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Traditional engineering approaches strive to avoid, or actively suppress, nonlinear
dynamic coupling among components. Biological systems, by contrast, are often
rife with these dynamics. Could there be, in some cases, a benefit to high degrees
of dynamical coupling? Here we present a control scheme for a complex mechanical
system which is able to exploit a high degree of dynamical coupling to its ad-
vantage. Independent struts in a tensegrity structure are able to co-ordinate their
actions to achieve global locomotion by utilizing the coupling imposed by pre-stress
stability as a means of ad-hoc communication. This emergence of morphology-as-
information-conduit, or “morphological communication”, enabled by time-sensitive
spiking neural networks, presents a new paradigm for the decentralized control of
large, coupled, modular systems. These results significantly bolster, both in mag-
nitude and in form, the idea of morphological computation in robotic control. Fur-
thermore, they lend further credence to ideas of embodied anatomical computation
in biological systems, on scales ranging ranging from cellular structures up to the
tendinous networks of the human hand.
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1. Introduction

Traditional engineering approaches strive to avoid, or actively suppress, nonlinear
dynamic coupling among components. Especially near resonant frequencies, these
couplings tend to produce undesirable vibrations and oscillations that are difficult
to predict and may sometimes be catastrophic. A variety of passive and active
damping techniques have been developed to diminish these effects across many
fields ranging from robotics to structural engineering.

Biological systems, by contrast, are often rife with complex dynamics. Consider,
for instance, the principle of tensegrity, which can be found at many scales of life,
ranging from the cellular cytoskeleton (Wang et al. 2001) and the structure of
proteins (Ingber 1998) to the tendinous network of the human hand (Valero-Cuevas
et al. 2007). At every scale, these systems contain the type of coupled mechanical
and dynamical linkages which are so assiduously avoided in engineering design.
Could there be, in some cases, a benefit to this dynamical coupling?

Here we demonstrate how a highly complex mechanical system can learn to ex-
ploit its dynamical coupling as an advantage. In particular, we construct a highly
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connected and irregularly shaped tensegrity structure, one with a much higher de-
gree of complexity than any previously controlled tensegrities. Independent strut
modules in the structure are able to co-ordinate their actions to achieve global loco-
motion by utilizing the coupling imposed by pre-stress stability as a means of ad-hoc
communication. This co-ordination is facilitated by spiking neural networks which
are capable of tuning time-sensitive responses to match the particular dynamics of
the structures.

While the relationship between robot morphology and control has been explored
in less complex systems, our results arise from a significantly more complex mor-
phology with profoundly more degrees of freedom. Within this domain, we clearly
illustrate the tight coupling between our evolved controllers and the system’s dy-
namics in two ways. First, we demonstrate how, when the timing of the gait and
the dynamics of the structure are subtly changed, locomotion varies both quanti-
tatively and qualitatively - not just in terms of robustness (Paul 2006) or stability
(Iida 2006), but through drastically new gaits. Secondly, and uniquely, we clearly
illustrate the emergence of dynamical interactions as a means of communication by
observing the coupled behavior of independent neural network controllers within
the structure.

This novel demonstration of the emergence of morphology-as-information-conduit,
or “morphological communication”, presents a new paradigm for the decentralized
control of large, coupled, modular systems. Furthermore, these results lend credence
to the idea of embodied anatomical computation in biological systems, particularly
those such as the human hand, which are both highly complex and which are known
to employ the principles of tensegrity (Valero-Cuevas et al. 2007).

2. Tensegrity Control and Locomotion

The word tensegrity, a concatenation of tensile integrity was coined by Buckminster
Fuller to describe structures popularized by the sculptor Kenneth Snelson in 1948
(Fuller 1975). A tensegrity structure is a self-supporting structure consisting of a
set of disjoint rigid elements (struts) whose endpoints are connected by a set of
continuous tensile elements (strings), and which maintains its shape due to the
self-stressed equilibrium imposed by compression of struts and tension of strings
(Wang 1998). Such structures are pre-stress stable, in the sense that in equilibrium
each rigid element is under pure compression and each tensile element is under pure
tension. The structure therefore has a tendency to return to its stable configuration
after subjected to any moderate temporary perturbation (Connely & Back 1998).

