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Although computational models are playing an increasingly important role in developmental psychol-
ogy, at least one lesson from robotics is still being learned: Modeling epigenetic processes often
requires simulating an embodied, autonomous organism. This article first contrasts prevailing models
of infant cognition with an agent-based approach. A series of infant studies by Baillargeon (1986; Bail-
largeon & DeVos, 1991) is described, and an eye-movement model is then used to simulate infants’
visual activity in this study. | conclude by describing three behavioral predictions of the eye-movement
model and discussing the implications of this work for infant cognition research.
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1 Introduction

During the last decade, researchers within robotics and
developmental psychology have identified a number of
common goals. Parallel work in the two fields has
benefited both disciplines. For example, many robot-
ics researchers have begun to move away from heavily
predesigned or hand-built systems, advocating instead
naive agents that acquire adaptive behaviors by inter-
acting with their environment (e.g., “developmental
engineering” in Metta, Sandini, & Konczak, 1999).
This approach assumes an epigenetic view of develop-
ment, in which both the organism and the environ-
ment play a critical role.

Developmental psychologists, meanwhile, have
begun to recognize the value of computational models
for investigating developmental processes, and in partic-
ular, infant cognitive development, (e.g., Mareschal &
French, 2000; Mareschal, Plunkett, & Harris, 1999;
Munakata, McClelland, Johnson, & Siegler, 1997,
Simon, 1998; Thelen, Schoner, Scheier, & Smith, 2001).
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A common theme across much of this work is the
description of adaptive behavior in infants by means of a
compact set of computational principles (e.g., learning
by prediction of future states, knowledge as graded
representations, etc.).

Despite the fact that these models illustrate an
impressive range of theoretical perspectives, modeling
architectures, and learning algorithms, many overlook a
central element of robotics research: the notion of an
embodied, autonomous agent that interacts with a real
or virtual environment (Schlesinger, 2001; Schlesin-
ger & Parisi, 2001).

In this article, I argue that developmental psychol-
ogists still have much to learn from work in robotics.
In particular, I propose that by modeling the infant not
just as a computational system, but more generally as
an agent—one that perceives its world via sensors and
changes its world via effectors—we are able to inves-
tigate development as an epigenetic process. And per-
haps more importantly, a variety of new insights on
how young infants learn may be revealed.
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In the next section, I contrast conventional mode-
ling approaches with an emerging perspective often
described as an agent-based approach. In Section 3, 1
highlight a series of infant studies conducted by Bail-
largeon (1986; Baillargeon & DeVos, 1991) to illustrate
a critical debate concerning early infant knowledge.
Section 4 introduces an eye-movement model, inspired
by the agent-based approach, which I have developed
to address the debate. Section 5 presents two simula-
tions of Baillargeon’s study with the model. In Section
6, I conclude by presenting some of the novel behav-
ioral predictions generated by the eye-movement
model and discussing the implications of the model
for infant cognition research.

2 The Importance of Autonomy

By definition, robots are physical agents that not only
occupy space, but also sense and act upon their envi-
ronment. Therefore, whether they occupy real or vir-
tual worlds, robots are embodied. In addition, robots
are often autonomous, that is, they employ closed-
loop procedures in which sensory feedback from the
world informs their next action.

The dual notions of embodiment and autonomy
play a central role in epigenetic theories of development
(e.g., Piaget, 1952). In particular, several researchers
have stressed the idea of an active organism that expe-
riences the world through self-produced activity (e.g.,
Bertenthal, Campos, & Kermoian, 1994; Held & Hein,
1963).

Perhaps surprisingly, whereas these ideas are
familiar themes to both robotics researchers and
developmental theorists, they have had only a small
influence on the computational models that develop-
mental psychologists study. In particular, conventional
models of infant cognition tend to focus on the devel-
opment of internal information-processing systems
(e.g., recognition or categorization of visual stimuli).
As a result, many models do not explicitly simulate
either a sensory system that receives sensory data
(e.g., a visual array), or a motor system that performs
overt behaviors (e.g., a reaching movement, a gaze
shift).

For example, Munakata et al. (1997) propose a
multi-layer recurrent network for simulating an infant
that tracks moving objects. On the input side, a visual
display is preprocessed and parsed into discrete objects.

Similarly, instead of producing motor behaviors, the
output of the model is a prediction of the sensory
input expected during the following time step.

In contrast, robots are not buffered from their
environment, but instead interface or make contact
with it in at least two ways, first through sensory sys-
tems, and second through effector systems.

