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Abstract 

Learning through imitation is a powerful and versatile method for acquiring new behaviors.  In humans, 
a wide range of behaviors, from styles of social interaction to tool use, are passed from one generation 
to another through imitative learning.  Although imitation evolved through Darwinian means, it 
achieves Lamarckian ends:  it is a mechanism for the inheritance of acquired characteristics.  Unlike 
trial-and-error-based learning methods such as reinforcement learning, imitation allows rapid learning.  
The potential for rapid behavior acquisition through demonstration has made imitation learning an 
increasingly attractive alternative to manually programming robots. In this chapter, we review recent 
results on how infants learn through imitation and discuss Meltzoff and Moore's four-stage progression 
of imitative abilities: (i) body babbling, (ii) imitation of body movements, (iii) imitation of actions on 
objects, and (iv) imitation based on inferring intentions of others. We formalize these four stages within 
a probabilistic framework for learning and inference. The framework acknowledges the role of internal 
models in sensorimotor control and draws on recent ideas from the field of machine learning regarding 
Bayesian inference in graphical models.  We highlight two advantages of the probabilistic approach: 
(1) the development of new algorithms for imitation-based learning in robots acting in noisy and 
uncertain environments, and (2) the potential for using Bayesian methodologies (such as manipulation 
of prior probabilities) and robotic technologies to deepen our understanding of imitative learning in 
humans. 

 
1   Introduction 

 
Humans may aptly be characterized as the most complex, adaptive, and behaviorally flexible of all animals.  
Evolution has stumbled upon an unlikely but very effective trick for achieving this state.  Relative to most other 
animals, we are born “ immature”  and helpless.  Our extended period of infantile immaturity however confers us 
with benefits.  It allows us to learn and adapt to the specific physical and cultural environment into which we are 
born.  Instead of relying on fixed reflexes adapted for specific environments as in the case of certain animals, our 
learning capacities allow us to adapt to a wide range of ecological niches, from Alaska to Africa, modifying our 
shelter, skills, dress, and customs accordingly. A crucial component of evolution’s design for human beings is 
imitation-based learning, the ability to learn behaviors by observing the actions of others.   

Human adults effortlessly learn new behaviors from watching others.  Parents provide their young with an 
apprenticeship in how to behave as a member of the culture long before verbal instruction is possible.  In western 
culture, toddlers too young for language hold telephones to their ears and babble into thin air. There is no innate 
proclivity to treat hunks of plastic in this manner, nor is it due to Skinnerian trial-and-error learning.  Imitation is 
chiefly responsible.   

Over the past decade, imitative learning has received considerable attention from cognitive scientists, 
evolutionary biologists, neuroscientists, and robotics researchers.  Discoveries in developmental psychology have 
altered theories about the origins of imitation and its place in human nature.  We used to think that humans 
gradually learned to imitate over the first several years of life.  We now know that newborns can imitate body 
movements at birth.  Such imitation reveals an innate link between observed and executed acts, with important 
implications for neuroscience. Evolutionary biologists are using imitation in humans and nonhuman animals as a 
tool for examining continuities and discontinuities in the evolution of mind.  

To appear in: Imitation and Social Learning in Robots, Humans, and Animals: Behavioural, Social and 
Communicative Dimensions, K. Dautenhahn and C. Nehaniv (eds.), Cambridge University Press, 2004. 



 

Darwin inquired about imitation in nonhuman animals, but the last 10 years have seen a greater number of 
controlled studies of imitation in monkeys and great apes than in the previous 100 years.  The results indicate that 
monkey imitation is hard to come by in controlled experiments, belying the common wisdom of "monkey see 
monkey do" (Tomasello & Call, 1997; Whiten, 2002).  Nonhuman primates and other animals (e.g., songbirds) 
imitate, but their imitative prowess is more restricted than that of humans (Meltzoff, 1996). Meanwhile, 
neuroscientists and experimental psychologists have started investigating the neural and psychological 
mechanisms underlying imitation, including the exploration of “mirror neurons”  and “shared neural 
representations”  (e.g., Decety, 2002; Prinz, 2002; Meltzoff & Decety, 2003; Rizzolatti, Fadiga, Fogassi, & 
Gallese, 2002).  

The robotics community is becoming increasingly interested in robots that can learn by observing movements of 
a human or another robot. Such an approach, also called “ learning by watching”  or  “ learning by example,”  
promises to revolutionize the way we interact with robots by offering a new, extremely flexible, fast, and easy way 
of programming robots (Berthouze & Kuniyoshi, 1998; Mataric & Pomplun, 1998; Billard & Dautenhahn, 2000; 
Breazeal & Scassellati, 2002; Dautenhahn, & Nehaniv, 2002). This effort is also prompting an increased cross-
fertilization between the fields of robotics and human psychology (Hayes & Demiris, 1994; Demiris et al., 1997; 
Schaal, 1999).  

In this chapter, we set the stage for re-examining robotic learning by discussing Meltzoff and Moore's theory 
about how infants learn through imitation (Meltzoff, 2002; Meltzoff & Moore, 1997). They suggest a four stage 
progression of imitative abilities: (i) body babbling, (ii) imitation of body movements, (iii) imitation of actions on 
objects, and (iv) imitation based on inferring intentions of others. We formalize these four stages within a 
probabilistic framework that is inspired by recent ideas from machine learning and statistical inference. In 
particular, we suggest a Bayesian approach to the imitation learning problem and explore its connections to 
recently proposed ideas regarding the importance of internal models in sensorimotor control.  We conclude by 
discussing two main advantages of a probabilistic approach: (a) the development of robust algorithms for robotic 
imitation learning in noisy and uncertain environments, and (b) the potential for applying Bayesian methodologies 
(such as manipulation of prior probabilities) and robotic technologies to obtain a deeper understanding of imitative 
learning in human beings. Some of the ideas presented in this chapter appeared in a preliminary form in (Rao & 
Meltzoff, 2003). 

