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1 IntroductionTo be truly useful, robots must be adaptive. They should have a collection of basic abilitiesthat can be brought to bear in tackling a variety of tasks in a wide range of environments.These fundamental abilities might include navigation to a goal location, obstacle avoidance,object recognition, and object manipulation. However, to date, this desired level of adapt-ability has not been realized. Instead, robots have primarily been successful when deployedin constrained environments to perform deterministic tasks. The result has been that robotshave had very limited, task-speci�c competencies which do not generalize to new situations.The main advantage of imposing strict constraints within a robotic domain is to enablethe use of a predictive model. This implies that a particular set of sensor readings can beaccurately translated into a representation of the current state of the world. Furthermore,the result of doing a particular action can be known in advance of actually executing it. Thisallows a robot to plan its behavior.Even working within these simpli�ed conditions, a third of the cost of an industrial roboticsystem is its programming [43]. Yet, the most exciting potential applications involve muchmore complex and dynamic environments than have typically been attempted so far (forexample outdoor, subsea, and other planet environments). We should expect that the burdenon the human designer of control software will only increase as we try to move towards thesemore advanced applications. One hope is that the uncertainty and variability that occurin physical sensors and actuators might lessen as our hardware technology improves, thusalleviating the programming problems that arise. However, some experiments have shownthat using higher resolution sensors introduces more variation, not less as one might expect[42].The use of evolutionary computation is one of the most promising avenues for overcomingthe bottleneck of the human engineer in the robot design process. In fact, it has been proposedthat an evolutionary approach to the design of robots will eventually superceed design byhand [5]. The fundamental idea of this approach is to maintain a population of possible robotcontrol architectures. The initial population is typically a collection of randomly con�guredarchitectures. Each architecture is evaluated according to an objective �tness measure andthe better the robot performs using that architecture the more o�spring it is allowed toproduce in the next generation of the population. Over a number of generations, the �tnessof the population increases and successful architectures are created. A human engineer mustdevelop the evolutionary framework, but the actual design of the robotic systems is thenautomatically generated.The most accurate �tness measure for a potential architecture is to allow it to control theactual robot operating in the physical world. Yet this can be a painstakingly slow process.Consider that each action can require a second of time to execute and that each �tnessmeasure typically involves hundreds of actions. With a sizable population, the processing of asingle generation may require an hour's time. When hundreds of generations are necessary toachieve reasonable results, one run of the evolutionary process may require several days. Twotechniques have been employed to speed up the evolutionary process: the use of simulationsfor faster �tness evaluations and the seeding of the initial population with domain knowledgeto decrease the overall number of generations required.A central question when adopting the evolutionary computation approach is: What type2
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until best individual is good enoughFigure 1: General Evolutionary Computation Algorithmof robot control architecture should be evolved? There are a number of options: high-levelcode [40], machine code [37], parameter settings for a hand-designed system [39], situation-action rules [7], and entire rule-based strategies [15]. Perhaps the most innovative direction,however, is the combination of evolutionary computation with arti�cial neural networks.Neural networks allow the evolutionary process to operate at a very low level, placing minimalconstraints on the possible solutions. When a higher-level architecture is used designer biasis more prevalent [5]. In addition, neural networks are robust, noise tolerant and can be usedfor local learning starting from the points discovered by the global evolutionary process [36].The remainder of this chapter is organized as follows. In Section 2, further background isgiven on evolutionary computation and neural networks. In Section 3, some speci�c researchprojects combining evolutionary computation and neural networks to control robots are ex-amined. In Section 4, the current debate on the role of simulations is reviewed. In Section 5,the ways in which domain knowledge has been incorporated in evolutionary robotic systemsis discussed. Finally in Section 6, speculations about future trends in robotics are explored.2 Background2.1 