Another important feature of robotics is that
because autonomous robots both sense and act on
their environment, they are “free” to select their own
sensory inputs (Nolfi & Parisi, 1993). As I have illus-
trated elsewhere (Schlesinger, Parisi, & Langer, 2000),
an important consequence of ‘“self-selection” of sen-
sory inputs is that autonomous agents explore computa-
tional search spaces in a highly efficient manner. These
learning trajectories often reproduce important patterns
of development found in human infants. Therefore, at
least one reason to simulate cognitive development in
infants with an agent-based approach is that the notion
of an autonomous agent represents the infant as an
active organism that learns by interacting with its
world.

There are, of course, a number of additional
advantages for adopting an agent-based perspective.
In the next section, I briefly describe a major debate in
the field of infant cognition that has reached an
impasse. I suggest that this debate can be addressed by
implementing an agent-based model of infants’ visual
tracking, which simulates infants’ moment-to-moment
visual activity. The model not only provides several
new ways to measure infants’ visual expectations but
also offers a novel perspective on cognitive develop-
ment in young infants.

3 The “Car Study”

Do young infants understand that when they lose per-
ceptual contact with an object, it continues to exist?
Piaget proposed that the concept of object permanence
develops gradually over the first 2 years, depending on
a sequence of search behaviors that become progres-
sively more complex over time (Piaget, 1952).
Baillargeon (1986; Baillargeon & DeVos, 1991)
challenged this account by implementing a paradigm
in which infants watch a series of events, instead of
searching for lost or hidden objects. Specifically, she
presented young infants with a simple mechanical dis-
play, in which a car rolls down a ramp, passing behind
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Figure 1
(1986; Baillargeon & DeVos, 1991).

a screen and reappearing on the other side. Figure 1A
presents a schematic display of this Habituation event,
so named because infants watch this event repeat sev-
eral times until they gradually lose interest in it. Note
that at the start of the Habituation event, the screen is
raised to show the infant that nothing is behind it.

Once habituated, infants then see two test events
in alternation (see Figure 1B and C). During both the
Possible and Impossible test events, a box is revealed
behind the screen. During the Impossible event, how-
ever, the box is placed on the track, in the path of the
car. Nevertheless, during both test events the car reap-
pears after passing behind the screen.

Baillargeon found that by at least age 6 months,
and perhaps even earlier, infants look significantly
longer at the Impossible event than the Possible event.
How did she interpret these findings? First, she sug-
gested that infants mentally represent both the occluded
box and the car as it passes behind the screen. Second,
she proposed that infants use these representations to
“compute” when the car should reappear, and are con-
sequently surprised to see the car reappear during the
Impossible event even though its path is obstructed by
the box. Thus, because the Impossible event is surpris-

Schematic display of the Habituation (A), Possible (B), and Impossible (C) events studied by Baillargeon

—

-

ing or anomalous to infants, they spend more time
looking at it.

3.1 The “Competent Infant” Debate

Experiments such as Baillargeon’s car study have
sparked a broad debate among infant cognition research-
ers. Some researchers agree with Baillargeon’s conclu-
sions, arguing that developmental psychologists have
tended to underestimate infants’ ability to represent
the physical world, as well as their capacity to reason
or think systematically about events in the world (Bail-
largeon, 1999; Spelke, 1998).

This representational account has been challenged
by a group of theorists who advocate a perceptual-
processing account, arguing instead that conclusions
about infants’ knowledge of the physical world should
not be based solely on the amount of time an infant
spends looking at possible or impossible displays
(Haith, 1998; Smith, 1999). These researchers propose
that other measures of infants’ visual activity, and partic-
ularly, of their expectations during possible and impossi-
ble events, should be studied to corroborate standard
looking-time measures.
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3.2 Modeling Infants’ Eye Movements

To address this debate, I have developed an oculomo-
tor control model that simulates the tracking behavior
of an infant (Schlesinger & Barto, 1999; Schlesinger &
Parisi, 2001). Like human infants, the model watches
simple mechanical displays and learns to track salient
moving objects.

It should be noted that the eye-movement model
employs a bottom-up approach, consistent with the per-
ceptual-processing account of infant cognition. Accord-
ingly, the model has (1) no prior knowledge of the
physical world (i.e., no internal model), (2) no explicit
(e.g., declarative) memory systems, and (3) no built-in
capacity for prediction. Nevertheless, the model quickly
learns to track moving objects, and like human infants,
also learns to anticipate correctly the future location of
objects that are temporarily occluded.