 

2 Imitative Learning in Human Infants 
 

Experiment results obtained by one of the authors (Meltzoff) and his colleagues over the past two decades suggest 
a progression of imitative learning abilities in infants, building up from “body babbling”  (random experimentation 
with body movements) in neonates to sophisticated forms of imitation in 18-month-old infants based on inferring 
the demonstrator’s intended goals. We discuss these results below. 

 

2.1 Body Babbling 

An important precursor to the ability to learn via imitation is to learn how specific muscle movements achieve 
various elementary body configurations. This helps the child learn a set of “motor primitives”  that could be used as 
a basis for imitation learning. Experiments suggest that infants do not innately know what muscle movements 
achieve a particular goal state, such as tongue protrusion, mouth opening, or lip protrusion.  It is posited that such 
movements are learned through an early experiential process involving random trial-and-error learning. Meltzoff 
and Moore (1997) call this process “body babbling.”   In body babbling, infants move their limbs and facial parts 
in repetitive body play analogous to vocal babbling.  In the more familiar notion of vocal babbling, the muscle 
movements are mapped to the resulting auditory consequence; infants are learning an articulatory-auditory relation 
(Kuhl & Meltzoff, 1996).  Body babbling works in the same way, a principal difference being that the process can 
begin in utero.  What is acquired through body babbling is a mapping between movements and a resulting body 
part configuration such as:  tongue-to-lips, tongue-between-lips, tongue-beyond-lips.  Because both the dynamic 
patterns of movement and the resulting endstates achieved can be monitored proprioceptively, body babbling can 
build up a “directory”  (an “ internal model” ) mapping movements to goal states.  Studies of fetal and neonatal 
behavior have documented self-generated activity that could serve this hypothesized body babbling function 
(Patrick et al., 1982).  Neonates can acquire a rich store of information through such body babbling.  With 
sufficient practice, they can map out an "act space" enabling new body configurations to be interpolated within this 



 

space.  Such an interpretation is consistent with the probabilistic notion of forward models and internal models 
discussed in Section 3.1. 

 
 

2.2 Imitating Body Movements 

By acquiring the ability to make elementary goal-directed movements through body babbling, even newborn 
infants demonstrate imitative learning. Meltzoff and Moore (1983, 1989) discovered that newborns can imitate 
facial acts.  The mean age of these infants was 36 hours old, the youngest being 42 minutes old at the time of 
testing.  Facial imitation in human infants thus suggests an innate mapping between observation and execution.  
Moreover, the studies provide information about the nature of the machinery infants use to connect observation 
and execution, as will be illustrated in the following brief review. 

In Meltzoff & Moore (1977), 12- to 21-day-olds were shown to imitate four different gestures, including facial 
and manual movements.  Infants didn’ t confuse either actions or body parts.  They differentially responded to 
tongue protrusion with tongue protrusion and not lip protrusion (Figure 1), showing that the specific body part can 
be identified. They also differentially responded to lip protrusion versus lip opening, showing that differential 
action patterns can be imitated with the same body part.  This is confirmed by research showing that infants 
differentially imitate two different kinds of movements with the tongue (Meltzoff & Moore, 1994, 1997).  In all, 
there are more than 24 studies of early imitation from 13 independent laboratories, establishing imitation for an 
impressive set of elementary body acts (Meltzoff, 2002).  This does not deny further development of imitative 
abilities. Young infants are not as motorically capable as older children and the neonate is certainly less self-
conscious about imitating than the toddler (Meltzoff & Moore, 1997).  The chief question for theory, however, 
concerns the neural and psychological processes linking the observation and execution of matching acts.  How do 
infants crack the correspondence problem?  Two discoveries bear on this issue.  

 

 
Figure 1. Imitative responses in 2- to 3-week-old infants (from Meltzoff & Moore, 1977).  

 
First, early imitation is not restricted to direct perceptual-motor resonances.  Meltzoff and Moore (1977) put a 

pacifier in infants’  mouths so they couldn’ t imitate during the demonstration.  After the demonstration was 
complete, the pacifier was withdrawn, and the adult assumed a passive face.  The results showed that infants 
imitated during the subsequent 2.5-minute response period while looking at a passive face.  More dramatically, 6-
week-olds have been shown to perform deferred imitation across a 24-hour delay (Meltzoff & Moore, 1994).  
Infants saw a gesture on one day and returned the next day to see the adult with a passive-face pose.  Infants stared 
at the face and then imitated from long-term memory.   

Second, infants correct their imitative response (Meltzoff & Moore, 1994, 1997).  They converge on the 
accurate match without feedback from the experimenter.  The infant’s first response to seeing a facial gesture is 
activation of the corresponding body part.  For example, when infants see tongue protrusion, there is a dampening 
of movements of other body parts and a stimulation of the tongue.  They do not necessarily protrude the tongue at 
first, but may elevate it or move it slightly in the oral cavity.  The important point is that the tongue, rather than the 
lips or fingers, is energized before the precise imitative movement pattern is isolated.  It is as if young infants 



 

isolate what part of their body to move before how to move it. Meltzoff and Moore (1997) call this “organ 
identification.”   Neurophysiological data show that visual displays of parts of the face and hands activate specific 
brain sites in monkeys and humans (Buccino et al., 2001; Gross, 1992).  Specific body parts could be neurally 
represented at birth and serve as a foundation for infant imitation.  

In summary, the results suggest that (a) Newborns imitate facial acts that they have never seen themselves 
perform, (b) There is an innate observation-execution pathway in humans, and (c)  This pathway is mediated by a 
representational structure that allows infants to defer imitation  and to correct their responses without any feedback 
from the experimenter. 

