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Abstract 
While computational models are playing an 
increasingly important role in developmental 
psychology, at least one lesson from robotics is still 
being learned:  modeling epigenetic processes often 
requires simulating an embodied, autonomous 
organism.  This paper first contrasts prevailing 
models of infant cognition with an agent-based 
approach.  A series of infant studies by Baillargeon 
(1986; Baillargeon & DeVos, 1991) is described, and 
an eye-movement model is then used to simulate 
infants' visual activity in this study.  I conclude by 
describing three behavioral predictions of the eye-
movement model, and discussing the implications of 
this work for infant cognition research.   

1. Introduction 
During the last decade, researchers within robotics and 
developmental psychology have identified a number of 
common goals.  Parallel work in the two fields has 
benefited both disciplines.  For example, many robotics 
researchers have begun to move away from heavily pre-
designed or hand-built systems, advocating instead naïve 
agents that acquire adaptive behaviors by interacting with 
their environment (e.g., “developmental engineering” in 
Metta, Sandini, and Konczak, 1999).  This approach 
assumes an epigenetic view of development, in which 
both the organism and the environment play a critical role.   
 Developmental psychologists, meanwhile, have 
begun to recognize the value of computational models for 
investigating developmental processes, and in particular, 
infant cognitive development, (e.g., Mareschal & French, 
2000; Mareschal, Plunkett, & Harris, 1999; Munakata, 
McClelland, Johnson, & Siegler, 1997; Simon, 1998; 
Thelen, Schöner, Scheier, & Smith, 2001).  A common 
theme across much of this work is the description of 
adaptive behavior in infants by means of a compact set of 
computational principles (e.g., learning by prediction of 
future states, knowledge as graded representations, etc.)   
 Despite the fact that these models illustrate an 
impressive range of theoretical perspectives, modeling 
architectures, and learning algorithms, many overlook a 
central element of robotics research:  the notion of an 
embodied, autonomous agent that interacts with a real or 
virtual environment (Schlesinger, 2001; Schlesinger & 
Parisi, 2001).   

 In this paper, I argue that developmental 
psychologists still have much to learn from work in 
robotics.  In particular, I propose that by modeling the 
infant not just as a computational system, but more 
generally as an agent—that perceives its world via sensors 
and changes its world via effectors—we are able to 
investigate development as an epigenetic process.  And 
perhaps more importantly, a variety of new insights on 
how young infants learn may be revealed.   
 In the next section, I contrast conventional modeling 
approaches with an emerging perspective often described 
as an agent-based approach.  In Section 3, I highlight a 
series of infant studies conducted by Baillargeon (1986; 
Baillargeon & DeVos, 1991) to illustrate a critical debate 
concerning early infant knowledge.  Section 4 introduces 
an eye-movement model, inspired by the agent-based 
approach, which I have developed to address the debate.  
Section 5 presents two simulations of Baillargeon's study 
with the model.  In section 6, I conclude by presenting 
some of the novel behavioral predictions generated by the 
eye-movement model, and discuss the implications of the 
model for infant cognition research.   

2. The importance of autonomy 
Conventional models of infant cognition tend to focus on 
the development of internal information processing 
systems (e.g., recognition or categorization of visual 
stimuli).  As a result, many models do not explicitly 
simulate either a sensory system that receives sensory data 
(e.g., a visual array), or a motor system that performs 
overt behaviors (e.g., a reaching movement, a gaze shift).   
 For example, Munakata et al. (1997) propose a multi-
layer recurrent network for simulating an infant that tracks 
moving objects.  On the input side, a visual display is 
preprocessed and parsed into discrete objects.  Similarly, 
instead of producing motor behaviors, the output of the 
model is a prediction of the sensory input expected during 
the following timestep.   
 In contrast, physical robots are by definition 
embodied, and “inhabit” a real environment.  In a similar 
manner, robotic simulations capture quasi-realistic 
features of the physical world (e.g., dynamic features such 
as gravity and inertia, perceptual features such as visual 
perspective, etc.).  In general, robots are not buffered from 
their environment, but instead interface or make contact 