However, it should also be noted that while the
eye-movement model is “autonomous,” insofar as it
controls what it sees (i.e., by shifting its gaze from one
part of the display to another), it is not able to manipu-
late physically the events it observes (e.g., reach for or
grasp the objects in the display). Thus, it is only capa-
ble of a limited form of interaction with its environment
and, therefore, does not exploit all of the advantages of
an epigenetic process.

Nevertheless, because the eye-movement model
simulates visual activity on several levels (e.g., eye
movements, gaze shifts, scanpaths, etc.), it is an ideal
tool for developing novel measures of infants’ visual

activity that complement conventional looking-time
methods. Consequently, a key goal of the model is to
present it with a series of events like those in Baillar-
geon’s car study, and to use the behavior of the model
to suggest new ways to study infants’ expectations in
comparable situations.

4 The Eye-Movement Model

I present here a brief description of the stimuli used to
train and test the eye-movement model, as well as the
structure of the model itself. For additional details on
an earlier version of the model, the interested reader
may refer to Schlesinger and Barto (1999) and Schles-
inger and Parisi (2001).

4.1 Training and Test Displays

The training and testing of the model is designed to
mimic the experiences of an infant in Baillargeon’s
car study. Consequently, three computer-animation
events were constructed as analogs to the Habituation,
Possible, and Impossible events. However, note that
because the model is explicitly trained rather than
habituated (see Section 4.4, below), the Habituation
event is renamed as the Training event in the model.
Each event is rendered in grayscale, with a dura-
tion of 82 frames. Figure 2 presents selected frames
from each of the events, corresponding to the respec-
tive events in Figure 1 (frame number is noted in the
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Figure 2 Schematic display of selected frames from the animation events used in Study 1 to train (A) and test (B, C)
the eye-movement model (frame number displayed in upper right corner).



upper right corner). The animations simplify many
aspects of the real events (e.g., they are two-dimen-
sional rather than three-dimensional), while capturing
the most relevant perceptual features of the car study
(e.g., occlusion of the “car” behind the screen; relative
salience of the car, screen, and box, etc.).

During all three events, the screen moves up then
down. Next, the car (i.e., the black square) appears on
the left of the display, and passes behind the screen
and out the other side. During the Training event,
there is nothing behind the screen; during the Possible
and Impossible events, the box (i.e., the small, gray
rectangle) is revealed as the screen moves up. The box
is above the path of the car during the Possible event,
whereas it is within the path of the car during the
Impossible event.

4.2 Model Architecture

The oculomotor control system is composed of a
three-layer feedforward neural network. The input
layer is divided into three sensory channels: a low-res-
olution, peripheral visual system (33 units), a high-
resolution fovea (144 units), and an eye-position sys-
tem (2 units). The input layer is fully connected to the
hidden layer (20 units), which is in turn fully con-
nected to the output layer (10 units).

Each of the animation events is “projected” onto
the retina. Although the position of the peripheral sys-
tem is fixed, it spans the entire event display. The
fovea, meanwhile, fixates no more than 12% of the
display at a time and can be moved from one part of
the display to another.

The output system is composed of two banks of 5
units; each bank controls movement of the fovea in
either the vertical or horizontal direction, respectively.
Motor signals from the two banks are superimposed,
producing a net movement in any of eight directions.
Within a bank of output units, four of the units encode
either a small (i.e., smooth pursuit) or large (i.e., sac-
cade) movement, in either a positive or negative direc-
tion. The 5th unit in each bank produces no movement
in the respective direction.

During training and testing, the network is pre-
sented with an appropriate animation event, one frame
at a time. On each time step, a single animation frame
is projected onto the retina (i.e., periphery and fovea),
and activation values are propagated forward. The
movement of the fovea is computed by selecting the
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output unit within each bank with the highest activa-
tion (i.e., “winner takes all” selection rule), and updat-
ing the fovea’s position according to the movement
encoded by the 2 winning units. After the fovea’s
position (i.e., the fixation point) is updated, the next
animation frame is presented.

4.3 Learning Algorithm

Two key assumptions of the eye-movement model are
(1) the car in Baillargeon’s study is the most salient
object, and (2) infants learn to track the movement of
the car. Accordingly, the model employs a reinforce-
ment-learning algorithm, in which the network is
rewarded for each time step that it succeeds in fixating
the car.