 
2.3 Imitating Actions on Objects 

More sophisticated forms of imitation than facial or manual imitation can be observed in infants who are several 
months old. In particular, the ability to imitate in these infants begins to encompass actions on objects that are 
external to the infant’s body parts. In one study, toddlers were shown the act of an adult leaning forward and using 
the forehead to touch a yellow panel (Meltzoff, 1988b).  This activated a microswitch, and the panel lit up.  Infants 
were not given a chance for immediate imitation or even a chance to explore the panel during the demonstration 
session; therefore, learning by reinforcement and shaping was excluded.  A 1-week delay was imposed.  At that 
point, infants returned to the laboratory and the panel was put out on the table.  The results showed that 67% of the 
infants imitated the head-touch behavior when they saw the panel.  Such novel use of the forehead was exhibited 
by 0% of the controls who had not seen this act on their first visit.  An example of the head-touch response is 
shown in Figure 2.   

 
Figure 2. A 14-month-old infant imitating the novel action of touching a panel with the forehead (from Meltzoff, 
1999).   

Successful imitation in this case must be based on observation of the adult’s act because perception of the panel 
itself did not elicit the target behavior in the naive infants.  Moreover, the findings tell us something about what is 
represented.  If the only thing they remembered is that "the panel lit up" (an object property), they would have 
returned and used their hands to press it.  Instead, they re-enacted the same unusual act as used by the adult.  The 
absent act had to have been represented and used to generate the behavior a week later.   

The utility of deferred imitation with “real world”  objects has also been demonstrated.    Researchers have found 
deferred imitation of peer behavior.  In one study, 16-month-olds at a day-care center watched peers play with toys 
in unique ways.  The next day, an adult went to the infants' house (thereby introducing a change of context) and 
put the toys on the floor.  The results showed that infants played with the toys in the particular ways that they had 
seen peers play 24 hours earlier (Hanna & Meltzoff, 1993).  In another study, 14-month-olds saw a person on 
television demonstrate target acts with 3-D toys.  When they returned to the laboratory the next day, they were 
handed the toys for the first time.  Infants re-enacted the events they saw on TV the previous day (Meltzoff, 
1988a). An example is shown in Figure 3.  



 

 
Figure 3. Infants as young as 14 months old imitate actions on objects as seen on TV (from Meltzoff, 1988a). 

 
Taken together, these results indicate that infants who are between 1 to 1.5 years old are adept at imitating not 

only body movements but also actions on objects such as toys in a variety of contexts. For imitation to be useful in 
cultural learning, it would have to function with just such flexibility.  The ability to imitate the actions of others on 
external objects undoubtedly played a crucial role in human evolution by facilitating the transfer of knowledge of 
tool use and other important skills from one generation to the next.  

 
2.4 Inferr ing Intentions 

The most sophisticated forms of imitative learning are those that require an ability to read below the perceived 
behavior to infer the underlying goals and intentions of the actor.  This brings the human infant to the threshold of 
“ theory of mind,”  in which they attribute not only visible behaviors to others, but develop the idea that others have 
internal mental states (intentions, perceptions, emotions) that underlie, predict, and generate these visible 
behaviors.   

One study involved showing 18-month-old infants an unsuccessful act (Meltzoff, 1995).  For example, an adult 
actor “accidentally”  under- or overshot his target, or he tried to perform a behavior but his hand slipped several 
times; thus the goal-state was not achieved (Figure 4, top row).  To an adult, it was easy to read the actor’s 
intention although he did not fulfill it.  The experimental question was whether infants also read through the literal 
body movements to the underlying goal of the act.  The measure of how they interpreted the event was what they 
chose to re-enact.  In this case, the correct answer was not to imitate the movement that was actually seen, but the 
actor’s goal, which remained unfulfilled. 



 

 
Figure 4. Human actor demonstrating an unsuccessful act (top panel) and an inanimate device mimicking the same 
movements (bottom).  Infants attributed goals and intentions to the human but not to the inanimate device (from 
Meltzoff, 1995). 

The study compared infants’  tendency to perform the target act in several situations:  (a) after they saw the full 
target act demonstrated, (b) after they saw the unsuccessful attempt to perform the act, and (c) after it was neither 
shown nor attempted.  The results showed that 18-month-olds can infer the unseen goals implied by unsuccessful 
attempts.  Infants who saw the unsuccessful attempt and infants who saw the full target act both produced target 
acts at a significantly higher rate than controls.  Evidently, toddlers can understand our goals even if we fail to 
fulfill them.  

If infants can pick up the underlying goal or intention of the human act, they should be able to achieve the act 
using a variety of means.  This was tested by Meltzoff (2002) in a study of 18-month-olds using a dumbbell-
shaped object that was too big for the infants’  hands.  The adult grasped the ends of the dumbbell and attempted to 
yank it apart, but his hands slid off so he was unsuccessful in carrying out his intention.  The dumbbell was then 
presented to the child.  Interestingly, the infants did not attempt to imitate the surface behavior of the adult.  
Instead, they used novel ways to struggle to get the gigantic toy apart.  They might put one end of the dumbbell 
between their knees and use both hands to pull it upwards, or put their hands on inside faces of the cubes and push 
outwards, and so on.  They used different means than the demonstrator in order to achieve the same end.  This fits 
with Meltzoff’s (1995) hypothesis that infants had inferred the goal of the act, differentiating it from the surface 
behavior that was observed.   

People’s acts can be goal-directed and intentional but the motions of inanimate devices are not — they are 
typically understood within the framework of physics, not psychology.  In order to begin to assess whether young 
children distinguish between a psychological versus purely physical framework, Meltzoff (1995) designed an 
inanimate device made of plastic, metal, and wood.  The device had poles for arms and mechanical pincers for 
hands.  It did not look human, but it traced the same spatiotemporal path that the human actor traced and 
manipulated the object much as the human actor did (see Figure 4).  The results showed that infants did not 
attribute a goal or intention to the movements of the inanimate device.  Infants were no more (or less) likely to pull 
the toy apart after seeing the unsuccessful attempt of the inanimate device as in the baseline condition.  This was 
the case despite the fact that infants pulled the dumbbell apart if the inanimate device successfully completed this 
act.  Evidently, infants can pick up certain information from the inanimate device, but not other information:  they 
can understand successes, but not failures.  In the case of the unsuccessful attempts, it is as if they see the  motions 
of the machine’s mechanical arms as “physical slippage”  but not as an “effort”  or “ intention”  to pull the object 
apart.  They appear to make attributions of intentionality to humans but not to the mechanical device.  One goal of 
our current research program is to examine just how “human”  a model must look (and act) in order to evoke this 
attribution.  We plan to test infants' interpretations of the “ intentional”  acts of robots.  

