptron” [8], which could automatically
grow a hierarchical of maps directly from image input by
a learning-with-teacher process. The network grows by
creating new neurons, connection and architecture which
memorize new image structures and context as they are de-
tected. Although these studies address global structure of
sensory mapping, the efficiency is a major challenge since
those methods do not explicitly use statistical properties of
the signals in the filter generation.

A number of researchers have studied the issue of di-
mension reduction or neural coding for a fixed receptive
field. Their studies of dimension reduction or neural cod-
ing focus on automatic development of filters for a fixed re-
ceptive field. The existing work includes the random noise
based method by Linsker [9], the entropy reduction method
by Atick and Redlich [10], the sparse coding method by
Olshausen and Field [11] and the independent component
method by Bell and Sejnowski [12]. However, as we will
show in the work presented here, it is beneficial to study
the neural coding issues globally for a family of receptive
fields, instead of one. For example, the sparse coding goal
is automatically addressed in our SHM when it automati-
cally develops a global map for a family of receptive fields.

This paper Proposes an architecture of sensory map and
its developmental algorithm for active vision system where
visual attention is required to analyze local image struc-
tures. The algorithm develops filters for a family of re-
ceptive fields. The responses of all filter are available for
further analysis. Therefore the proposed sensory map de-
velops a hierarchical representation for a large set of re-
ceptive fields but it does not complete vision by itself. The
autonomous development of cells in the visual cortex is
performed by our Complementary Candidate Incremental
Principle Component Analysis (CCIPCA) method [15].

The organization of this paper is as follows. In Section 2
to Section 4 we present the structure of the proposed SHM
model and its developmental algorithm. In Section 5 we
show the results of some experiments with SHM. Section
6 presents a classification system in which the SHM is used
for local analysis.

2 Staggered Hierarchical Mapping
When a family of receptive fields are considered, we

have observed that the Principal Component Analysis is a
suited mechanism for filter development. Computationally
it gives a set of filters that minimize the mean square error
between input space and output space, giving a fixed di-
mensionality under a linear projection. The response from
the PCA filters are mutually uncorrelated, thus, increas-
ing the degree of dimension reduction and facilitating later
processing. Further, IPCA has some support from biolog-
ical modelling of the cortex. It has been proven [13] [14]
that artificial neurons updated by the Hebbian rule while
being inhibited by nearby neurons (biologically called lat-
eral inhibition) produce synaptic weights that are principal
components produced by PCA.

However, the conventional PCA also has its limitation.
It is applied to the whole input vector. Thus, it is not ca-
pable of extracting local features in the input space. We
must design an architecture in which results of response
are computed for a family of receptive fields.

Let us call the stack of filters developed for a single re-
ceptive field “neural cylinder” as shown in Fig. 1(a). We
have two problems: the spatial resolution is low if recep-
tive fields do not overlap. If they overlap, the computa-
tional cost is high. In the proposed staggered scheme, we
trade off spatial resolution with a dimension of features as
shown in Fig. 1(b).
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Figure 1: A comparison of the neural cylinder (a) and the stag-
gered receptive fields (b). “RF” denotes the receptive field of a
neuron. In (a) a group of filters share the same receptive fields,
resulting in a low spatial resolution. In (b) each filter is centered
at a different position, resulting in a higher density of spatial sam-
pling.

The structure of the proposed SHM is similar to a multi-
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Figure 2: The architecture of SHM. Each square denotes a neu-
ron. Layer 0 is the input image. The neurons marked as black
in layer 1 belong to the same eigen-group. Bold lines that are
derived from a single neuron and expanded to the original image
mark the receptive field of that neuron. The size of the receptive
field in a particular layer is 20% larger than its previous layer in
this diagram, which is shown at the right. The size of the recep-
tive field is rounded to the nearest integer.

layer perceptron (MLP) as shown in Fig. 2. However un-
like MLP, there are feed back processing known as recur-
sive average computation and inter-neural inhibition. Fur-
ther, the developmental program of SHM is totally differ-
ent from the learning algorithm of MLP. There are also
other differences. The SHM is a sensory mapping method
not a classification method. The former is mainly for
the feature derivation and feature value computation. The
SHM itself does not classify inputs. It is mainly for gen-
erating receptive fields dedicating to feature representa-
tion. Classification and regression in the SAIL robot is per-
formed by HDR engine, using output from SHM as input.

