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Abstract* 

We propose that the development of causality can be 
seen as a primitive for understanding and 
constructing complex systems either biological or 
artificial. Furthermore, we put forward a view of 
development in terms of the control of complexity. 
Although some of these elements are at the moment 
speculative or barely outlined, the theoretical test and 
verification are part of the ongoing research. On the 
artificial side, we will show how developmental 
principles are used within the architecture of a 
humanoid robot. The reference problem is the 
ontogenesis of sensori-motor coordination. Visual, 
acoustic and inertial cues constitute the sensory 
repertoire of the robot; computation, in the form of 
mappings, represents its brain activity. The 
continuous and meaningful adaptation during the 
natural interaction of the robot with the environment 
is one of the key aspects of the implementation. 
 
Keywords: computational neuroscience, learning, 
robotics. 

Introduction 

We advocated in the past that the principles of 
biological development are helpful to understand 
how to design and construct complex artificial 
systems [1-3]. Although, there might be a consensus 
on the “general principles” underlying this idea (as 
others worked pretty much along the same direction; 
for example [4-9]), we would like to put forward a 
tentative manifesto of what development should 
mean when applied to, for instance, humanoid robots. 
Many times developmental principles have been used 
as a source of inspiration but in a few cases with the 
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intent of building a truly adaptive system. Machine 
learning techniques, for example, have been 
employed in robotics in a few circumstances [10-13]. 
The usual procedure though was that of collecting the 
data, training the machine, and eventually controlling 
the robot. These three steps were performed off-line 
and partially by hand, no further adaptation was 
included. Our approach is different; it is ecological in 
the sense that what is significant is the robot and its 
environment; the robot has to gather its own training 
set to solve a particular task, and in doing so it shows 
adaptation. We consider a time-variant system, while 
the previous case can be regarded for any practical 
purpose as time-invariant. 
It is fair to say that we do not have any all-
encompassing solution already established, but rather 
we strive to provide principles, which can evolve into 
a theory of developing systems. This theory should 
tell us both how to understand and how to construct 
developing systems – i.e. inherently time-variant (and 
possibly complicated) artificial systems. Quartz et al. 
[14] pointed out that time-variance poses difficulties, 
far too often overlooked. 
The “understanding” part of this hypothetical theory 
should provide means to identify which elements are 
important to comprehend a biological system. This 
has been called the physiology problem: that is, 
describe how something works [15]. The more 
powerful “constructive” part should provide 
guidelines and design principles on how to build the 
particular system we investigate on (e.g. a humanoid 
robot). To address the physiology problem a 
developmental approach is advantageous. In fact, by 
studying how the system is constructed, we might be 
able to explain its functions as a whole, as well as, 
the relative role of its components. For the second 
problem, development is essential, because our very 
goal is to mimic it: i.e. to build a system able to grow 
and to show adaptation over a long time span (the 
whole life-cycle). 
Artificial intelligence, artificial life, as well as 
artificial vision, just to mention a few, have made 
clear that non-adaptive systems usually fail in the real 
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world [16], and real adaptation is difficult to obtain 
and control. What is missing? There are a few 
proposals [16-18]: we would like to add a new one: 
that the solution has to be found in development. A 
broad outline of the theoretical aspects addressed in 
the paper is sketched in figure 1 below. It reflects 
also the organization of the paper. 
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Figure 1: The theoretical aspects addressed in the 
paper: a general outline. 