 

3 A Probabilistic Model of Imitation 
In recent years, probabilistic models have provided elegant explanations for a variety of neurobiological 
phenomena and perceptual illusions (for reviews, see Knill & Richards, 1996; Rao et al., 2002). There is growing 
evidence that the brain utilizes principles such as probability matching and Bayes theorem for solving a wide range 
of tasks in sensory processing, sensorimotor control, and decision-making. Bayes theorem in particular has been 
shown to be especially useful in explaining how the brain combines prior knowledge about a task with current 
sensory information and how information from different sensory channels are combined based on the noise 
statistics in these channels (see chapters in Rao et al., 2002). 



 

At the same time, probabilistic approaches are becoming increasingly popular in robotics and in artificial 
intelligence (AI). Traditional approaches to AI and robotics have been unsuccessful in scaling to noisy and 
realistic environments due to their inability to store, process, and reason about uncertainties in the real-world. The 
stochastic nature of most real-world environments makes the ability to handle uncertainties almost indispensable in 
intelligent autonomous systems. This realization has sparked a tremendous surge of interest in probabilistic 
methods for inference and learning in AI and robotics in recent years. Powerful new tools known as graphical 
models and Bayesian networks (Pearl, 1988) have found wide applicability in areas ranging from data mining and 
computer vision to bioinformatics and mobile robotics. These networks allow the probabilities of various events 
and outcomes to be inferred directly from input data based on the laws of probability and a representation based 
on graphs.  

Given the recent success of probabilistic methods in AI/robotics and in modeling the brain, we believe that a 
probabilistic framework for imitation could not only enhance our understanding of human imitation but also 
provide new methods for imitative learning in robots. In this section, we explore a formalization of Meltzoff and 
Moore’s stages of imitative learning in infants within the context of a probabilistic model. 
 
 
3.1 Body Babbling: Learning Internal Models of One’s Own Body 

Meltzoff and Moore's theory about body babbling can be related to the task of learning an “ internal model”  of 
an external physical system (also known as “system identification”  in the engineering literature). The physical 
system could be the infant’s own body, a passive physical object such as a book or toy, or an active agent such as 
an animal or another human. In each of these cases, the underlying goal is to learn a model of the behavior of the 
system being observed, i.e., to model the “physics”  of the system.  

A prominent type of internal model is a forward model, which maps actions to consequences of actions. For 
example, a forward model can be used to predict the next state(s) of an observed system, given its current state and 
an action to be executed on the system. Thus, if the physical system being modeled is one’s own arm, the forward 
model could be used to predict the sensory (visual, tactile, and proprioceptive) consequences of a motor command 
to move the arm in a particular direction.  

The counterpart of a forward model is an inverse model, which maps desired perceptual states to appropriate 
actions that achieve those states, given the current state. The inverse model is typically harder to estimate and is 
often ill-defined, due to many possible actions leading to the same goal state. A more tractable approach, which 
has received much attention in recent years (Jordan, 1992; Wolpert, 1998), is to estimate the inverse model using a 
forward model and appropriate constraints on actions (priors), as discussed below. 

Our hypothesis is that the progression of imitative stages in infants as discussed in Section 2 reflects a 
concomitant increase in the sophistication of internal models in infants as they grow older.  Intrauterine and early 
postnatal body babbling could allow an infant to learn an internal model of its own body parts. This internal model 
is sufficient for the most elementary forms of imitation in Stage 2 involving movement of body parts such as 
tongue or lip protrusion. Experience with real-world objects after birth allows internal models of the physics of 
passive objects to be learned, allowing imitation of actions on such objects as seen in Stage 3. By the time infants 
are about 1.5 years old, they have interacted extensively with other humans, allowing them to acquire internal 
models (both forward and inverse) of active agents with intentions. Such learned forward models could be used to 
infer the goals of agents despite witnessing only unsuccessful demonstrations while the inverse models could be 
used to select the motor commands necessary to achieve the undemonstrated but inferred goals. These ideas are 
illustrated with a concrete example in a subsequent section. 

 
 

3.2 Bayesian Imitative Learning 
Consider an imitation learning task where the observations can be characterized as a sequence of states s1, s2, …, 
sN of an observed object. A first problem that the imitator has to solve is to estimate these states from the raw 
perceptual inputs I1, I2, …, IN.  This can be handled using state estimation techniques such as Kalman or particle 
filtering. The estimated states would ideally be in object-centered coordinates. The next problem that the imitator 
has to solve is the correspondence problem (Nehaniv & Dautenhahn, 1998; Alissandrakis et al., 2002): how can 
the observed states be converted to “my own body states”  or states of an object from “my own viewpoint”? 
Solving the correspondence problem amounts to mapping the estimated object-centered representation to an 
egocentric representation. In this chapter, for simplicity, we use an identity mapping for this correspondence 



 

function but the methods below also apply to the case of non-trivial correspondences (e.g., (Nehaniv & 
Dautenhahn, 1998; Alissandrakis et al., 2002)). 

In the simplest form of imitation-based learning, the goal is to compute a set of actions that will lead to the goal 
state sN, given a set of observed and memorized states s1, s2, …, sN. We will treat st as the random variable for the 
state at time t.  For the rest of the chapter, we assume discrete state and action spaces. Thus, the state st of the 
observed object could be one of M different states S1, S2, …, SM while the current action at could be one of A1, A2, 
…, AP. 