 

 
 

Figure 1:  Schematic display of the Habituation (A), Possible (B), and Impossible (C)  
events studied by Baillargeon (1986; Baillargeon & DeVos, 1991).   

with it in at least two ways, first through sensory systems, 
and second through effector systems.   
 Another important feature of robotics is that because 
autonomous robots both sense and act on their 
environment, they are “free” to select their own sensory 
inputs (Nolfi & Parisi, 1993).  As I have illustrated 
elsewhere (Schlesinger, Parisi, & Langer, 2000), an 
important consequence of “self-selection” of sensory 
inputs is that autonomous agents explore computational 
search spaces in a highly efficient manner.  These learning 
trajectories often reproduce important patterns of 
development found in human infants.   
 Therefore, at least one reason to simulate cognitive 
development in infants with an agent-based approach is 
that the notion of an autonomous agent represents the 
infant as an active organism that learns by interacting with 
its world.   
 There are, of course, a number of additional 
advantages for adopting an agent-based perspective.  In 
the next section, I briefly describe a major debate in the 
field of infant cognition that has reached an impasse.  I 
suggest that this debate can be addressed by implementing 
an agent-based model of infants’ visual tracking, which 
simulates infants’ moment-to-moment visual activity.  
The model not only provides several new ways to measure 
infants’ visual expectations, but also offers a novel 
perspective on cognitive development in young infants.   

3. The "car study" 
Baillargeon (1986; Baillargeon & DeVos, 1991) presented 
young infants with a simple mechanical display, in which 
a car rolls down a ramp, behind a screen, and out the other 
side.  Figure 1A presents a schematic display of this 
Habituation event, so named because infants watch this 
event repeat several times until they gradually lose 
interest in it.  Note that at the start of the Habituation 
event, the screen is raised to show the infant that nothing 
is behind it.   

 Once habituated, infants then see two test events in 
alternation (see Figures 1B and 1C).  During both the 
Possible and Impossible test events, a box is revealed 
behind the screen.  During the Impossible event, however, 
the box is placed on the track, in the path of the car.  
Nevertheless, during both test events the car reappears 
after passing behind the screen.   
 Baillargeon found that by at least age 6 months, and 
perhaps even earlier, infants look significantly longer at 
the Impossible event than the Possible event.  How did 
she interpret these findings?  First, she suggested that 
infants mentally represent both the occluded box and the 
car as it passes behind the screen.  Second, she proposed 
that infants use these representations to "compute" when 
the car should reappear, and are consequently surprised to 
see the car reappear during the Impossible event even 
though its path is obstructed by the box.  Thus, because 
the Impossible event is surprising or anomalous to infants, 
they spend more time looking at it.   

3.1. The "competent infant" debate 
Experiments such as Baillargeon's car study have sparked 
a broad debate among infant cognition researchers.  Some 
researchers agree with Baillargeon's conclusions, arguing 
that developmental psychologists have tended to 
underestimate the infant's ability to represent the physical 
world, as well as their capacity to reason or think 
systematically about events in the world (Baillargeon, 
1999; Spelke, 1998).   
 This representational account has been challenged by 
a group of theorists who advocate a perceptual-processing 
account, arguing instead that conclusions about infants' 
knowledge of the physical world should not be based 
solely on the amount of time an infant spends looking at 
possible or impossible displays (Haith, 1998; Smith, 
1999).  These researchers propose that other measures of 
infants' visual activity, and particular, of their 
expectations during possible and impossible events, 
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Figure 2:  Schematic display of selected frames from the animation events used in Study 1 to  
train (A) and test (B-C) the eye-movement model (frame number displayed in upper right corner).   

should be studied in order to corroborate standard 
looking-time measures.   