Specifically, the network receives a scalar reward
between 0 and 1 on each time step, for the proportion
of the car that is visible within the fovea. (Note that no
reward is possible before the car appears, and while it
is occluded behind the screen.) Standard temporal-dif-
ference learning was employed, including Q-learning
at the output layer, followed by back-propagation of
prediction errors to the hidden layer (see Sutton &
Barto, 1998).

In less formal terms, each output unit encodes a
specific eye movement. The activation of each unit is
an estimate of the reward expected to follow by produc-
ing that unit’s particular movement. Thus, a greedy
action-selection rule is employed, in which the unit
within each bank that estimates the highest reward is
chosen to produce an eye movement. Exploration of
non-optimal movements is achieved by selecting a
random eye movement 1% of the time (i.e., &-greedy
action selection, with £=0.01).

4.4 Simulation Overview

In contrast to infants in Baillargeon’s car study, the
model is trained rather than habituated during the
Habituation event. Thus, the first event experienced
by the model is called the Training event.

Note that optimal tracking of the car generates a
reward of 40 points. To avoid overtraining the model,
which may lead to highly stereotyped tracking strate-
gies, training only continues until average perform-
ance is at least 75% optimal (i.e., average reward is 30
or more points). This training criterion is also in line
with the assumption that infants have several goals



102 Adaptive Behavior 11(2)

during the car study, including tracking the car, and
therefore they may not track the car optimally.

After the training criteria is reached, learning is
turned off (i.e., connection weights are frozen; no explor-
atory actions are selected), and the Possible and Impossi-
ble events are presented to the model. In the following
studies, the results of each simulation represent the aver-
age performance over a population of 50 networks that
are initialized randomly, trained, and then tested.

5 Simulation Studies

Two simulation studies are described here. In both
studies, the model first learns to track the car during
the Training event. After training, the Possible and
Impossible test events are presented.

5.1 Study 1: On versus Behind the Track

Study 1 simulates the events presented in Figure 1. In
this condition, infants see the box placed either behind
the track (Possible event) or on the track (Impossible
event) during the test phase. In the animation events,
these relative positions are translated into above (Pos-
sible) or within the path of the car (Impossible event,
see Figure 2).

5.1.1 Results, Study 1 Recall that 50 networks
were trained and tested, and that the training criteria
was at least 75% optimal tracking (i.e., a total reward
of 30 points out of 40 per trial). On average, 145 train-
ing trials were required per network to reach criteria.

After training, connection weights were frozen
and the exploration parameter was set to 0 (i.e., only
optimal eye movements were chosen). To establish a
performance benchmark, the model was first repre-
sented with the Training event, now referred to as the
Control event since no learning occurred during this
phase. The Possible and Impossible test events were
presented after the Control event.

Tracking performance was defined as the sum of
rewards obtained over the entire event duration (i.e.,
82 frames). Figure 3 presents the average total reward
as a function of event type (error bars plot 95% confi-
dence intervals). Average total reward during the Con-
trol event was 32.20 points; it was 24.69 and 18.01 for
the Possible and Impossible test events, respectively.
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Figure 3 Tracking performance (average total reward)
in Study 1 during the Control, Possible, and Impossible
events (error bars plot 95% confidence intervals).

Tracking was significantly lower during the Pos-
sible and Impossible events than during the Control
event. In particular, tracking during the Possible event
was significantly lower than the Control event [#(49) =
11.65, p < 0.001], and tracking during the Impossible
event was significantly lower than the Possible event
[#(49) =4.51, p < 0.001].

A key difference between the Training and test
events is the appearance of the box during the Possible
and Impossible events. This suggests the question,
why might the appearance of the box disrupt tracking?

One way to address this question is to analyze the
tracking behavior or “eye movements” of the model
on a moment-to-moment basis. Figure 4 presents a
typical set of scanpaths produced by the model during
the Control, Possible, and Impossible events (the “x”
indicates the center of the fovea, and the trailing dots
indicate recent fixations). This figure illustrates sev-
eral interesting behaviors of the model.

First, during the Control event (i.e., when no box
is present), the model generates two distinct anticipa-
tory behaviors: (1) movement of the fovea toward the
left side of the display at the start of the event, before
the car appears (“Control event,” Frame 17), and (2)
an anticipatory saccade from the left to the right of the
screen while the car is occluded (“Control event,”
Frame 55).