Consider now a simple imitation learning task where the imitator has observed and memorized a sequence of 
states (for example, S7 → S1 → … → S12). These states can also be regarded as the sequence of sub-goals that 
need to be achieved in order to reach the goal state S12. The objective then is to pick the action at that will 
maximize the probability of taking us from a current state st = Si to a memorized next state st+1 = Sj, given that the 
goal state is sG = Sk (starting from s0 = S7 for our example). In other words, we would like to select the action A i 
that maximizes:  
P(at = Ai | st = Si, st+1 = Sj, sG = Sk) 
This set of probabilities constitutes the inverse model of the observed system: it tells us what action to choose, 
given the current state, the desired next state, and the desired goal state. 

The action selection problem becomes tractable if a forward model has been learned through body babbling and 
through experience with objects and agents in the world. The forward model is given by the set of probabilities: 
P(st+1 = Sj | st = Si, at = A i) 
Note that the forward model is determined by the environment and is therefore assumed to be independent of the 
goal state sG, i.e., P(st+1 = Sj | st = Si, at = A i, sG = Sk) = P(st+1 = Sj | st = Si, at = A i). These probabilities can be 
learned through experience in a supervised manner because values for all three variables become known at time 
step t+1. Similarly, a set of prior probabilities on actions P(at = A i | st = Si, sG = Sk) can also be learned through 
experience with the world, for example, by tracking the frequencies of each action for each current state and goal 
state.  

Given these two sets of probabilities, it is easy to compute probabilities for the inverse model using Bayes 
theorem: 
P(at = A i | st = Si, st+1 = Sj, sG = Sk) =  c P(st+1 = Sj | st = Si, at = A i) P(at = A i | st = Si, , sG = Sk)           (1) 

where c = 1/P(st+1 = Sj | st = Si, , sG = Sk) is the normalization constant that can be computed by marginalizing over 
the actions: 

P(st+1 = Sj | st = Si, , sG = Sk) = Σm P(st+1 = Sj | st = Si, at = Am) P(at = Am| st = Si, , sG = Sk)  
Thus, at each time step, an action A i can either be chosen stochastically according to the probability P(at = A i | st = 
Si, st+1 = Sj, , sG = Sk) or deterministically as the one that maximizes P(at = A i | st = Si, st+1 = Sj, , sG = Sk). The 
former action selection strategy is known as probability matching while the latter is known as maximum a 
posteriori (MAP) selection. In both cases, the probabilities are computed based on the current state, the next sub-
goal state, and the final goal state using the learned forward model and priors on actions (Equation 1). This 
contrasts with reinforcement learning methods where goal states are associated with rewards and the algorithms 
pick actions that maximize the total expected future reward. Learning the “value function”  that estimates the total 
expected reward for each state typically requires a large number of trials for exploring the state space. In contrast, 
the imitation-based approach as sketched above utilizes the memorized sequence of sub-goal states to guide the 
action selection process, thereby significantly reducing the number of trials needed to achieve the goal state. The 
actual number of trials depends on the fidelity of the learned forward model, which can be fine-tuned during body 
babbling and “play”  with objects as well as during attempts to imitate the teacher. 

A final observation is that the probabilistic framework introduced above involving forward and inverse 
models can also be used to infer the intent of the teacher, i.e., to estimate the probability distribution over the goal 
states sG. Note that: 
P(sG = Sk | at = A i, st = Si, st+1 = Sj) = k1 P(st+1 = Sj | st = Si, at = A i, sG = Sk) P(sG = Sk | st = Si, at = A i) 

= k2 P(st+1 = Sj | st = Si, at = A i, sG = Sk) P(at = A i  | st = Si, sG = Sk) P(sG = Sk | st = Si) 

= k3 P(st+1 = Sj | st = Si, at = A i, sG = Sk) P(at = A i  | sG = Sk, st = Si) P( st = Si | sG = Sk) P(sG = Sk)      (2) 
 

where the ki are normalization constants. The above equations were obtained by repeatedly applying Bayes’  rule. 
The first probability on the right hand side in Equation (2) is the learned forward model and the second is the 



 

learned prior over actions. The last two probabilities capture the frequency of a state given a goal state and the 
overall probability of the goal state itself. These would need to be learned from experience during interactions 
with the teacher and the environment. We illustrate the application of the imitation and inference rules derived 
above in a simple maze example in the following section. 
 

3.3 Example: Learning to Solve a Maze Task through Imitation  
We illustrate the application of the probabilistic approach sketched above to the problem of navigating to specific 
goal locations within a maze, a classical problem in the field of reinforcement learning. However, rather than 
learning through rewards delivered at the goal locations (as in reinforcement learning), we illustrate how an 
“agent”  can learn to navigate to specific locations by combining in a Bayesian manner a learned internal model 
with observed trajectories from a teacher. To make the task more realistic, we assume the presence of noise in the 
environment leading to uncertainty in the execution of actions.  
 
3.3.1 Learning a Forward Model for  the Maze Task 
Figure 5 (a) depicts the maze environment consisting of a 20 x 20 grid of squares partitioned into several rooms 
and corridors by walls, which are depicted as thick black lines. The starting location is indicated by an asterisk 
(“*” ) and the three possible goal locations (Goals 1, 2, and 3) are indicated by circles of different shades. The goal 
of the imitator is to observe the teacher’s trajectory from the start location to one of the goals and then to select 
appropriate actions to imitate the teacher.  