Evolutionary ComputationThe majority of the current implementations of evolutionary computation descend from threebranches of study: genetic algorithms, evolutionary programming, and evolution strategies[1]. Of these, the genetic algorithm approach developed by Holland, is the basis for mostevolutionary robotics applications [22, 32]. Other related techniques that arose out of geneticalgorithms are classi�er systems [13] and genetic programming [26].All evolutionary computation methods attempt to mimic the process of natural evolution.The general structure of an evolutionary computation algorithm is shown in Figure 1 anddepends on three operators: selection, recombination, and mutation. Selection is usuallyimplemented as a probabilistic process using the relative �tness of an individual to determineits selection probability. In this way, �tter individuals are more likely to participate inproducing the next generation. Recombination is the means of mixing the genetic material3



of two parents to produce an o�spring. Mutation creates random alterations in the geneticmaterial of an o�spring.Consider the e�ects of each of these operators. Selection alone tends to �ll the populationwith copies of the best individual from the initial population. Mutation alone induces a ran-dom walk through the search space. Selection and mutation (without recombination) createsa parallel, noise-tolerant, hill-climbing search. Selection and recombination (without muta-tion) tends to cause the process to converge on good, but sub-optimal solutions. Togetherthe three operators form a exible, robust, global search method.2.2 Arti�cial Neural NetworksOne of the most common arti�cial neural architectures is a layered, feedforward network.Each unit in one layer is linked by weighted connections to each unit in the next layer.Various amount of activation are applied to the units in the initial layer, representing theinput to the network. This activation then ows across the connections to higher layers, withthe weights mediating the amount of activation that is passed on to successive units. The�nal pattern of activation present on the last layer is considered to be the output produced.A supervised learning algorithm such as back-propagation can be repeatedly applied toadjust the weights of a network enabling it to learn to associate arbitrary pairs of input andoutput patterns [41]. If the input pattern is interpreted as representing sensory informationand the output pattern as an action, a network can be used to control a robot. As a resultof this training process, the network learns to recode the incoming sensory patterns intonew patterns at the intermediate layers so that the appropriate output action is produced.These intermediate layers are termed hidden because they do not have direct access to theenvironment.One drawback of the standard feedforward architecture is that it is di�cult to representtime in an e�cient manner. Certainly for controlling a robot timing information is crucial.A common method of accommodating time has been to represent time as space. This entailsextending the input layer to act as a bu�er of the past. A better approach is to deal withtime implicitly rather than explicitly by using a recurrent architecture. One such recurrentarchitecture, called an Elman network, allows every unit in a hidden layer to have weightedconnections to every other unit in the layer, including itself [9]. This gives the network amemory of its own internal recodings of its past sensory inputs. A more radical recurrentarchitecture abandons a layered topology and allows units to connect to one another inarbitrary ways.In Section 3, we will see examples of feedforward, Elman, and arbitrary network archi-tectures being employed to control robots.2.3 Combining Evolutionary Computation and Arti�cial Neural NetworksIn applying evolutionary computation to neural networks for the purpose of robot control,two main methods have been used. The �rst method is to �x the topology of a networkarchitecture and to then use evolutionary computation to determine the weights. Unlikeback-propagation, which is a gradient descent procedure for �nding an appropriate set ofweights, evolutionary computation should avoid getting stuck in local minima. The secondmethod is to allow evolutionary computation to actually determine aspects of the network's4