These properties provide high strength-to-weight ratio and resilience, and make
tensegrity structures highly prized in engineering and architecture. Tensegrity can
be found in a variety of everyday structures, ranging from free-standing camping
tents to the geodesic domes of sports stadiums. Tensegrity structures are becoming
increasingly appealing as a medium for smart structures and soft robotics (Tibert
2002, Motro 2003, Sultan 1999), consequently, recent attention has been paid to
their control and manipulation.

Unfortunately, these qualities which make tensegrities so attractive carry with
them complex nonlinear dynamics, even for relatively small tensegrity structures
(Skelton et al. 2001), and as a result, active control is needed to dampen the vi-
brational modes of relatively modest structures. In almost all cases, deformation
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Figure 1. A complex and highly dynamically coupled fifteen-bar tensegrity structure

and control are achieved by changing the rest lengths of the tensile elements, for
instance by attaching attaching strings to a reeled servo motor. In this manner,
Skelton et al. have been able to demonstrate both active vibration damping (Chan
et al. 2004) and open-loop control of simple structures. Efforts such as these, how-
ever, seek to minimize and control the complex dynamics of tensegrity structures,
and no effective model exists for the control of the complex dynamics of relatively
large tensegrity structures.

More recently, Paul et al. demonstrated an ability to produce static and dy-
namic gaits for 3- and 4-bar tensegrity robots via evolutionary optimization, and
implemented these gaits on a physical robot (Paul 2006). Related work demon-
strated how the overall stability of these structures results in beneficial resilience
and redundancy of control mechanisms (Paul et al. 2005). Although these gaits did
not seek to suppress the dynamical properties of the structures, and the evolved
gaits contained dynamical aspects, the complexity of the structures was relatively
low, and the solution relied upon a centralized and open-loop controller.

Rather than attempting to scale these control schemes to arbitrarily large and
complex structures, our interest, by contrast, lies in harnessing and exploiting these
same dynamics. We are particularly interested in methods of controlling large, and
irregular tensegrity structures - those with much higher degrees of dynamical cou-
pling and complexity than the regular towers of Chan et al. (2004) and the minimal
structures of Paul (2006).

As a nominal reference structure in which to test our ideas we have chosen the
tensegrity in Figure 1, which contains 15 rods and 78 strings. This structure is of
particular interest because it belongs to a class of tensegrity towers generated by
a single generative map L-system which can be scaled, with a degree of patterned
similarity, to towers with more than 50 rods, as shown in Figure 2. Such a large and
complex structure stymies conventional methods of tensegrity control, and calls for
a new paradigm in the control of large, dynamically coupled systems.

(a) Challenges of Tensegrity Robotics

Constructing robots from tensegrities is a double-edged sword. On one hand the
homogeneity of the rigid elements allows for a high degree of modularity: each rod
can contain identical sets of sensors and actuators – the parts of a 10-bar tensegrity
are identical to those of a 3-bar one. On the other hand, any solution which relies
upon centralized control of the robot faces a crucial problem: that of communication
between modules. As the number of modules increases, the lines of communication

Article submitted to Royal Society
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Figure 2. A family of tensegrity towers produced by the same grammar as the tower in
Figure 1. As the number of iterations of the grammar increases, the tower grows from ten
bars to twenty, thirty, forty and fifty, repeating the same pattern of twisting bars as it
grows.

(quite literally) increase, bringing both the challenge of coordination and the risk
of tangles.

Consider, for instance, the tensegrity shown in Figure 1. Even with a single
sensor and actuator at each end of each bar, a centralized controller would need to
synthesize, and co-ordinate the actions of, 30 sensors and thirty controllers.

We implement a simpler alternative to the problem of control and locomotion
by doing away with the notion of explicit inter-modular communication completely.
In our model we consider each rod of the tensegrity to be a simple module with a
small controller only capable of sensing and affecting the tension on a single string
at each end. We demonstrate how locomotion can emerge by exploiting the dynamic
coupling of these otherwise autonomous tensegrity modules. In a sense, the body
of the robot becomes an ad-hoc network for communication between modules.