Development itself 

Although a complete account of human sensori-
motor ontogenesis is outside the scope of this paper, 
we would like to introduce a few aspects that can be 
seen as the first step to theoretically explain 
development, and to investigate which are the 
applications to artificial systems. 
The main difference in terms of approach can be 
stated as: modularity versus integration. 
The critic we put forward to the modular approach, 
especially in engineering, is that to make the problem 
tractable, very often, complex systems are divided in 
small parts, which are analyzed in isolation. 
Complexity is addressed by breaking the system into 
components. This has been successful so far but it 
has also hit its own limits. Further it is not guaranteed 
that these parts are the correct representatives of the 
characteristics of the system. The separation of one 
part from another may have strong implications on 
how each part is built, functions and learns. For these 
reasons it is not clear whether the tendency of 
searching the smallest fundamental component would 
eventually converge. 
In robotics the same approach has been applied by 
designing, for instance, separated sensory processing 
modules (e.g. vision, audition, touch, etc.) and 
distinct behaviors (e.g. reaching, obstacle avoidance 
and so on). Most of the time large-scale system 
integration either failed or was successful at the 
expenses of generality and adaptation. 

A different approach is taken by biological systems. 
Newborns, for example, at birth are an already 
integrated system. Many “modules” are still non-
functional or they function differently from their 
“adult” counterpart: neural growth is not completed 
[19], motor control limited [20], but the sensorial, 
motor and cognitive abilities are nicely matched. A 
crude sensory system tailored to a rough motor 
controller. Further, the hypothetical sub-modules 
develop simultaneously and harmonically resulting in 
a system whose components always fit one to another 
during growth. Adaptation is in the very fabric of the 
system: we can observe the general tendency of a 
smooth shift from simpler to more complicated; as 
we will see this might be another key feature for 
stable adaptation. Examples are the newborn motor 
reflexes that although clearly not that much adaptive 
provide the simplest controller yet able to generate 
useful sensori-motor synergies. 
Newborns are maximally efficient in collecting data 
(making new experiences) and their behaviors are 
optimized for learning rather than simply for 
efficiency in absolute terms; even “negative” aspects 
such as noise contribute instead to the long-term 
efficiency by supporting the exploratory behaviors. 
Thus, developmental studies have the chance to 
provide both theoretical contributions to the 
understanding of time-variance in large-scale 
systems, and a more complete account on what living 
systems are made of. This alternative approach seeks 
for rules that govern the dynamics of the system at 
different levels [21], where not necessarily the 
system has to be decomposed in any particular way. 
At this point, also the word “development” needs 
some comments especially when compared to 
“learning”. As it will be clear in the next section, 
learning is intended as the acquisition of a particular 
skill, while development encompasses the optimal 
sequence of functional and structural changes timed 
to properly carry out adaptation. Learning and 
development thus run on different time scales [22] – 
and perhaps on more than two – spanning the 
continuum from less than a second to years. The 
reason to point out at the differences is that learning 
takes place within a context set up by development: 
i.e. what and how can be learnt is determined by the 
developmental stage. For example, adult level 
response to wide field moving stimuli – the Opto-
Kinetic Nystagmus (OKN) – is though to depend on 
optic flow processing. Atkinson and colleagues [23] 
have related the development of the response to the 
neural maturation of various cortical pathways 
responsible for dealing with motion information, and 
their interaction with subcortical nuclei. It is clear 
that the OKN could not develop before motion 
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processing. The OKN can be tuned only at a 
particular stage, when all its prerequisites are met. 
To get closer to the development of causality as a 
primitive, the next step is to try to reformulate 
development in a more computational framework; 
this can be done starting from machine learning 
theory and statistics. 