The states st  in this example are the grid locations in the maze. The five actions available to the imitator are 
shown in Figure 5 (b):  North (N), East (E), South (S), West (W), or remain in place (X). The noisy “ forward 
dynamics”  of the environment for each of these actions is shown in Figure 5 (c) (left panel). The figure depicts the 
probability of each possible next state st+1 that could result from executing one of the five actions in a given 
location, assuming that there are no walls surrounding the location. The states st+1 are given relative to the current 
state i.e., N, E, S, W, or X relative to st. The brighter a square, the higher the probability (between 0 and 1), with 
each row summing to 1. Note that the execution of actions is noisy: when the imitator executes an action, for 
example at = E, there is a high probability the imitator will move to the grid location to the east (st+1 = E) of the 
current location but there is also a non-zero probability of ending up in the location west (st+1 = W) of the current 
location. The probabilities in Figure 5 (c) (left panel) were chosen in an arbitrary manner; in a robotic system, 
these probabilities would be determined by the noise inherent in the hardware of the robot as well as 
environmental noise. When implementing the model, we assume that the constraints given by the walls are 
enforced by the environment (i.e. it overrides, when necessary, the states predicted by the forward model in Figure 
5 (c)). One could alternately define a location-dependent, global model of forward dynamics but this would result 
in inordinately large numbers of states for larger maze environments and would not scale well. For the current 
purposes, we focus on the locally defined forward model described above that is independent of the agent's current 
state in the maze.   

We examined the ability of the imitator to learn the given forward model through “body babbling”  which in 
this case amounts to “maze wandering.”  The imitator randomly executes actions and counts the frequencies of 
outcomes (the next states st+1) for each executed action. The resulting learned forward model, obtained by 
normalizing the frequency counts to yield probabilities, is shown in Figure 5 (c) (right panel). By comparing the 
learned model with the actual forward model, it is clear that the imitator has succeeded in learning the appropriate 
probabilities P(st+1  | st , at ) for each value of at and st+1 (st is any arbitrary location not adjacent to a wall). 

 
3.3.2 Imitation using the Learned Forward Model and Learned Pr iors 
Given a learned forward model, the imitator can use Equation (1) to select appropriate actions to imitate the 
teacher and reach the goal state. The learned prior model P(at = A i | st = Si, , sG = Sk), which is required by 
Equation (1), can be learned through experience, for example, during earlier attempts to imitate the teacher or 
during other goal-directed behaviors. The learned prior model provides estimates of how often a particular action 
is executed at a particular state, given a fixed goal state. For the maze task, this can be achieved by keeping a 
count of the number times each action (N, E, S, W, X) is executed at each location, given a fixed goal location. 



 

 
 
Figure 5. Simulated Maze Environment and Learned Forward Model. (a) Simulated maze environment.  
Thick lines represent walls.  Shaded ovals represent goal states. The instructor and the observer begin each 
simulated path through the maze at location (1,1), marked by the dark asterisk in the lower left corner of the maze. 
(b) Five possible actions at a maze location: agents can move north (N), south (S), east (E), west (W), or remain in 
place (X).  (c) Actual and learned probabilistic forward models.  The matrix on the left represents the true 
environmental transition function.  The matrix on the right represents an estimated environmental transition 
function learned through interaction with the environment. Given a current location, each action at (rows) indexes 
a probability distribution over next states st+1 (columns).  Note that the learned matrix closely approximates the 
true transition kernel.  These matrices assume the agent is not attempting to move through a wall. 
 
 
 



 

Figure 6 (a) shows the learned prior model P(at = A i | st = Si, , sG = Sk) for an arbitrary location Si in the maze 
for four actions A i  = N, S, E, and W when the goal state sG is the location (1,8) (Goal 2 in Figure 5 (a)).  The 
probability for a given action at any maze location (given Goal 2) is encoded by the brightness of the square in that 
location in the maze-shaped graph for that action in Figure 6 (a). The probability values across all actions 
(including X) sum to one for each maze location.  

It is clear from Figure 6 (a) that the learned prior distribution over actions given the goal location points in the 
correct direction for the maze locations near the explored trajectories. For example, for the maze locations along 
the bottom-left corridor (from (1,5) to (9,5)), the action with the highest probability is E while for locations along 
the middle corridor (from (1,8) to (9,8)), the action with the highest probability is W. Similar observations hold for 
sections of the maze where executing N and S will lead the imitator closer the given goal location. The priors for 
unexplored regions of the maze were set to zero for these simulations (dark regions in Figure 6 (a)). 

The learned forward model in Figure 5 (c) can be combined with the learned prior model in Figure 6 (a) to 
obtain a posterior distribution over actions as specified by Equation (1). Figure 6 (c) shows an example of the 
trajectory followed by the imitator after observing the two teacher trajectories shown in Figure 6 (b). Due to the 
noisy forward model as well as limited training data, the imitator needs more steps to reach the goal than does the 
instructor on either of the training trajectories for this goal, typically involving backtracking over a previous step 
or remaining in place. Nevertheless, it eventually achieves the goal location as can be seen in Figure 6 (c).  
 
3.3.3 Infer r ing the Intent of the Teacher    
After training, the imitator can attempt to infer the intent of the teacher based on observing some or all of the 
teacher’s actions. Figure 7 (a) depicts an example trajectory of the teacher navigating to the goal location in the 
top right corner of the maze (Goal 1 in Figure 5 (a)). Based on this observed trajectory of 85 total steps, the task of 
the imitator in this simple maze environment is to infer the probability distribution over the three possible goal 
states given the current state, the next state, and the action executed at the current state. The trajectory in Figure 7 
(a) was not used to train the observer; instead, this out-of-sample trajectory was used to test the intent inference 
algorithm described in the text.  Note that the desired goal with respect to the prior distributions learned during 
training is ambiguous at many of the states in this trajectory.   