Usually, the result of MLP is produced from the output
layer. But in the SHM, every layer produces output, early
ones for outputs for smaller receptive fields and later ones
for larger receptive fields.

The basic computation unit, or neurons in a MLP are
organized along a single dimension. The order of neurons
is not taken much into consideration. However, “neurons”
in the SHM are organized in a 2-D array, simulation the
flat sheet organization of the retina. This order sensitive
organization is very important to the receptive field concept
described later.

In Multi-layer Perceptron, neurons in adjacent layer are
fully connected. Every neuron is connected to all neurons
in its previous and next layer. Whereas in the SHM, a lo-
calized connection is applied. Each neuron only gets its
inputs from a restricted region in the previous layer. We
can see this effect in Fig. 2. Fig. 2 is a simplified 1-D dia-
gram of the proposed mapping. It is a hierarchical network
in which the original input is at the layer No. 0. A small
square represents a neuron. The two lines that converge
from the previous layer (upper layer) to a neuron mark the

small region that the neuron gets input from. This small
region is referred to the input region of the corresponding
neuron. The input region can be traced back to the original
input and will include a partial original image, as shown by
bold lines in Fig. 2. This partial image is called the (classi-
cal) receptive field of the neuron. As we will see later, lat-
eral inhibition implemented by our residual image makes
the response from a neuron to be affected by a much larger
region in the input image. This later larger region is called
non-classical receptive field. By receptive field, we mean
classical receptive field by default. Apparently, the sizes of
the receptive fields of different neurons are identical within
a layer. The concept of receptive field is important in dis-
cussing neuron development in the visual cortex.

The use of staggered receptive fields allow for a neu-
ral network to be built that spans the entire input region.
The input can get an alternative representation that cov-
ers different scales and positions. As we can see from the
diagram, the position of receptive fields is kept organized
and the size of the receptive fields grow incrementally over
each layer until the entire image input is covered with a sin-
gle receptive field (The receptive field of the black neuron
in the 7th layer covers the whole input). Furthermore, for
the input region at any position with any size, a neuron can
be found whose receptive field approximately covers the
region. Then intuitionally, this representation could pro-
vide information for different scales and locations.

Besides the differences in network structure, the SHM
and MLP also differ in learning methods. Unlike the
multi-layer Perceptron’s supervised learning method, the
learning method of the SHM is a self-organized unsuper-
vised learning. The purpose of learning is to gradually
update connection weights or filters to get a satisfying re-
sponse output. Filters are self-developed (updated) by the
CCIPCA method [15], and eventually will converge to an
eigenvector of the input region without a need to compute
the correlation matrix of the input vector. The neurons are
first partitioned into what we call eigen-groups. An eigen-
group is a square whose size is ACBDA . The value A is deter-
mined by the size of input region of this layer, so that A is
the maximum possible distance between any two neurons
in the eigen-group to have their receptive field overlapped.
Thus, neurons at a layer that is beyond A distance apart do
not need to inhibit each other, since their receptive fields do
not overlap. The main purpose of inhibition in biological
network is to enforce nearby neurons to detect different,
preferably statistically uncorrelated features. Thus, the in-
put region of all the neurons that are at the same position
of different eigen-groups can be tiled to an entire previous
layer. Table 1 shows an example of an eigen-group whose
size is

EGFHE
. Referring to layer No. 5 in Fig. 2, the nearby

black neurons are in the same eigen-group, in which neu-



15 4 1 6
3 8 9 10

12 13 7 14
2 5 0 11

Table 1: Order of computation in an eigen-group. The size of
this eigen-group is

�����
. The numbers in the table denote the

order of updating using residual image.

rons have at least one overlapping input. The neurons at
the same position in all different eigen-groups, say the first
neruon of all the eigen-groups, covered the entire input re-
gion using their receptive fields.