Complexity control as a model of development 

It has been recognized that learning from examples is 
an ill-posed problem [24, 25]. Recently a 
probabilistic-theoretical analysis formalized this 
problem, and we suggest here that it provides hints 
on the nature of development (as introduced in the 
previous section). This is true of course if we admit 
that a good part of learning can be subsumed under 
the function approximation problem1. The typical 
problem of learning from examples is, generally 
speaking, that of tuning the parameters of the 
approximator in order to get the output as close as 
possible to the examples. While this is sound, and 
would eventually work if we were provided with an 
infinite training set (in the limit), a more accurate 
analysis for a finite training set reveals a different 
story. In practice if we use a learner which has too 
many parameters to tune with respect to the number 
of training samples, the results is what is called 
“over-fitting”: that is, a very good approximation but 
a very poor generalization. Vice versa, being too 
cautious might lead to an over-smoothing: an 
inadequacy of the model to grasp the complexity of 
the problem. The central issue is thus that of 
balancing the model complexity in order to do what 
is not too bad. The theory, which formalizes this 
situation, is known as Statistical Learning Theory 
(SLT) [24, 26]. The main result of interest to us is the 
fact that learning in order to be stable must balance 
the complexity of the learning machine – structural 
risk minimization in the words of Vapnik [24], or 
practically speaking cross-validation. To be precise, 
although, we talk about parameters here, it has been 
shown that an adequate measure of complexity is not 
related to the actual number of parameters but rather 
to the shape of the approximator being used. In some 
cases the intuition is correct and the complexity is a 
function of the number of free parameters. 
Given SLT, how do we relate it to development? The 
fundamental idea is that complexity control is what 
development is all about. Neural processes, as 
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demonstrated. It is sufficient to note here that 
functions can represent any dynamical entity, 
including timing related learning or modifications 
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suggested in [27], come in two flavors: growing and 
pruning [18]. As two views originated from these 
different modes of controlling complexity, often they 
were at odd one to another [14]. SLT instead tells us 
that the two processes are equally necessary. A slight 
predominance should be attributed to growth because 
the quantity of data (experience of the system in the 
environment) builds up over time, and thus simpler 
models should be used at the beginning. A real 
growth is not strictly necessary – in biological 
systems – a recruitment process would do as well 
with new functional units connected during 
development. Starting from a psychological 
perspective, Turkewitz et al. [28] pointed out that the 
limitation of newborns’ sensori-motor abilities might 
be beneficial for learning – we explain this in terms 
of the control of complexity: it is better to start with a 
simpler system. 
The time scale issue raised in the previous section in 
distinguishing between learning and development fits 
this schema. Development is concerned specifically 
with the control of the complexity and the structure 
of the learner. Learning is the mere adaptation of the 
parameters irrespective of the structure itself. 
Learning can and must be fast to adapt to impelling 
exigencies –think about the amazing ability of 
biological systems to learn from a single example. 
This procedure alone though can be either unstable or 
prevent generalization. A slower data-dependent 
procedure is needed to tailor the structure of the 
learner to the environment. 
A more fundamental difference, and concurrently, a 
powerful constraint posed on the developing agent is 
that the training data does not come for free: 
gathering information has always a cost. To get 
representative data of the whole state space can take 
an infinitely long time (the time required is 
exponential in the number of dimensions). The agent 
cannot devote all its effort to exploration because 
otherwise no task would be ever achieved. This issue 
has been called the exploration-exploitation dilemma 
[29]. Any real learning system has to face this 
problem and adopt strategies to cope with it. It is also 
worth noting that for a real agent, the cost of failure 
might be very high and thus errors must be weighed 
accurately. The general pattern of development, 
“from simpler to more complex” now makes even 
more sense. We suggest that the initial sensori-motor 
coordination schemes, which are mostly reflex-like, 
might serve exactly this purpose: i.e. bootstrapping 
safely the system – an example is the generation of 
movement without exceeding the working ranges of 
the system (joint limits, energy consumption, etc). 
The role of the early reflexes is thus that of 
constraining exploration towards particular directions 
along the state space. 

LIRA-Lab
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It is clear that to put development in its “ecological” 
context shifts the problem towards that of collecting 
the training data. This is to say that we have to deal 
with action, and the very capacity to learn is that of 
finding representative data without incurring into 
severe penalties in terms of basic drives (e.g. feeding, 
mating, etc). 
Further, the way exploration is performed – the 
quality of training – depends strongly on how the 
system acts. Because of this also perception is 
doomed to be derived from actions. The capacity of 
categorization emerges out of the sensori-motor 
coordination patterns. Sensory processing alone does 
not make that much sense – action must be a prior of 
perception. 