3. A Modular Framework for Tensegrity Robotics

This work stems out of our efforts at creating innovative tensegrity-based robots.
Tensegrities are a compelling, if challenging, platform for robotics. One particularly
desirable feature is their collapsibility: by relaxing their strings, tensegrity robots
can be quickly and easily packed into a small volume for transit, and then quickly
re-deployed via string re-tightening.
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Figure 3. A tensegrity robot consisting of four strut modules and 16 strings

Of particular appeal is the highly modular nature of tensegrities, allowing for
a significant amount of versatility and reuse: the struts in a four bar robot are
identical to those in a sixteen bar robot. In our design each strut module consists
of a rigid tube with a single servo motor mounted at each end. While, in principle,
multiple strings could be actuated by multiple servos at each end, we have chosen to
keep the design simple by limiting actuation on each end to a single string. Figure 3
contains a photograph of a representative tensegrity robot which contains four strut
modules

(a) Capturing Time-Sensitive Dynamics with Spiking Neural Networks

Since our aim is to embody most of the complexity of a gait within the dy-
namics of the structure itself, our interest is in a relatively simple controller, such
as an Artificial Neural Network (ANN). Unfortunately, conventional ANNs have
a critical weakness in this application: they are unable to fine-tune their timing.
Consequently, conventional neural networks within each module would require indi-
vidual hand-tuning in order to find a firing rate at or near the resonant frequency of
the structure, and any change in the underlying structure would require re-tuning
of the network timing.

In order to add time sensitivity to our, we use a variant of ANNs called spiking
neural networks. Spiking neural networks (SNNs) were developed to model more
continuous processes: input and outputs are both represented as single-value spikes
(as opposed the sigmoid outputs of a conventional ANN) (Maass & Bishop 1999).
Instead of a sigmoid function, every SNN node contains a simple persistent counter,
with adjustable offset and limit. At every time step, an SNN node sums its weighted
inputs with the current counter value, and if the sum surpasses the limit the node
fires a single “spike” to its output; otherwise the contents of the counter are decre-
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mented by a fixed decay rate, and persist until the next time step. This ability
to fine-tune timing has proven particularly useful in time-sensitive robotics control
tasks (Di Paolo 2003).

Each strut module contains a single spiking neural network with two inputs,
corresponding to the tension sensed at the single actuated string on each end,
two hidden nodes, and two outputs. At every simulation time step, each module
measures its inputs and feeds them through the SNN. SNN output spikes are then
converted into string actuations by measuring the duty cycle of network spikes.
Any spike rate above 30% over a 100 step period is considered “active”, and the
corresponding string was pulled by halving its rest length.

(b) Simulation of Tensegrity Robots

The representative 15-bar tensegrity shown in Figure 1 was reproduced within
the Open Dynamics Engine (ODE) Simulation environment, the widely used open-
source physics engine which provides high-performance simulations of 3D rigid body
dynamics. Rigid elements were represented as solid capped cylinders of fixed length
with a length-to-radius ratio of 24:1. Tensile elements were represented as spring-
like forces acting upon the cylinder ends. A given string si with length Li, rest
length L0, and spring constant K produces a force F̂i:

F̂i =

{

K ∗ (L̂i − L̂0) if L̂i > L̂0

0 if L̂i ≤ L̂0

(c) Evolving Controllers for Locomotion

Using this framework, we were able to evolve the weights within the separate
SNNs such that the structure as a whole was able to locomote. Each experiment
consisted of a population of 150 individuals initialized with random SNN weights
evolved over the course of 1000 generations.

With only 30 actuators available (one at the end of each strut module), and
a choice of 78 strings to actuate, we chose to evolve both the unique weights of
the SNN within each strut module, and also which particular string at each end
to actuate. Genotypes of individuals within the population therefore consisted of
two sub-genes. The first contained 180 floating point numbers corresponding to
the collective weights of all 15 strut module controllers within the structure. The
second consisted of a pairing of actuated strings with strut endpoints. A single point
mutation could therefore either change a weight within the SNN or change which
string was actuated at a particular endpoint.

Individuals were evaluated within our simulated environment by measuring the
travel of the center of mass over the course of 20,000 simulator time steps. Mem-
bers of the population were then ranked by their fitness, and the bottom scoring
half of the population culled. 75 new individuals were then created as offspring
of the remaining population via fitness proportional selection, in which 30% of
offspring were produced with two-parent crossover, and the remainder with single-
point single-parent mutation.