topology. The weights may then be set through a separate learning algorithm or can also bedetermined by evolutionary computation.In Section 3, we will see examples of both of these approaches, evolved weights and evolvedtopologies, being used to develop robot controllers.3 Examples of Evolved Neural Network Robot ControllersConducting evolution on physical robots is a time consuming process, and as a result mostof the applications attempted so far have been fairly modest in scope. Often, for reasons ofpracticality, the robots used are quite small. This allows the task environment to be set upon a desktop with the robot tethered to a computer for data collection and tethered to anelectrical outlet for power. One popular platform for conducting evolutionary experiments isthe Khepera robot [33]. Khepera is circular in shape and miniature (diameter 55 mm, height30 mm, and weight 70g). It has two DC motors which power two wheels. It's standardsensory apparatus consists of eight infra-red proximity sensors.Of the �ve applications described below, the Khepera was used in two: battery rechargingand trash collection. Another small robot, called the Gantry, was used for locating visualtargets. A miniature car, called carbot, was used for light seeking and avoiding. Only thedriving task involves a full size robot, a car called NAVLAB, which is part of an ongoingproject at Carneigie Mellon University [38, 25].3.1 Battery Recharging [12]The environment was an empty rectangular arena with a gray oor. A light emitter was placedover one corner, and under this light a circular patch of the oor was painted black. Thisrepresented the battery recharging area. When the robot happened to pass over this blackarea its virtual battery would be instantly recharged. The Khepera robot was equipped withsome additional sensors for this task. First it had three light sensors, two of which gatheredambient light, and one which pointed down at the oor. Second it had a virtual battery levelsensor.The goal of the evolutionary process was to determine an appropriate set of weights fora �xed Elman-style recurrent network with twelve input units for the sensors, �ve hiddenunits, and two output units for the motors. The process was run continuously for ten dayswith each generation lasting approximately three quarters of an hour.Each individual set of weights was evaluated by a very simple �tness function that con-sisted of two components: one to maximize speed and the other to avoid the walls. Whenthe robot was in the recharging area, �tness was de�ned to be 0. Notice that there is noexplicit reward for recharging the battery; in fact in terms of direct �tness it is detrimentalto spend time in the recharging area. However, there is an implicit bene�t to recharging. Afully charged battery allowed the robot to move for 50 time steps, and each individual wasallowed an upper limit of 150 time steps for evaluation. Therefore by recharging the battery,the robot could gain more time to accumulate �tness.Analysis of the resulting behavior revealed that the robot exhibited very di�erent strate-gies depending on its battery level. When the battery level dropped to about one third fullcharge, the robot began executing a trajectory that led it to the recharging area. Otherwise,5



it moved at nearly full speed along a slightly bended trajectory that avoided the rechargingarea.Although a very general �tness function was used, the evolved robot controller was ableto locate the battery recharging area and to instigate timely homing maneuvers when thebattery level was low. To extend this generality even further, Floreano and Mondada suggestthat it would be interesting to redo this experiment but eliminate the �tness function entirelyand simply select those individuals that live longer. This would make the arti�cial evolutionprocess more similar to natural evolution.3.2 Trash Collection [35]In order to pickup trash, the Khepera robot was equipped with a gripper module. Theenvironment was a rectangular arena containing �ve pieces of randomly distributed trash(white cardboard cylinders). The robot's task was to �nd these targets, pick them up, carrythem to the boundary of the arena, and drop them outside.Nol� compared �ve di�erent architectures, the best of which was able to determine howto modularize the task. It was a two-layer feedforward network where the value of each motoroutput depended on a competition between two separate modules. The number of availablemodules was �xed at two per output node, but the interactions between the modules wasdetermined by the adapted weights.The �tness measure primarily depended on how many targets were successfully releasedoutside the arena. To help bootstrap the process, the �tness measure also included a com-ponent to reward a robot's ability to simply pickup targets. It proved di�cult for the robotto learn how to react to new targets when it was already carrying a target. To alleviatethis problem, the training experience was manipulated to make this type of occurrence morefrequent.During the training process, the controllers were evaluated in a simulator. In spite ofthis, each evolution run still required approximately ten hours. After training was complete,the resulting control systems were downloaded into the physical robot and tested in the realenvironment.To succeed at this task, the ability to distinguish between walls and targets is of crucialimportance. Some errors made by the robots revealed that this was not a simple distinction,such as attempting to grasp walls or releasing a target over another target. The emergentmodular architecture created modules speci�cally tuned to making this distinction underconfusing sensory situations. The capacity to produce sharp switches in strategy in responseto �ne-grained sensory di�erences is a key to complex behavior.3.3 Locating Visual Targets [6]Several visual tasks were tried, including locating a large static target, locating a smallerstatic target, tracking a moving target, and locating a triangle target in the presence of acompeting rectangle target. For these experiments a specialized piece of robotic equipmentwas developed called the Gantry robot. Instead of wheels, the robot is suspended from agantry frame that allows translational movement in the X and Y directions. The robot is150mm in diameter and can rotate. It is equipped with a camera pointed down at a mirrorwhich is inclined at 45 degrees as well as several bumper sensors.6