The primacy of action 

The reason why this position is tenable comes from 
one of the most fascinating discoveries of the 
neurophysiology of the last decade: that is mirror 
neurons [30, 31]. A lot of discussion has originated 
from this finding, because it is thought to provide the 
missing link between action and perception. Mirror 
neurons are a class of neurons found in the monkey’s 
frontal cortex (area F5). A particular mirror neuron is 
activated both when the monkey executes an action 
and when it observes the same action performed by 
somebody else: hence the name mirror. Recently 
Fadiga et al. [31] provided evidences of the existence 
of a mirror system in humans. 
The importance of the discovery lies in the possibility 
to relate mirror neurons to gesture recognition (e.g. 
grasping, tearing, holding, etc), language [32], and 
imitation learning [33]. Roboticists too were attracted 
by this possibility [34]. 
Another older but important discovery is related to 
another class of neurons in area F5 called canonical 
[35]. They are what might be called the coding of 
Gibsonian affordances in neural terms. These 
neurons are responsive to action execution (grasping 
for instance) but also when the monkey sees the 
“graspable” object. There is an explicit coding of 
how a given object can be grasped or manipulated: 
e.g. area F5 distinguishes between a precision grip 
and a full palm grip. 
To frame these discoveries, a few complementary 
neural pathways need to be described. Area F5 is 
within what is called the dorsal pathway. The link 
from vision to action and more cognitive functions is 
believed to split as early as in the primary visual 
cortex (V1) into two complementary streams [36]. 
The first one is called the dorsal stream and it is 
devoted to action execution and the visuo to motor 
transformations needed to perform object-oriented 
movements; the second one – the ventral stream – 

takes care of providing the perceptual judgment 
correlated with the shape of the object. Besides being 
segregated, of course the two streams do interact. 
Numerous studies (for a review see [37]) have shown 
an interesting interaction of perceptual quantities 
(e.g. size) with action execution (e.g. grasping). That 
is, perception might be bound to action and vice 
versa, cognition sometimes helps action. That the 
dorsal stream goes further than merely transforming 
coordinate reference frames, comes also from a 
deficit called ideomotor apraxia, which follows 
parietal lesions. These patients have difficulty in 
executing gestures, but interestingly also in 
recognizing the same gestures when performed by 
others. It is noteworthy that the same principles are 
not only involved in grasping and reaching actions, 
but rather, they are though to be relevant also for 
highly cognitive abilities such as language (Fadiga 
2001, personal communication). 
To relate this description back to development we 
need to analyze what is learnable and which 
conditions are required for learning to take place. The 
advantage of this line of reasoning is that we may 
consider only those models where temporal 
consistency is preserved. If we assume certain skills 
and motor control abilities at a given age, we may 
only employ those to further develop new modules. 
Automatically, we rule out impossible solutions 
where a particular feature is used before being 
learned. For example, without any further assumption 
mirror neurons are not learnable. They are at the 
same time needed for imitation, and vice versa, 
imitation is required to build a mirror system (a 
solution is proposed in the following section). 
On a more practical basis, what we propose is to put 
action at the foundation of more cognitive functions, 
such as categorization. Developmentally, if action 
has to be a prerequisite of perception, we should 
observe a different developmental progression of the 
dorsal versus the ventral stream. This question has 
been investigated, for example, by Kovacs [38] who 
provided supporting evidence in this direction. 
Wexler et al. [39] addressed a similar issue in human 
behavior and they have recently shown how self-
motion can influence perception. From the 
evolutionary perspective this whole schema makes 
sense, since it is likely that cognition emerged on top 
of a preexisting motor control substratum. 
In robotics, theories where action had a sort of 
primacy have been already proposed in the past; for 
example the active vision or purposive vision 
paradigms [40, 41]. The critic we move to those 
proposals (although we generally agree with them) is 
that action was eventually exploited a little. It was 
never a fundamental component in the sense we are 
proposing here. Other approaches where a model of, 
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for instance, mirror neurons has been attempted [34], 
have neglected the learning aspects and the learn-act-
perceive (in random order) loop that we argue it is 
fundamental. Yet this is not the most fundamental 
element we need to “close the loop”. 