Figure 4 contains snapshots of the movement of one successful evolved individ-
ual over the course of its locomotion. The path of the red sphere above the structure
tracks the center of mass of the structure (vertically displaced for visualization).
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Figure 4. Snapshots of the motion of an evolved gait over 20,000 time steps

(d) A Dynamically Coupled Evolved Gait

Since our claim is that the evolved gaits are harnessing the coupled dynamics
of the system, we must make efforts to differentiate the results from a quasi-static
gait. In a purely quasi-static gait, the movement of the structure and its dynamics
are sufficiently decoupled that it can be considered to be stable and consistent over
a wide range of speeds. Consequently, neither doubling nor halving the speed of the
gait should have a significant effect upon the motion. Consider, for instance a bicycle
wheel which, modulo friction, will travel the same distance over five revolutions
regardless of the specific angular velocity.

By contrast, in a more dynamic gait, such as a child on a pogo stick, the move-
ment of the system is tightly coupled to its dynamics, and subtle changes in the
timing of the gait should have considerable effects on the overall behavior.

We can therefore qualitatively measure the coupling between evolved gait and
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system dynamics by observing the behavior of the structure when the speed of the
gait is adjusted maintaining the system dynamics. Gait “macros” were produced by
recording the string actuations caused the SNNs of an evolved individual over the
course of a normal 20000 time step run. These gaits were then replayed at speeds
ranging from 10% of the normal speed up to 1000%. Distances covered by the center
of mass over the course of the gait were then observed. Total number of simulation
steps were adjusting upwards or downwards accordingly to fit the fixed number of
gait cycles.

Figure 5 compares the path of the structure’s center of mass on the horizontal
plane over the course of a fixed number of gait cycles for three evolved gaits. Left
hand figures contain slower gait speeds and right hand figures contain faster speeds.
As is evident, both the distance traveled and the path traversed vary significantly
under varying speeds.

The degree to which the gaits vary is both significant and surprising, and reveals
the deep coupling between the particular evolved gait and the system dynamics.
Consider the shift when Gait 1 varies from 1/3 to 1/4 of the normal speed: the
direction of travel shifts 90 degrees. The remaining gaits also demonstrate significant
shifts in trajectory under slower speeds. In general, faster gait speeds by comparison
tended to exhibit more pathological changes. In several of the analyses of faster
speeds, particularly for Gait 2 and Gait 3, the behavior of the robot changes so much
that the robot collapses onto its side, at which point motion effectively ceases. (n.b.
It is worth noting that in several cases the robot appears to travel further under
slower gait speeds than at the normal speed. This is largely due to the fact that the
total amount of simulator time in which the gait is observed had to be increased in
order to fit a full fixed gait cycle. At this time scale, factors such as the momentum
of the structure play a larger role in the over all motion of the robot. If the graphs
were normalized for a fixed number of simulation steps rather than for a fixed gait
cycle, these slower gaits would of course travel much less far.)

(e) Morphological Communication via Dynamic Coupling

An equally compelling result is the emergence of de facto communication be-
tween independent module networks via the dynamical coupling of the modules. To
demonstrate this phenomenon, during locomotion we disable the output of a single
module network and observe changes in behavior in other module networks. Com-
munication between networks can be measured by the degree to which the behavior
of one network affects distal networks.

Figure 6 demonstrates two such examples of this phenomenon. In the first exam-
ple, suppressing the output of one module network causes a distal network to also
cease activity, and re-enabling the first network also re-enables the second. In the
second example, suppressing the output of the first network significantly increases
the firing frequency of the second network, and re-enabling the first network results
in resumption of the secondary network’s original frequency.

Both of these are compelling demonstrations of how individual networks can
affect the behavior of distal networks through their shared dynamical coupling. In
essence, the morphology is acting as a data bus for communication between module
networks.
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Figure 5. Gait trajectories. As the speed of the evolved gait is decreased (left hand figures)
or increased (right hand figures), both the distance traveled and the path traversed vary
significantly. Left and right hand figures are not on matched scales. Any increase in dis-
tance traveled (slower gaits in left hand figure) is due to the significantly longer amount
of simulator time required for the structure to complete a fixed gait cycle. At this time
scale, factors such as momentum play a larger role.

4. Discussion

In approaching the control of tensegrity systems, the conventional engineering ap-
proach has been to mitigate and attenuate the complex coupled dynamics and
vibrational modes which the structures exhibit. Naturally, as the size and scale of
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Figure 6. Demonstration of the emergence of communication between individual module
networks via dynamical coupling. In the top example, suppressing the first network causes
a distal network to cease activation. Enabling the first network re-enables the second. In
the bottom example, suppressing the first network causes the second network to increase
its firing frequency. After enabling the first network, the distal network resumes the former
frequency.

these tensegrity systems increases, and as their regularity decreases, the task of
control becomes exceptionally difficult.