3.2. Modeling infants' eye movements 
In order to address this debate, I have developed an 
oculomotor control model that simulates the tracking 
behavior of an infant (Schlesinger & Barto, 1999; 
Schlesinger & Parisi, 2001).  Like human infants, the 
model watches simple mechanical displays and learns to 
track salient moving objects.   
 It should be noted that the eye-movement model 
employs a bottom-up approach, consistent with the 
perceptual-processing account of infant cognition.  
Accordingly, the model has:  (1) no prior knowledge of 
the physical world (i.e., no internal model), (2) no explicit 
(e.g., declarative) memory systems, and (3) no built-in 
capacity for prediction.  Nevertheless, the model quickly 
learns to track moving objects, and like human infants, 
also learns to correctly anticipate the future location of 
objects that are temporarily occluded.   
 Because the eye-movement model simulates visual 
behavior on a variety of levels (e.g., eye-movements, 
gaze-shifts, scanpaths, etc.), it is an ideal tool for 
developing novel measures of infants' visual activity that 
complement the conventional looking-time methods.  
Consequently, the primary goal of the model is to present 
it with a series of events like those in Baillargeon's car 
study, and to use the behavior of the model to suggest new 
ways to study infants' expectations in comparable 
situations.   

4. The eye-movement model 
I present here a brief description of the stimuli used to 
train and test the eye-movement model, as well as the 
structure of the model itself.  For additional details on a 
previous version of the model, the interested reader may 
refer to Schlesinger and Barto (1999) and Schlesinger and 
Parisi (2001).   

4.1. Training & test displays 

The training and testing of the model is designed to mimic 
the experiences of an infant in Baillargeon's car study.  
Consequently, three computer-animation events were 
constructed as analogs to the Habituation, Possible, and 
Impossible events.  However, note that because the model 
is explicitly trained rather than habituated (see Section 
4.4, below), the Habituation event is renamed as the 
Training event in the model.   
 Each event is rendered in grayscale, with a duration 
of 82 frames.  Figure 2 presents selected frames from each 
of the events, corresponding to the respective events in 
Figure 1 (frame number is noted in the upper right 
corner).  Although the animations simplify many aspects 
of the real events (e.g., they are 2D rather than 3D), they 
were designed to capture the most relevant perceptual 
features of the car study (e.g., occlusion of the "car" 
behind the screen; relative salience of the car, screen, and 
box, etc.).   
 During all three events, the screen moves up then 
down.  Next, the car (i.e., the black square) appears on the 
left of the display, and passes behind the screen and out 
the other side.  During the Training event, there is nothing 
behind the screen; during the Possible and Impossible 
events, the box (i.e., the small, gray rectangle) is revealed 
as the screen moves up.  The box is above the path of the 
car during the Possible event, while it is within the path of 
the car during the Impossible event.   

4.2. Model architecture 
The oculomotor control system is composed of a 3-layer 
feedforward neural network.  The input layer is divided 
into three sensory channels:  a low-resolution, peripheral 
visual system (33 units), a high-resolution fovea (144 
units), and an eye-position system (2 units).  The input 
layer is fully connected to the hidden layer (20 units), 
which is in turn fully connected to the output layer (10 
units).   
 Each of the animation events is "projected" onto the 
retina.  While the position of the peripheral system is 
fixed, it spans the entire event display.  The fovea, 
meanwhile, fixates no more than 12% of the display at a 
time, and can be moved from one part of the display to 
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another.   
 The output system is composed of 2 banks of 5 units; 
each bank controls movement of the fovea in either the 
vertical or horizontal direction, respectively.  Motor 
signals from the 2 banks are superimposed, producing a 
net movement in any of 8 directions.  Within a bank of 
output units, four of the units encode either a small (i.e., 
smooth pursuit) or large (i.e., saccade) movement, in 
either a positive or negative direction.  The fifth unit in 
each bank produces no movement in the respective 
direction.   
 During training and testing, the network is presented 
with an appropriate animation event, one frame at a time.  
On each timestep, a single animation frame is projected 
onto the retina (i.e., periphery and fovea), and activation 
values are propagated forward.  The movement of the 
fovea is computed by selecting the output unit within each 
bank with the highest activation (i.e., "winner takes all" 
selection rule), and updating the fovea's position 
according to the movement encoded by the two winning 
units.  After the fovea's position (i.e., the fixation point) is 
updated, the next animation frame is presented.   