Looking for primitives 

To recap we proposed that: i) development can be 
modeled as complexity control, and linked to action 
by the necessity to develop the capacity to collect 
“good data” while interacting with the environment, 
and ii) the ability to act in the real world assumes a 
pivotal role for the acquisition of complex cognitive 
abilities. 
Although not immediately obvious the key aspect of 
learning and development has to be found in 
causality. Causality has to be intended as the ability 
to relate action execution – as determined by the 
efferent copy and sensory afferences relative to the 
movement (visual, kinesthetic, etc.) – to its sensorial 
consequences. To put things together either 
biological or artificial systems have to use an at least 
very basic “understanding” of causality. 
If we examine, simple motor control abilities, where, 
qualitatively speaking, coordinate transformations 
regulates the behavior [42], we find that all what is 
needed for learning is to causally relate the relevant 
quantities. Behaviorally, Von Hofsten and colleagues 
[43], for example, have shown that the coordination 
of eye and head smooth pursuit develops by first 
synchronizing the movements, and subsequently, by 
tuning the amplitudes. This can be interpreted in 
terms of causality as the necessity to learn the correct 
relationship between the causes and the effects – in 
engineering terms this is called credit assignment. 
The first step (i.e. synchronization) is motivated by 
the fact that the newborn has to firstly determine 
when there is a causal relationship between events. In 
the eye-head coordination example cited above this 
means that he/she needs to relate the efferent copy of 
the control commands to the displacement of the 
target during pursuit due to the self-generated 
movement. Amplitude tuning can be carried out later 
and it is most likely error driven: e.g. the tracking 
error can be used to measure the performance and 
tune the pursuit gain. 
Beside motor control, we can show that by exploiting 
a basic understanding of causality we can 
conceptually solve other learning problems such as 
categorization or build a mirror representation. The 
first problem can be tackled by observing that objects 
can be classified pragmatically on the basis of the 
affordances as previously mentioned. Affordances 
are the characteristics of the object available for 
exploitation by action. For example, a glass has the 

grasping, pouring water into, holding, breaking, and 
so on affordances. In order to learn affordances, 
action is necessary. Learning signal are measured 
directly at the sensory level: for example, grasping is 
successful if the baby acquires possession of the 
object. An object, on this basis is defined as the 
spatio-temporal boundaries of the sensory and motor 
information due to the particular action being 
performed (see figure 2). 
 

 

 

Figure 2: A cartoon representation of the meaning of 
affordances. The action system defines the object (a 
cup) in terms of the specific actions that can be 
applied to it. 

 
Further, this definition avoids the problem of 
defining what criteria have to be used to separate an 
object from other parts of the physical world, and as a 
consequence, it tells us that explicit segmentation 
comes as a consequence rather than being a 
prerequisite for categorization. The figure-ground 
segmentation problem must not be addressed first, 
but rather it is an emergent property of 
categorization. Sensory data subsets that participate 
in the definition of this “action to effects” mapping 
are the “object”; the remaining is the background. 
Though an inversion can be an awkward procedure, 
in theory, the analysis of the effect allows recovering 
the action to get that particular effect. A decision, 
recognition, and execution process can be 
implemented (e.g. if A produces B then to get B just 
do A). 
At this point mirror neurons come “simply” as an 
additional association of two possible causes 
generating the same consequence: i.e. either the 
monkey or the experimenter performs the action but 
the consequence is the same if expressed in terms of 
goal (e.g a “small” object is lifted therefore a pinch 
grasp was used). In fact, in monkeys, mirror neurons 
fire only when the goal is explicit. Mimicking the 
actual action does not make the mirror neurons to 
respond. 
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Finally, a new consequence for interpreting the 
driving forces behind development emerges: the 
progression of the ability to detect causally related 
events becomes itself the driving force motivating the 
learning of more and more complex skills. A link of 
causality to the basic “drives” of the agent is realized 
at this point. Rephrasing the grasping example, 
getting possession of the object is reinforced because 
it is motivationally pleasant. Most of the difficulty of 
the task is though in the understanding of causality. 
The role of the motivations appears to be 
conceptually simpler. 
By rethinking Piaget [44], where he described the 
ontogenesis of causal understanding, we can focus on 
the development of causality as the most difficult of 
our mental tasks. If we solve it, we have grasped a 
powerful principle to guide a stable learning. This 
would be the building block of a system, which is not 
limited to any particular task, but open to progressive 
learning. 
 