In this case, the evolutionary algorithm searched for both a network architecture and avisual morphology. Each network had a �xed number of input nodes (for sensors) and outputnodes (for motors), but the number of hidden nodes and the number and type of connections(either excitatory or inhibitory) was variable. Connections were allowed to be recurrentbetween any layer. Furthermore, rather than feeding a raw camera image to the controller,they allowed the method of sampling this image to be evolved along with the network. Theyachieved this by designating a set of possible receptive �elds within the image.The visual tasks involved �nding a light colored target within the dark colored envi-ronment. The �tness measure was a function of the distance of the robot from the desiredtarget|the closer the robot to the target the higher its �tness. For each possible architectureand visual morphology, the robot was given four trials starting from the same position butusing di�erent orientations. The �nal �tness was the worst score from these four trials. Thisallowed them to terminate trials as soon as they bettered a previous trial and thus improvedthe evaluation time.Starting the evolutionary process from initially random populations proved to be tooslow. Instead they selected one of the members of this initial random population that dis-played "interesting" behavior and then cloned it to create a new population. Working with aconverged population rather than a random population has been termed Species AdaptationGenetic Algorithm or SAGA [18]. From this starting point, the evolution run was able todevelop good solutions within 10 to 15 generations with each generation taking about oneand a half hours.First the robot was evolved to successfully locate large (150cm wide) static targets. The�nal population from this experiment was used as the starting point for the next experimentof locating smaller (22cm wide) static targets. In less than 10 generations the populationadapted successfully to the harder task. Again his new population was recycled and usedas the starting point for the even harder task of tracking a moving target. Working in thisincremental fashion it should be possible to gradually build up quite complex behaviors (seealso [14]). Also allowing the morphology of the robot to be developed along with the controllermay simplify the task solution considerably.3.4 Seeking and Avoiding Light [29]Carbot is a modi�ed toy car which is approximately 15cm wide and 23cm long and is equippedwith two light sensors and several bumper sensors. It was placed in a rectangular arena witha light in one corner. Its task was to constantly keep moving, avoid the walls, and respondappropriately to a light goal. When the goal was positive, carbot had to seek out the light untila maximum light reading was obtained. Once this was accomplished the goal automaticallyswitched to a negative value, indicating that carbot had to avoid the light until a minimumlight reading was obtained. The goal varied in this periodic manner throughout the task,seeking was immediately followed by avoiding and so on.A local and a global method of reinforcement learning were compared for training carbotat this task|a special form of back-propagaion and an evolutionary algorithm. The topologyof the network was �xed to be an Elman network with seven inputs for the sensors and goal,�ve hidden units, and four output units for the motor settings. The aim of both methods wasto �nd an appropriate set of weights. The adaptation process was conducted on a simulation7



and the best architectures were tested on the actual robot.Statistical analyses revealed several quantitative di�erences between the two learningmethods. The back-propagation algorithm out-performed the evolutionary algorithm in theoriginal task. However, the evolutionary algorithm out-performed the back-propagantion al-gorithm when the task di�culty was increased either by removing the explicit goal (but keep-ing the periodic structure) or by removing immediate reinforcement feedback. Perhaps evenmore interesting were the qualitative di�erences in the behaviors produced by the two meth-ods. Being a local method, back-propagation was more sensitive to the moment-to-momentchanges in the environment and thus used the explicit goals to develop unique strategiestuned to each goal. In fact when no explicit goal was present, back-propagation trainednetworks sometimes created their own goal-like units in the hidden layer. In comparison,the evolutionary algorithm tended to