4.3. Learning algorithm 
Two key assumptions of the eye-movement model are:  
(1) the car in Baillargeon's study is the most salient object, 
and (2) that infants learn to track the movement of the car.  
Accordingly, the model employs a reinforcement-learning 
algorithm, in which the network is rewarded for each 
timestep that it succeeds in fixating the car.   
 Specifically, the network receives a scalar reward 
between 0 and 1 on each timestep, for the proportion of 
the car that is visible within the fovea.  (Note that no 
reward is possible before the car appears, and while it is 
occluded behind the screen)  Standard temporal-difference 
learning was employed, including Q-learning at the output 
layer, followed by back-propagation of prediction errors 
to the hidden layer (see Sutton & Barto, 1998).   
 In less formal terms, each output unit encodes a 
specific eye movement.  The activation of each unit is an 
estimate of the reward expected to follow by producing 
that unit's particular movement.  Thus, a greedy action-
selection rule is employed, in which the unit within each 
bank that estimates the highest reward is chosen to 
produce an eye movement.  Exploration of non-optimal 
movements is achieved by selecting a random eye 
movement 1% of the time (i.e., ε-greedy action selection, 
with ε = 0.99).   

4.4. Simulation overview 
In contrast to infants in Baillargeon's car study, the model 
is trained rather than habituated during the Habituation 
event.  Thus, the first event experienced by the model is 
called the Training event.   
 Note that optimal tracking of the car generates a 
reward of 40 points.  In order to avoid overtraining the 
model, which may lead to highly stereotyped tracking 
strategies, training only continues until average 
performance is at least 75% optimal (i.e., average reward 
is 30 or more points).  This training criterion is also in line 

with the assumption that infants have several goals during 
the car study, including tracking the car, and therefore 
they may not track the car optimally.   
 After the training criteria is reached, learning is 
turned off (i.e., connection weights are frozen; no 
exploratory actions are selected), and the Possible and 
Impossible events are presented to the model.  In the 
following studies, the results of each simulation represent 
the average performance over a population of 50 networks 
that are initialized randomly, trained, and then tested.   

5. Simulation studies 
Two simulation studies are described here.  In both 
studies, the model first learns to track the car during the 
Training event.  After training, the Possible and 
Impossible test events are presented.   

5.1. Study 1:  On vs. behind the track 
Study 1 simulates the events presented in Figure 1.  In this 
condition, infants see the box placed either behind the 
track (Possible event) or on the track (Impossible event) 
during the test phase.  In the animation events, these 
relative positions are translated into above (Possible) or 
within the path of the car (Impossible event, see Figure 2).   

5.1.1. Results, Study 1 
Recall that 50 networks were trained and tested, and that 
the training criteria was at least 75% optimal tracking 
(i.e., a total reward of 30 points out of 40 per trial).  On 
average, 145 training trials were required per network to 
reach criteria.   
 After training, connection weights were frozen and 
the exploration parameter was set to 0 (i.e., only optimal 
eye-movements were chosen).  In order to establish a 
performance benchmark, the model was first re-presented 
with the Training event, now referred to as the Control 
event since no learning occurred during this phase.  The 
Possible and Impossible test events were presented next.   
 Tracking performance was defined as the sum of 
rewards obtained over the entire event duration (i.e., 82 
frames).  Figure 3 presents the average total reward as a 
function of event type (error bars plot the standard error of 
the mean).  Average total reward during the Control event 
was 32.20 points, while it was 24.69 and 18.01 for the 
Possible and Impossible test events, respectively.   
 Tracking was significantly lower during the Possible 
and Impossible events than during the Control event.  In 
particular, tracking in the Possible event was significantly 
lower than the Control event (t(49) = 11.65, p < .001), and 
tracking in the Impossible event was significantly lower 
than the Possible event (t(49) = 4.51, p < .001).   