The intent inference algorithm provides an estimate of the distribution over the instructor's possible goals for 
each time step in the testing trajectory. The evolution of this distribution over time is shown in Figure 7 (b) for the 
teacher trajectory in (a). Note that the imitator in this case converges to a relatively high value for Goal 1, leading 
to a high certainty that the teacher intends to go to the goal location in the top right corner. Note also that the 
probabilities for the other two goals remain non-zero, suggesting that the imitator cannot completely rule out the 
possibility that the teacher may in fact be navigating to one of these other goal locations. In this graph, the 
probabilities for these other goals are not very high even at potentially ambiguous locations (such as location 
(9,9)) because (i) the plotted points represent averages over 5 simulation steps and (ii) Equation (2) depends on 
P(sG = Sk), the prior probabilities of goals, which in this case involved higher values for Goal 1 compared to the 
other goals. Other choices for the prior distribution of goals (such as a uniform distribution) can be expected to 
lead to higher degrees of ambiguity about the intended goal at different locations. The ability of the imitator to 
estimate an entire probability distribution over goal states allows it to ascribe degrees of confidence to its inference 
of the teacher’s intent, thereby allowing richer modes of interaction with the teacher than would be possible with 
purely deterministic methods for inferring intent. 

 
3.3.4 Summary 
Although the maze task above is decidedly simplistic, it serves as a useful first example in understanding how the 
abstract probabilistic framework proposed in this chapter can be used to solve a concrete sensorimotor problem. In 
addition, the maze problem can be regarded as a simple 2D example of the general sensorimotor task of selecting 
actions that will take an agent from an initial state to a desired goal state, where the states are typically high-
dimensional variables encoding configurations of the body or a physical object rather than a 2D maze location.   

 



 

 
Figure 6. Learned Pr iors and Example of Successful Imitation: (a) Learned prior distributions P(at|st,sG) for 
the four directional actions (north, south, east, and west) for Goal 2 (map location (1,8)) in our simulated maze 
environment.  Each location in the maze indexes a distribution over actions (the brighter the square, the higher the 
probability), so that the values across all actions (including X – not shown) sum to one for each maze location. (b) 
Trajectories (dashed lines) demonstrated by the instructor during training.  The goal location here is Goal 2 
depicted by the grey circle at map location (1,8).  Trajectories are offset within each map cell for clarity; in 
actuality, the observer perceives the map cell occupied by the instructor at each time step in the trajectory. So, for 
example, both trajectories start at map cell (1,1).  Time is encoded using greyscale values, from light grey (early in 
each trajectory) to black (late in each trajectory). (c) Example of successful imitation.  The observer's trajectory 
during imitation is shown as a solid line, with greyscale values as in (b). Imitation is performed by combining the 
learned forward and prior models, as described in the text, to select an action at each step.   



 

 
 
Figure 7. Infer r ing the intent of the teacher . (a) Dashed line plots a testing trajectory for intent inference.  
Greyscale values show the progression of time, from light grey (early in the trajectory) to black (late in the 
trajectory).  The intended goal of the instructor was Goal 1 (the white circle at the top right). (b) Inferred intent, 
shown as a distribution over goal states.  Each point in the graph represents the output of the intent inference 
algorithm, averaged over 8 individual simulation steps (the final data point is an average over 5 simulation steps).  
Note that the instructor's desired goal, goal 1, is correctly inferred as the objective for all points on the graph 
except the first. Potential ambiguities at different locations are not obvious in this graph due to averaging and 
unequal priors for the three goals (see text for details). 
 
 
 

3.4 Fur ther  Applications in Robotic Learning 
We are currently investigating the applicability of the probabilistic framework described above to the problem of 
programming robots through demonstration of actions by human teachers (Demiris et al., 1997; Berthouze & 
Kuniyoshi, 1998; Mataric & Pomplun, 1998; Schaal, 1999; Billard & Dautenhahn, 2000; Breazeal & Scassellati, 
2002; Dautenhahn, & Nehaniv, 2002). Two robotic platforms are being used: a binocular robotic head from 
Metrica, Inc. (Fig 8 (a)), and a recently acquired Fujitsu HOAP-2 humanoid robot (Fig 8 (b)).  

In the case of the robotic head, we have investigated the use of “oculomotor babbling”  (random camera 
movements) to learn the forward model probabilities P(st+1 = Sj | st = Si, at = A i). The states Si in this case are the 
feedback from the motors (“proprioception” ) and visual information (for example, positions of object features). 
The learned forward model for the robotic head can be used in the manner described in Section 3.2 to solve head 
movement imitation tasks (Demiris et al., 1997). In particular, we intend to study the task of robotic gaze 
following.  Gaze following is an important component of language acquisition: to learn words, a first step is to 
determine what the speaker is looking at, a problem solved by the human infant by about 1 year of age (Brooks & 
Meltzoff, 2002).  We hope to endow robots with a similar capability. 

Other work will focus on more complex imitation tasks using the HOAP-2 humanoid robot, which has 25 
degrees of freedom, including articulated limbs, hands, and a binocular head (Fig 8 (b)). Using the humanoid, we 
expect to be able to rigorous test the strengths and weaknesses of our probabilistic models in the context of a 
battery of tasks modeled after the progressive stages in imitative abilities seen in infants (see Section 2). 



 

 
Figure 8. Robotic Platforms for  testing Bayesian Imitation Models. (a) A binocular pan-tilt camera platform 
(“Biclops” ) from Metrica, Inc. (b) A miniature humanoid robot (HOAP-2) from Fujitsu Automation, Japan. Both 
robotic platforms are currently being used to test the Bayesian framework sketched in this chapter. 

3.5 Towards a Probabilistic Model for  Imitation in Infants 
The probabilistic framework sketched above can also be applied to better understand the stages of infant 

imitation learning described by Meltzoff and Moore. For example, in the case of facial imitation, the states could 
encode proprioceptive information resulting from facial actions such as tongue protrusion or at a more abstract 
level, “supramodal”  information about facial acts that is not modality-specific (visual, tactile, motor, etc.). 
Observed facial acts would then be transformed to goal states through a correspondence function, which has been 
hypothesized to be innate (Meltzoff, 1999). Such an approach is consistent with the proposal of Meltzoff and 
Moore that early facial imitation is based on active intermodal mapping (AIM) (Meltzoff & Moore, 1977, 1994, 
1997).  Figure 9 provides a conceptual schematic of the AIM hypothesis.  The key claim is that imitation is a 
matching-to-target process.  The active nature of the matching process is captured by the proprioceptive feedback 
loop.  The loop allows infants’  motor performance to be evaluated against the seen target and serves as a basis for 
correction.  One implementation of such a match-and-correction process is the Bayesian action selection method 
described above with both visual and proprioceptive information being converted to supramodal states. 