In contrast, either one or both of these anticipa-
tory behaviors is disrupted during the test events by
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Figure 4 Scanpaths produced by a typical network during the test phase of Study 1. The “x” indicates the center of the

fovea; the trailing dots indicate recent fixations.

the appearance of the box. During the Possible event,
the model is momentarily “distracted” by the box and
only succeeds in fixating the car just as it appears on
the left of the display. It then continues to track the
car’s movement as it does during the Control event.
However, both anticipation of the car’s appearance
and it reappearance from behind the screen are dis-
rupted during the Impossible event.

Therefore, the appearance of the box during the
Possible and Impossible events attracts the attention
of the model, which leads to changes in the scanpath
that was acquired during training. The magnitude of
this effect can be quantified by using the model’s
scanpath during the Control event as a baseline and
then computing how far away the model’s scanpath
deviates from this baseline pattern during the Possible
and Impossible events.

Figure 5 presents the mean deviation (i.e., Eucli-
dean distance in pixels) from the model’s scanpath
during the Control event, in the Possible and Impossi-
ble events. Specifically, the model deviates on average
by 5.89 pixels during the Possible event, but by 10.00
pixels during the Impossible event. This difference
was statistically significant [#(49) = 4.73, p < 0.001].
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Figure 5 Mean deviation (in pixels) from the model's
scanpath during the Control event in Study 1 (error bars
plot 95% confidence intervals).

5.1.2 Discussion, Study 1 After learning to track the
movement of the car during the Training event, tracking
is significantly disrupted during both the Possible and
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Impossible test events. This disruption effect is rela-
tively minor during the Possible event but leads to
roughly a 50% drop in tracking performance during the
Impossible event. An examination of the model’s scan-
path shows that it is the appearance of the box in the test
events that accounts for this disruption in tracking.

Why does the box’s appearance behind the screen
interfere with tracking, and more importantly, why is
the disruption greater during the Impossible event?
There are two likely explanations.

First, it may be that the model “confuses” the box
with the car. Since the box appears earlier during the
Impossible event (and for a longer duration, see Fig-
ure 2B, C), it may have a greater disruptive effect on
the model’s tracking behavior. Alternatively, it may not
be the timing of the box’s appearance, but its position
relative to the car’s path that is important. According to
this second explanation, it is because the box appears in
the car’s path, where the model has historically been
rewarded for looking, that tracking is disrupted during
the Impossible event.

Note that the data from Study 1 do not allow us to
distinguish between these two accounts. In particular,
both accounts predict a greater disruption of tracking
during the Impossible event. However, by shifting the
car’s trajectory to the upper half of the display, the
two effects can be teased apart. In this case, the box
appears sooner and for more time during the Possible
event, but it appears within the car’s path during the
Impossible event.

Indeed, this condition parallels a similar condition
studied by Baillargeon, in which the box appears either
on (Impossible) or in front of the track (Possible). As
before, Baillargeon (1986; Baillargeon & DeVos, 1991)
found that infants looked significantly longer at the
Impossible event. Study 2 investigates a comparable
simulation condition.

5.2 Study 2: On versus in Front of the Track

Figure 6 presents selected frames from the animation
used to test and train the eye-movement model in
Study 2. In contrast to Study 1, the “car” moves along
the upper half of the display in Study 2. Thus, in the
Possible event the box is revealed sooner (and for
more time), while during the Impossible event the box
is located in the car’s trajectory. Therefore, if tracking
performance is lowest during the Possible event, it is
the timing of the box’s appearance, and not its loca-
tion, that affects tracking. Alternatively, if tracking is
lowest during the Impossible event, then it is the loca-
tion of the box relative to the car’s path that is critical.

Note that except for a minor change in the trajec-
tory of the car, the method of Studies 1 and 2 is virtu-
ally identical. As before, 50 replications of the model
were trained and tested.

5.2.1 Results, Study 2 Comparable to Study 1, an
average of 176 training trials were necessary to reach
criterion. Tracking performance during the test phase
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Figure 6 Schematic display of selected frames from the animation events used in Study 2 to train (A) and test (B, C)
the eye-movement model (frame number displayed in upper right corner). Note that in contrast to Study 1, the “car”

moves along the upper half of the display.
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Figure 7 Tracking performance (average total reward)
in Study 2 during the Control, Possible, and Impossible
events (error bars plot 95% confidence intervals).

was also comparable to Study 1. Specifically, average
total reward was 32.19, 26.83, and 20.04 during the
Control, Possible, and Impossible events, respectively
(see Figure 7). Paired comparisons of the three events
resulted in the same qualitative pattern of results as
obtained in Study 1. Thus, while tracking was signifi-
cantly lower during both of the test events than the
Control event, it was also significantly lower during
the Impossible than the Possible event.