 

Figure 3: The Babybot. See text for details. 

A practical implementation 

As a first step for our theories of development we 
designed and constructed a test bed shaped as a 
humanoid robotic system: Babybot [45]. Babybot 
consists of a robot head, arm, and torso for a total of 
twelve degrees of freedom (see figure 3). The sensory 
system is composed of cameras, microphones, an 

inertial device and motor encoders. Babybot’s vision 
is space variant: the robot observes the world through 
a high-resolution fovea and a progressively lower 
resolution periphery [46, 47]. Sound is acquired by 
means of two microphones, and plastic earlobes 
provide directionality. The inertial sensors mimic the 
corresponding biological vestibular system and the 
motor encoders give a sort of kinesthetic sensation to 
the robot. Actuators are torque controlled whenever 
relevant to the robot behavior to simulate the low-
stiffness characteristics of muscles and to provide a 
natural mechanical compliance. Learning is carried 
out by growing neural networks as described in [48]. 
The reference problem we investigated on Babybot 
has been that of sensori-motor coordination, and in 
particular orienting and reaching towards an object 
identified because of vision and/or audition. 

Learning to act 

Babybot is capable of learning coordinate movements 
starting from an initial stage where the control is 
mostly reflex driven. The initial reflexes here provide 
a way to initially direct learning along a particular 
route. Examples are an initial tendency to perform 
small saccades although embedded in a strong noise, 
and a complex synergy mimicking an early human 
reflex called Asymmetric Tonic Neck Reflex [45]. 
The exploration of the environment, besides being 
initiated from the very beginning of the robot’s “life”, 
is driven by a combination of the reflexes with an 
endogenous noise generation process. The latter is 
meant to mimic all the limitations and the defective 
control present at birth because of uncompleted 
neuronal growth (e.g. myelination) or excessive 
connectivity [19]. 
The specific sequence of developmental events is 
roughly similar to that observed by Von Hofsten and 
colleagues [49] in humans. During the first stages 
only eye movements are attempted and an 
appropriate map is learned which causes the robot to 
improve its gazing performance. Concurrently, self or 
externally generated movements contribute in 
stimulating the vestibular system. Another neural 
network, together with basic visual processing 
abilities learn how to tune the robot’s vestibulo-
ocular reflex (VOR) [50]. In a successive stage, head 
movements are initiated, and a new map connects 
them with the VOR and the already formed eye 
movements. This developmental trend is beneficial to 
the robot for at least two reasons: i) learning can 
address one problem at the time, and consequently 
the correct explorative strategy can be applied 
without disturbing the functioning of other modules; 
ii) the remaining degrees of freedom are coordinated 
simply by stereotyped reflexes that although non-
adaptive provide a way to keep the system in a status 
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of ongoing exploration. During a successive stage 
Babybot learns another map to convert gaze direction 
into reaching commands [45]. The control schema of 
the arm is biologically inspired from the theory of 
Bizzi and colleagues [51, 52]. More maps, with the 
help of vision, can be learned: i) to control the head 
movements in order to attend an auditory stimulus; ii) 
to align auditory and visual map of space in order to 
integrate, when feasible, the sensory cues. 
It is worth stressing that learning here is continuously 
carried out on-line – this is not commonly the case in 
robotics. We did not distinguish between the training 
and testing stage. The robot explores and acts 
(exploits) at the same time. 
Figure 4 shows the relationships and time sequence 
of learning events of the Babybot. As an example of 
the behavior of the algorithms employed within the 
Babybot’s architecture, figure 5 shows the acquisition 
of the movement of the head to attend an acoustic 
stimulus. In particular, the mean and standard 
deviation of the error are shown (both computed over 
a moving window of 150 samples). After the 
activation of the learning procedure (vertical solid 
line) a sharp increase of the motor performance can 
be noticed. The topmost panel shows the map as 
obtained at the end of the learning phase: the output 
is the required saccadic command, the input the 
initial error in terms of the two sensory cues used to 
localize a sound source in space. The first is the 
interaural time difference (ITD) and can be 
associated to the position of the target along the 
horizontal direction. The second is the interaural 
level difference (ILD) and under certain conditions 
measures the location of the sound source in the 
vertical direction. Note, as in figure 5, vectors point 
toward the origin (0,0) of the map. This is expected 
since the movement has to zero the error between the 
gaze and the target. Finally figure 6 presents the 
results of the tuning of the maps used to generate 
saccades by applying a variable resolution schema. In 
this case, we tested the effect of visual resolution in 
learning to perform saccadic eye movements. In 
particular we compared the learning performance in 
two conditions. In the first the resolution of the retina 
is maximum and does not vary with time. In the 
second we simulated the maturation of the retina and 
the corresponding increase of resolution with time. 
Although eventually the two maps should converge 
to the same final result, it is easy to see that the time-
varying resolution case converges much faster to a 
usable map (learning is faster). The relative error 
between the two is more than 50% of the total 
learning for the period tested. 