The neurons in an eigen-group are given a randomly
predefined order shown by a number in Table 1. The same
order is applied to all eigen-groups in the same layer, for
simplicity. The first order neuron is the one who gains
an “upper hand” during inhibitive competition; the second,
next, and so on.

3 Developmental Algorithm
The developmental algorithm for the SHM must be in-

cremental and fast for real time application. By “incremen-
tal”, we mean that each input image must be discarded after
been used for updating the SHM. It is simply not practical
to store all images for batch processing due to the extreme
large amount of space required. By “fast”, we mean that
the updating for each image must be completed within a
second. For example, iteration within each updating is not
allowed. These requirements limit the complexity of the
computation that can be performed by a biological cortex.
They also make the design of a developmental program for
SHM very challenging.

We have developed CCIPCA [15] that was designed
with these requirements as design constrains.

The filter development procedure of a single layer is de-
scribed as follows:

1. Set i=0; copy original input to a buffer.

2. For all eigen-groups update ith filters as the ith prin-
cipal component using the CCIPCA algorithm with
input from buffer; compute the responses of the ith
filter; compute residual image by subtracting the pro-
jection of the ith filter from the input buffer.

3. Tile residual images back into the buffer, one tile for
each eigen-group.

4. i=i+1; goto step 2, until all filters are updated

The output response images are then passed on to the
next layer of the network. Each layer is similar in that it

takes its input and runs the CCIPCA algorithm on it, pro-
ducing both filters for this layer and output response image
for the next layer. The first layer of the network uses real
input, and each subsequent layer uses output response im-
ages from the previous layer.

The receptive field in the same level is not only con-
centrated in several center positions. Here we have used
a staggered receptive field method to spread the receptive
fields all over the input layer. Then, the staggered positions
along with the increasing size of the receptive field make
it possible that input regions with any size at any position
(up to a sampled resolution) have a local representation in
the network.

Inhibitions between neurons play a vital role in the func-
tion of the visual cortex. We use residual image to repre-
sent the effect of inhibitive competition between neurons.
This SHM network is not simply feed-forward, because it
deals with the re-entrant process of neurons. Each time
a filter is computed, it is subtracted out from the origi-
nal image, leaving only information that has not yet been
extracted by the CCPCA algorithm (residual image). The
next filter can only “see” input part that the previous filters
can not extract, thus, the first can inhibit the latter making
the process asymmetric. Each neuron “sees” unique input
data that has not been “seen” by previous neurons. This is
more efficient than symmetrical inhibition where it takes
time to fight out the rank of competition, and achieves the
same result. Fig. 3 shows a sequence of residual images. It
can be seen that the variance of the series residual images
is decreased sequentially as more orthogonal components
are extracted. Because the residual image is orthogonal to
the previous eigenvectors (filters), the later eigenvector is
orthogonal to all previous ones. Therefore the responses of
filters are statistically uncorrelated.

Figure 3: Sequence of residual images. From left to right and top
to bottom, starting from the original input image, the sequence of
images displays the process that a component is subtracted from
the previous one.

4 Attention Effectors
The response of every neuron (or processing cell) at any

level is available to be used for later processing. The goal



of attention effectors is to suppress the response (value)
from areas that are beyond the attended visual field.

However, with staggered receptive fields, shown in
Fig. 2, the neurons share input plane among them. This
means that any region of neurons in a layer of SHM does
not correspond a clear-cut region in the input plane. A spe-
cial case of this situation happens when this region is so
small that it contains only one neuron, the corresponding
larger non-classical receptive field and the smaller classi-
cal receptive field demonstrate that no neuron corresponds
to a clear cut receptive field. Interactions between neurons
expand the extent of each pixel beyond that marked by di-
rect inputs to neurons. Therefore, we should not expect
that selecting the response from a region in any layer will
result in a clear-cut attended region in the input.