5.1.2. Discussion, Study 1 
The eye-movement model is more successful at tracking 
the car during the Training event, than during either of the 
test events.  These results suggest the conclusion that it is 
the appearance of the box, during the Possible and 
Impossible events, that specifically disrupts tracking.  
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Figure 4:  Scanpaths produced by a typical network during the test phase of Study 1.  The  
green "x" indicates the center of the fovea, while the trailing dots indicate recent fixations.   

 

Figure 3:  Tracking performance (average total 
reward) in Study 1 during the Control, Possible,  

and Impossible events (error bars plot the standard 
error of the mean).   

This conclusion is supported by an inspection of the 
model's tracking behavior during the Control event.   
 Figure 4 presents a typical set of scanpaths produced 
by the model, during the Control, Possible, and 
Impossible events (the green "x" indicates the center of 
the fovea, while the trailing dots indicate recent fixations).  
When no box is present, the model generates at least 2 
anticipatory behaviors, including:  (1) movement of the 
fovea toward the left side of the display at the start of the 
event, before the car appears ("Control event", Frame 
17), and (2) an anticipatory saccade from the left to the 
right of the screen while the car is occluded ("Control 
event", Frame 55).   
 As Figure 4 illustrates, the first behavior, anticipation 
of the car before it appears, is disrupted during both the 

Possible and Impossible events.  In addition, the second 
behavior, anticipatory tracking of the car while it is 
occluded, is also disrupted during the Impossible event.  
This helps explain why tracking performance is lower in 
the Impossible than the Possible event.   
 Why does the box's appearance behind the screen 
interfere with tracking, and more importantly, why is the 
disruption greater during the Impossible event?  There are 
two likely explanations.   
 First, it may be that the model "confuses" the box 
with the car.  Since the box appears earlier during the 
Impossible event (and for a longer duration, see Figures 
2B-C), it may have a greater disruptive effect on the 
model's tracking behavior.  Alternatively, it may not be 
the timing of the box's appearance, but its position relative 
to the car's path that is important.  According to this 
second explanation, it is because the box appears in the 
car's path, where it is has historically been rewarded for 
looking, that tracking is disrupted during the Impossible 
event.   
 Note that the data from Study 1 do not allow us to 
distinguish between these two accounts.  In particular, 
both accounts predict a greater disruption of tracking 
during the Impossible event.  However, by shifting the 
car's trajectory to the upper half of the display, the two 
effects can be teased apart.  In this case, the box appears 
sooner and for more time during the Possible event, but it 
appears within the car's path during the Impossible event.   
 Indeed, this condition parallels a similar condition 
studied by Baillargeon, in which the box appears either on 
(Impossible) or in front of the track (Possible).  As before, 
Baillargeon (1986; Baillargeon & DeVos, 1991) found 
that infants looked significantly longer at the Impossible 
event.  Study 2 investigates a comparable simulation 
condition.   



 

 

 

 

Figure 5:  Schematic display of selected frames from the animation events used in Study 2 to  
train (A) and test (B-C) the eye-movement model (frame number displayed in upper right corner).   

Note that in contrast to Study 1, the "car" moves along the upper half of the display.   

 

Figure 6:  Tracking performance (average total 
reward) in Study 2 during the Control, Possible,  

and Impossible events (error bars plot the standard 
error of the mean).   

5.2. Study 2:  On vs. in front of the track 
Figure 5 presents selected frames from the animation used 
to test and train the eye-movement model in Study 2.  In 
contrast to Study 1, the "car" moves along the upper half 
of the display in Study 2.  Thus, in the Possible event the 
box is revealed sooner (and for more time), while during 
the Impossible event the box is located in the car's 
trajectory.  Therefore, if tracking performance is lowest 
during the Possible event, it is the timing of the box's 
appearance, and not its location, that affects tracking.  
Alternatively, if tracking is lowest during the Impossible 
event, than it is the location of the box relative to the car's 
path that is critical.   
 Except for a minor change in the trajectory of the car, 
note that the method of Studies 1 and 2 is virtually 
identical.  As before, 50 replications of the model were 
trained and tested.   