 
Figure 9. Meltzoff and Moore’s AIM model of facial imitation (from Meltzoff &  Moore, 1997). 

As a second example of the application of the probabilistic framework, consider imitation learning of actions of 
objects. In this case, the states to be encoded are the states of the object (“ joined together,”  “pulled apart,”  etc. for 
the dumbbell-shaped object mentioned above). The forward model to be used would presumably be one that has 
been learned from experience with similar objects (“objects that can be pulled apart” ). This, along with the learned 
priors for various actions, would allow appropriate actions to be selected based on the observed sequence of object 
states. 



 

Finally, consider the case where an infant learns from unsuccessful demonstrations by inferring the intention of a 
human demonstrator. In this case, forward models could be put to good use to infer intention. By using a forward 
model of a human manipulating an object, the consequences of attempted actions by the human demonstrator can 
be predicted. For example, in the case of the dumbbell-shaped object used by Meltzoff (1995), the learned forward 
model would predict that when a person is applying forces at the two ends in opposite directions (away from the 
center), there is a high probability for the state where the object has been “pulled apart”  into two halves. This state 
could in turn be adopted as the desired goal state and the appropriate action that maximizes the probability of 
achieving this state could be selected in the Bayesian manner described above.  

 

4    Prospects for  a Developmental Robotics 

Humans at birth do not have the full set of skills and behaviors exhibited by adults.  Human beings are not “ turn 
key”  systems that function perfectly out of the box.  There are at least four sources of behavioral change in human 
development:  (a) maturational changes in the sensory, motor, and cognitive system, (b) reinforcement learning, 
(c) independent invention and discovery, often called “ insight,”  and (d) imitative learning.  The first three have 
been widely celebrated:  maturation is discussed by neuoscientists; reinforcement learning by Skinner and 
generations of learning theorists; and independent invention and solitary discovery by Piaget and others.  The 
imitative competence of young infants has only recently been discovered, and its enormous impact on human 
development and learning only recently sketched (Meltzoff, 2002). Imitative learning is more flexible and 
responsive to cultural norms than maturation; it is safer for the child than Skinnerian trial-and-error learning; and it 
is faster than relying on Piagetian solitary discoveries.  These advantages of imitation learning apply equally well 
to robots and other autonomous agents. In particular, learning through imitation offers substantial benefits over 
other leading robotic learning methods (such as reinforcement learning) by (1) overcoming the need for a huge 
number of learning trials and (2) avoiding the need for risky and dangerous experimentation during learning. At 
the same time, unlike supervised learning methods, imitative learning does not require a human to program the 
exact motor signals needed to accomplish each task – the robot deduces these based only on observing a human or 
robotic demonstrator.  

In this chapter, we discussed some of the main results obtained from studies of imitation-based learning in 
infants. These results suggest a four stage progression of imitative learning abilities: (i) body babbling, (ii) 
imitation of body movements, (iii) imitation of actions on objects, and (iv) imitation based on inferring intentions 
of others. We formalized these stages within a probabilistic framework inspired by recent ideas from machine 
learning and provided an example demonstrating the application of Bayesian ideas to the imitation learning 
problem.  

The probabilistic approach is well-suited to imitation learning in real-world robotic environments which are 
noisy and uncertain. The success of recent approaches to robotic navigation and control can be attributed to the 
use of probabilistic techniques such as Kalman filtering and particle filtering for handling uncertainty (Blake, 
1992; Fox et al., 2000). Similarly, techniques based on statistical learning form the backbone of several recent 
successful computer vision systems for tracking and recognizing persons (for example, see Jojic & Frey, 2001). 
We are optimistic that a probabilistic approach to robotic imitation learning will offer many of the advantages of 
these preceding systems, including the ability to handle missing data, robustness to noise, ability to make 
predictions based on learned models, etc. We are currently testing our ideas on a binocular robotic head and a 
humanoid robot. 

The probabilistic approach also opens up the possibility of applying Bayesian methodologies such as 
manipulation of prior probabilities of task alternatives to obtain a deeper understanding of imitation in humans. 
Such manipulations have yielded valuable information regarding the type of priors and internal models that the 
adult human brain uses in perception (see chapters in (Rao et al., 2002)) and in motor learning (Wolpert et al., 
1995). We believe that the application of such methodology to imitation could shed new light on the problem of 
how infants acquire internal models of the people and things they encounter in the world. Conversely, we believe 
that biologically-inspired models will help shape the architecture and algorithms used to solve imitation-based 
learning problems in robots (cf. (Demiris et al., 1997; Hayes & Demiris, 1994; Schaal, 1999)). For example, 
Meltzoff and Moore's four stages of imitation in infants suggests a hierarchical approach to robotic imitation, 
starting from learning internal models of self motion to more sophisticated models of interactions with active 
behaving agents.  

Imitation is an especially fruitful domain for interdisciplinary collaboration between robotics and developmental 
science. It is a perceptual-motor activity of great adaptive value and a channel for learning that lends itself to 



 

computational modeling. Additionally, it presents an interesting challenge to robotics and offers an extremely 
versatile and flexible way to program robots.  Such interdisciplinary collaborations could eventually allow us to 
investigate interactions between young children and robots.  Do young children — prior to developing the 
prejudices and philosophies of adults — think that robots have subjective beliefs, desires, emotions, and 
intentions?  Experiments addressing such questions will not only provide new insights into how humans develop a 
“ theory of other minds,”  but at the same time, will allow us to use unprejudiced humans (children) as judges of 
robots in a new form of the celebrated “Turing test”  for autonomous machines. We therefore look forward to rich 
bi-directional benefits emerging from collaborations between developmental science and robotics in the coming 
years.   
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