Rather than abandon the use of these large, complex, irregular tensegrity struc-
tures for novel engineering purposes, for which there is no lack of demand, we
propose harnessing, rather than mitigating, the complex dynamics. By using con-
trol schema which are able to discover and exploit the particular dynamics of the
structure – in our case spiking neural networks – the structure at large becomes, at
once, both data bus (distributing information between modules via their coupled
dynamics) and powerful actuator (taking advantage of inherent oscillations in order
to achieve locomotion). In other words, the morphology of the robot is performing
both computation and communication.

(a) Biomechanics and Morphological Computation

Beyond engineering, this should be of particular relevance to biomechanics, par-
ticularly for systems which contain similar mechanical complexities. Recent research
by Valero-Cuevas et al. (2007) on the tendinous network of the human hand indicate
that the system performs in their words “anatomical computation” by distributing
and switching the tension inputs of the tendon network in order to differentially af-
fect torque at the finger tips. It is conjectured that “outsourcing” the computation
into the mechanics of the structure allows related neural pathways to devote their
resources to higher level tasks. Similar phenomena have been shown in the physiol-
ogy of wallabies (Biewener et al. 2004), guinea fowl (Daley & Biewener 2006) and
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cockroaches (Ahn & Full 2002). Pfeifer and Paul coined the term “morphological
computation” to describe this class of effect(Pfeifer 2006, Paul 2006).

The particular phenomenon we have described, in which morphology acts as a
non-neural conduit of information has close ties to the mechanotransduction effects
found throughout biology, such as in the ear (Mammano & Nobli 1993) and in heart
tissue (Parker & Ingber 2007).

Consider also the biomechanics of soft-bodied invertebrates, such as the Man-

duca sexta caterpillar. Although considered a well studied model species, the par-
ticular mechanics of Manduca locomotion and control remain poorly understood.
The caterpillar achieves remarkable control and flexibility despite the fact that
each of its segments contains relatively few motoneurons (one, or maximally two
per muscle, with approximately 70 muscles per segment), and no inhibitory motor
units (Taylor & Truman 1974, Levine & Truman 1985). Studies of the properties
of the organisms muscles indicate a high degree nonlinearity, pseudo-elasticity, and
strain-rate dependency (Dorfmann et al 2007, Woods et al. 2008). It is conjectured
therefore that, much like the tendon in the human hand, the complex biomechan-
ics caused by the interaction of hydrostatics, the body wall, and the muscles, all
contribute to a degree of morphological computation (Trimmer 2007).

The results described in this paper, in which the dynamical coupling between
independent strut modules plays a large role in their ability to co-ordinate action
to achieve locomotion, therefore lends credence to the existence of “mechanism as
mind” in biological systems, and provides a compelling new paradigm for robotic
locomotion.

5. Conclusion

One remaining challenge in leveraging these results lies in the “reality gap” between
simulated and physical tensegrity structures. Dynamical effects such as those our
solutions exploit are notoriously difficult to model with high fidelity. There are two
possible and promising approaches to resolving this challenge in order to create
physically embodidied robots capable of similar feats of mechanism-as-mind. The
first lies in dispensing with the simulator entirely and evolving dynamic gaits in

situ using embodied evolutionary techniques - such approaches can be slow, but
have shown considerable promise (Hornby et al. 2000, Zykov et al. 2004). The
second possibility lies in continuous self-modeling approaches which seek to co-
evolve robotic gaits alongside an emerging self-model (Bongard et al. 2006).

These results demonstrate how the coupled dynamical properties of a complex
mechanical system can be exploited for benefit rather than “engineered down”.
Simultaneously, they lend insight into why biological systems often contain the kind
of complex coupled dynamics that are so often assiduously avoided in engineering.
It has been conjectured that biological systems which appear under-actuated or
under-controlled - such as the tendinous network of the human hand and the body
of the Manduca sexta are able to achieve complex behavior through “mechanism

as mind”, that is, through the outsourcing of complex control tasks away from the
neural directly into the structural mechanics. Here we have demonstrated how such
morphological computation can occur in complex mechanical systems, and lend
credence to similar phenomena in biological systems.
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