Conclusions 

This paper dealt with the problem of defining the 
foundations of a theory that should encompass both 
the design and understanding of complex systems. 
The pillars of the theory are to be found in 
development. We showed that learning theory could 
describe (by means of the concept of complexity 
control) one of the goals of a developing agent – i.e. 
stable and effective adaptation. We argued also that 
learning in the real world could only be obtained if a 
further optimization of resource expenditure is 
carried out in order to gather “good” training data. It 
is clear that the training data has to be collected by 
means of actions. As soon as action becomes the 
concern, we are forced to consider the perceptual 
component as bounded to action itself. We believe 
that this provides a new vantage point to interpret 
difficult problems both in neuroscience and robotics. 
By framing categorization and action under the same 
explanatory principle, we expect to get new 
“algorithms” to solve old problems such as those 
found in artificial vision. At least, this is now 
completely formulated in an ecological context: the 
robot within its environment. Yet to solve the 
learning problems, we have to resort to an even more 
basic principle that is causality. Goal directness and 
causality are shown to conceptually solve learning in 
a general sense (not in the sense of providing a new 
algorithm). Object recognition, mirror neurons, 
reaching and motor control learning problems 
become all subsumed under the general problem of 
understanding cause-effect relationships. The 
development of the “understanding” of causality can 
now be seen as the driving force of stable learning. 
Finally, we presented the initial implementation of 
the theory on a humanoid robotic platform. We have 
shown that i) the robot successfully employs some 
developmental principles to learn sensori-motor 
coordination; ii) learning is completely carried out 
on-line; iii) the system is already integrated. Clearly 
motor control is only the very first problem to be 
solved. 
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Figure 5: Example of learning curves relative to the 
acquisition of the controller of the head. 
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Figure 6: Variable vs. constant resolution map. 
From top to bottom: i) the motor error measured at 
the end of the saccade (in radians); ii) the resolution 

of the map over time (expressed in pixels); the 
maximum resolution is 1 pixel; iii) The relative 

error between the variable and constant resolution 
map. 
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