We define attended region as a 3-D ellipsoid centered at
a position ( � , � , � ) in a layer of SHM, where, � , � , denotes
the position of the neuron and � denotes the layer. The
length of each axis of the ellipsoid corresponds to the scale
along the dimension. All the neurons falling into the ellip-
soid have their output passed on and all others blocked.

5 Experiment with SHM
Testing began with a collection of over 5000 natural im-

ages. They were taken using a Sony digital camcorder
on the campus of Michigan State University. A variety
of recordings were taken, including buildings, trees and
shrubbery, closeups of bark and wood chips, flowers, and
other various scenes found in nature and on campus. The
frames from the video were then captured and digitized
into ����� F ���	� images, each has ����� F ���	� pixels. Fig. 4
shows a few sample images collected.

Figure 4: Several samples of 5000 natural images collected.

There are two methods to develop filters, sharing or
non-sharing. The sharing method assumes that the filters
that are located at the same location in eigen-groups have
the same form. This is a good estimation only if the images
have the same statistical properties across the entire image
frame. Thus, the sharing method only updates a single set
of filters for all eigen-groups. The non-sharing method up-
dates a separate set of filters for each eigen-group.

The filters of the first layer trained by the sharing
method is shown in Fig. 5. The eigen-group, in this case,
has a size of � F � , and the size of each filter at this layer is
��
 F ��
 . The filters are reordered according to its compu-
tation order, so that the dominant principal components are
shown first. As can be seen from the figure, the first sev-
eral filters appear similar to the receptive field excitation-
inhibition patterns reported by the Hubel and Wiesel’s ex-
periment [1].

Figure 5: The filters developed in the first layer by the sharing
method. The order of dominance is from left to right and from
top to bottom.

Fig. 6 displays the first four filters in the first layer de-
veloped by the non-sharing method. The filters with the
same order are tiled one by one according to its position.
It is worth mentioning that the filters near the boundary of
the image are trimmed off for better visualization. When
a filter falls out the border of the input image, the corre-
sponding pixel is assumed zero.

When input was put into the network, a scalar output
response value was generated for each filter at its respec-
tive receptive field. The output response is based on the
dot product between an eigenvector and its input vector
with possibly an post nonlinearity such as sigmoidal func-
tion. This measures the amount of energy of input along
the direction of the filter and represents the firing strength
of a neuron. The filter responses were then organized into
groupings based on their order in the eigen-group and then
combined into a structured image vector and passed on as
input to the next layer of the network. An example in-
put image and its corresponding output response image are
shown in Fig. 7. A strong response is represented by ei-
ther white or black high contrasting pixels depending on
the sign. Areas of low response are represented by gray



(a) (b)

Figure 6: The first two filters developed by the non-sharing
method. (a) The most dominant filter for different eigen-groups.
(b)The next dominant filters. The filters that are at the same posi-
tion of different eigen-groups are put together.

pixels.

(a) (b) (c)

Figure 7: Responses in different layers. (a) The original input
image. (b)-(c) The response outputs from layer 2 to layer 3 re-
spectively.

With SHM the input image is coded as responses at sev-
eral layers. To show how complete the representation is at
each single layer, we reconstruct the original image from
the response of that layer alone. The reconstruction is a
reverse processing of the mapping. The responses of a cer-
tain layer, which are actually the sample’s projection along
the principal components, are used to recover its compo-
nent in the sample space, then add back to the residual im-
age. The responses of layer are reconstructed by its fol-
lowing layer, finally reaching the original input layer. It
is interesting that the quality of the reconstructed image
does not decrease significantly from layer to layer. It can
be seen from Fig. 8 that all reconstructed images are close
to the original image. Mathematical analysis of this issue
is currently underway. Our experimental results showed
that the representation at each layer of the SHM is almost
complete, from lower layer for smaller receptive fields and
higher ones for large receptive fields.