Thus, as in Study 1, the appearance of the box
seems to disrupt tracking, and the disruption effect is
greater during the Impossible event. Indeed, when we
measure how far the model deviates from the scanpath
acquired during training (i.e., the Control event), we
find that there is a greater deviation in the scanpath
during the Impossible than the Possible event (6.94
and 4.37 pixels, respectively). As Figure 8 illustrates,
the difference in mean deviation between the Possible
and Impossible events is significant [#(49) = 3.29, p <
0.01].

5.2.2 Discussion, Study 2 Study 2 replicates the
findings of Study 1 in two key ways. First, as before,
the appearance of the box during the test phase dis-
rupts the model’s ability to track the car. Second, this
disruption is greater during the Impossible event. In
addition, the results are also consistent with the con-
clusion that the timing of the box’s appearance does
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Figure 8 Mean deviation (in pixels) from the model's
scanpath during the Control event in Study 2 (error bars
plot 95% confidence intervals).

not have a critical effect on tracking the car, whereas
the position of the car—relative to the car’s trajec-
tory—does significantly affect tracking.

6 Conclusions

Taken together, the findings from the two simulation
studies inform the debate on early infant cognition in
three important ways. First, why do infants look longer
at impossible events? Baillargeon proposes that when
infants are surprised or puzzled by an impossible
event, they pay more attention to it. Notice that this
representational account presupposes not only the
ability to represent mentally the physical world, but
also prior knowledge of the physical world that allows
infants to reason about occluded events.

In contrast, simulation results from the car study
suggest an alternative, perception-based account:
when the box appears in the car’s trajectory (i.e., the
Impossible event), infants’ tracking is disrupted, and
thus they pay more attention to the Impossible event
as they search for the car to continue tracking it. I dis-
cuss below the implications of this kind of account for
infant cognition research.

Before we accept this alternative, perceptual-
processing account, it must be empirically verified.
How can it be tested? Addressing this question suggests
a second major consequence of the eye-movement
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model: Because the model produces overt behaviors
(i.e., eye movements) in a quasi-realistic world, we
can draw an analogy between qualitative behavior pat-
terns in the model and those produced by human
infants in the car study. Therefore, the model suggests
at least three specific qualitative predictions:

1. Infants will scan the Possible and Impossible events
in different ways (see Figure 4).

2. Infants will be more successful at tracking the car
during the Possible event (see Figures 3 and 6).

3. Infants’ anticipatory eye movements will be dis-
rupted during the Impossible event.

Note that these predictions are valuable for a number
of reasons. First, they provide a direct test of the per-
ceptual-processing account. Second, they can be meas-
ured in parallel with infants’ global looking time during
possible and impossible events, and so offer the means
to integrate multiple measures of infants’ visual activ-
ity across different spatiotemporal scales (e.g., fixa-
tions, gaze shifts, scanpaths, etc.).

Most importantly, the predictions generated by
the eye-movement model are novel behavioral meas-
ures that have not been investigated by infant cog-
nition researchers in looking-time studies such as
Baillargeon’s. By forcing the representational and per-
ceptual-processing accounts to specify the details of
infants’ visual behavior at increasingly finer levels,
we diminish the likelihood that both accounts will
generate a similar pattern of predictions.

Finally, what if the eye-movement model’s pre-
dictions are confirmed? What are the implications of
the model for infant cognition research?

As I noted at the outset, the eye-movement model
is motivated by the perceptual-processing account of
infant cognition. Recall that the model has no prior
knowledge of the physical world, and lacks an
explicit memory or prediction system. Therefore, the
model suggests the minimal perceptual and cognitive
mechanisms necessary for explaining how infants
learn to track the car in the car study, and conse-
quently, respond differentially to the Possible and
Impossible events.

Nevertheless, it should be noted that for the per-
ceptual-processing account to provide a more parsi-
monious explanation for infants’ preferential-looking

patterns than other cognitive accounts, not only must
the predictions of the eye-movement model be tested,
but the model itself must be extended in several
ways.

For example, does the pattern of results described
here generalize to other possible and impossible events?
Similarly, in what way can a perceptual-processing
account explain infants’ reactions to static displays? It is
not clear how many additional assumptions must be
incorporated into the eye-movement model to address
these questions. Indeed, it is logically possible that a
simple cognitive account may ultimately be more par-
simonious than a perceptual-processing account that
includes dozens of qualifying assumptions (e.g., see
Baillargeon, 1999)! Current work is addressing these
questions.
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