5.2.1. Results, Study 2 

Comparable to Study 1, an average of 176 training trials 
were necessary to reach criterion.  Tracking performance 
during the test phase was also comparable to Study 1.  
Specifically, average total reward was 32.19, 26.83, and 
20.04 during the Control, Possible, and Impossible events 
(see Figure 6).  Paired comparisons of the three events 
resulted in the same qualitative pattern of results as 
obtained in Study 1.  Thus, while tracking was 
significantly lower during both of the test events than the 
Control event, it was also significantly lower during the 
Impossible than the Possible event.   

5.2.2. Discussion, Study 2 
Study 2 replicates the findings of Study 1 in two key 
ways.  First, as before, the appearance of the box during 
the test phase disrupts the model's ability to track the car.  
Second, this disruption is greater during the Impossible 
event.  In addition, the results are also consistent with the 
conclusion that the timing of the box's appearance does 
not have a critical effect on tracking the car, while the 
position of the car—relative to the car's trajectory—does 
significantly affect tracking.   

6. Conclusions 
Taken together, the findings from the two simulation 
studies inform the debate on early infant cognition in three 
important ways.   
 First, why do infants look longer at impossible 
events?  Baillargeon proposes that when infants are 
surprised or puzzled by an impossible event, they pay 
more attention to it.  Notice that this representational 
account presupposes not only the ability to mentally 
represent the physical world, but also prior knowledge of 
the physical world that allows infants to reason about 
occluded events.   
 In contrast, simulation results from the car study 
suggest an alternative, more parsimonious account:  when 
the box appears in the car's trajectory (i.e., the Impossible 
event), infants' tracking is disrupted, and thus they pay 
more attention to the Impossible event as they search for 
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the car to continue tracking it.  I discuss below the 
implications of this kind of account for infant cognition 
research.   
 Before we accept this alternative, perceptual-
processing account, it must be empirically verified.  How 
can it be tested?  Answering this question suggests a 
second major consequence of the eye-movement model:  
because the model produces overt behaviors (i.e., eye 
movements) in a quasi-realistic world, we can draw an 
analogy between qualitative behavior patterns in the 
model, and those produced by human infants in the car 
study.  Therefore, the model suggests at least 3 specific 
qualitative predictions:    
 

(1) Infants should scan the Possible and Impossible 
events in different ways (see Figure 4).   

 
(2) Infants should be more successful at tracking the 

car during the Possible event (see Figures 3 and 
6).   

 
(3) Infants' anticipatory eye-movements should be 

disrupted during the Impossible event.   
 
 Note that these predictions are valuable for a number 
of reasons.  First, they provide a direct test of the 
perceptual-processing account.  Second, they can be 
measured in parallel with infants' global looking time 
during possible and impossible events, and so offer the 
means to integrate multiple measures of infants' visual 
activity across different spatiotemporal scales (e.g., 
fixations, gaze shifts, scanpaths, etc.).   
 Most importantly, the predictions generated by the 
eye-movement model are novel behavioral measures that 
have not been investigated by infant cognition researchers 
in looking-time studies such as Baillargeon's.  By forcing 
the representational and perceptual-processing accounts to 
specify the details of infants' visual behavior at 
increasingly finer levels, we diminish the likelihood that 
both accounts will generate a similar pattern of 
predictions.   
 Finally, what if the eye-movement model's 
predictions are confirmed?  What are the implications of 
the model for infant cognition research?   
 As I noted at the outset, the eye-movement model is 
motivated by the perceptual-processing account of infant 
cognition.  Recall that the model has no prior knowledge 
of the physical world, and lacks an explicit memory or 
prediction system.  Therefore, the model suggests the 
minimal perceptual and cognitive mechanisms necessary 
for explaining how infants learn to track the car in the car 
study, and consequently, respond differentially to the 
Possible and Impossible events.   
 To conclude, at least one implication of the eye-
movement model, then, is that before researchers assume 
that top-down, knowledge-based, or representational 
accounts explain infants' visual activity, they should 
systematically investigate and eliminate bottom-up or 
perceptual-processing explanations.   
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