6 Experiment with Occlusion
The purpose of the experiment summarized here is not

to show a practical application system, but rather to study
a use of SHM as a local representation. In a future system
that uses SHM as a sensory “cortex,” the parallel outputs of

Figure 8: The reconstructed images from different levels. The
first image is the original input image. Others are reconstructed
images form Layer 1 to Layer 5 respectively.

all neurons in all layers are used by higher level processing
that generates attention signals for the SHM. In the current
experiment, we use a regressor C3 in Fig. 9 that learns the
mapping from input to the attention control signals needed
by the SHM at anytime. It is trained first.

The experimental setting was organized as follows: In
the training phase, a series of global view of face images
is presented to the system with class labels. In the testing
phase, different face images of the same set of people are
presented to the system, but all of them are partially oc-
cluded: the upper view (U view) of a face has the lower
third area replaced by a uniform intensity (gray), and the
lower view (L view) has the upper third replaced by gray.

If a system is passive, it learns the global view and tries
to match the input U or L view with the learned global
prototype. If we use nearest neighbor method (NN) to find
the prototype, we call it monolithic

�
NN testing.

We would like to study the use of active internal action
in visual perception. For this purpose, we constructed a
active system shown in Fig. 9. Three classifiers C1, C2 and
C3 are integrated in the system. Here, we use Hierarchical
Discriminant Regression Tree (HDR Tree) [16]. To learn
the mapping, C3 is to determine what specific occlusion
case the image is, U or L. In our test, the classifier C3 has
reached 100% classification rate.

The S1 and S2 are SHMs. S1 is for U views and S2
is for L views. C1 and C2 are two HDR Trees to classify
images. Which SHM

�
HDR should be used is determined

by the attention signal from C3.
The experiment used face set from Weizmann Institute

at Israel. The set was taken from 28 human subjects, each
having 30 images with all possible combinations of two
different expressions, three lighting conditions and five dif-
ferent facial orientations.

We used the leave-one-out cross-validation method. 30
experiments were conducted, in which 1 out of 30 sam-
ples of each person is picked up as testing sample, and all
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Figure 9: The schematic illustration of operation. C3 is the at-
tention signal generator. C1 and C2 are the classifiers for each
occlusion case. S1 and S2 are SHMs, S1 for U views and S2 for
L views.

Method Recognition Rate
U L U+L

Monolithic+NN 51.43% 75.83% 82.38%
SHM+HDR 92.86% 95.95% 98.57%

Method Testing Time (ms)
U L U+L

Monolithic+NN 765.5 765.5 2263.0
SHM+HDR 702.4 702.4 2016.6

Table 2: Summaries of the occlusion experiment.

remaining ones as training samples. The average of the
recognition result is reported in Table 2, along with the
time run on a dual Pentium III 600 MHz processor PC.
U, L columns are for testing with U, L views only. U

�
L

column is for an integration of 2 test views, U and L to
give a single classification (person). The U

�
L integration

is done in the following way. For each view, top 4 best
matches form a top labels list. Thus, each pair of U view
and L view gives a U label list and a L label list. The label
that has the minimum rank sum is the output label.

The Table 2 shows that the proposed SHM with HDR
classifier is effective in integrating active partial views, U
and L. Without active attention, monolithic

�
NN per-

formed poorly, even with U
�

L integration. This is because
it lacks a mechanism to actively extract local views when
presented with a global view. The speed of the SHM

�
NN

is fast enough to reach about 2 Hz refreshing rate.

7 Conclusions
This paper presents the design principles, the architec-

ture and the developmental algorithm of a general purpose
sensory mapping called the Staggered Hierarchical Map-
ping. The experimental data have shown that the output
response is effectively decorrelated for receptive fields at a
family of positions and scales. The representation at each
layer has a high completeness. The test result of the oc-
cluded image recognition system shows that the SHM has a
local analysis property, thus, it can be used to achieve atten-
tion control in an active vision system. As far as we know,
this is the first incremental computational model for a de-
veloping hierarchical sensory map with a complete family
of receptive fields.
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