develop a single overall strategy that was applicableto both goals. More importantly, the evolutionary algorithm's ability to �nd good strategieswas quite robust across the experimental variations.The respective strengths and weaknesses of these two methods are clearly complementary,suggesting that some hybrid of the two could be the most e�ective method. Because theevolutionary algorithm globally samples the entire space of alternative solutions while back-propagation locally searches the immediate neighborhood of a solution, the most straight-forward form of hybrid would be to allow the evolutionary algorithm to �nd a good startingpoint in the weight space and then use back-propagation to do the �ne tuning. As in nature,the global evolutionary method can determine a good gross solution which the local learningmethod can then adjust to the current environmental conditions.3.5 Driving [3]NAVLAB is an autonomous land vehicle that has been operated in a wide variety of domainsincluding dirt roads, bike paths, two-lane suburban neighborhood streets, and divided high-ways. A NAVLAB controller must determine an appropriate steering angle when given avideo image from a camera mounted on the front of the car. Unlike the previous tasks, forthis task there is a clear "right" answer for every situation as determined by human drivers.A number of di�erent network architectures have been explored for solving this drivingtask, the most successful of which is a three-layer, feedforward topology. It has a 2-D inputretina for the video images, a small hidden layer, and a gaussian representation of the steeringangle across thirty output units ranging from "sharp left" to "straight ahead" to "sharpright". Previously back-propagation had been used to determine the weights for these networkcontrollers. Baluja set out to discover whether evolutionary computation could develop bettercontrollers for this task.Suppose that a "maximal" network describes the maximum connectivity of the networksto be evolved. Then through evolution, di�erent topologies can be tested by selecting whichof these possible connections to enable. If a connection is present, then a weight for it isdetermined as well. The maximal network for these experiments contained a 15x16 inputretina fully connected to a �ve unit hidden layer fully connected to a thirty unit output layer,all strictly feedforward.In order to reduce search times, Baluja created a novel evolutionary method calledPopulation-Based Incremental Learning (PBIL). This algorithm requires that individuals8



in the population be represented with a binary alphabet (network weights can be representedas binary numbers if restricted to a range of values). The goal of PBIL is to produce areal-valued probability vector which can be considered a prototype for highly �t individualsin the population. By sampling this single probability vector an entire population can bestochastically produced and then tested. Based on the test results the values are adjusted topush the probability vector towards the best individual and away from the worst individual.In addition, a mutation operator is used to update the probability vector directly, by shiftingeach value a small positive or negative amount. Unlike a genetic algorithm, PBIL does notuse any recombination operator.To test possible networks for the driving task, a training set of 1000 images and correctsteering angles were collected and saved. From this set, 100 examples are randomly selectedfor each network evaluation. The network which obtained the lowest error was designatedbest for that generation and the network with the highest error the worst.The �nal networks evolved using the PBIL method kept only about half of the possibleconnections allowed in the maximal network. When compared with maximal networks trainedwith back-propagation, the PBIL networks showed a 13% reduction in error. Thus PBILproduced more space e�cient and more accurate controllers. However this gain has a cost; tocomplete an entire PBIL run requires about an hour while a back-propagation run requiresonly a few minutes of processing time.3.6 Summary of ExamplesWith the battery recharging task, Floreano and Mondada demonstrated that interesting,complex behavior can be obtained without an overly explicit �tness function. They furthersuggested that rather than employing a human engineered measure of some kind, ultimatelythe best measure may be the most general one|survival of the �ttest.In contrast to this call for more implicit �tness measures, Harvey, Husbands, and Cli�argued that complex behavior may best be obtained through a set of well designed incremen-tally harder �tness tests. Using related visual location tasks, they showed that by beginningeach evolution run from a converged population rather than a random one, a faster morefocused exploration was produced.Another important aspect of Harvey, Husbands, and Cli�'s experiments was that thevisual morphology of the robot was evolved along with the controller. Because the humansensory apparatus is quite di�erent from a robot's sensory apparatus, the way in whicha human might consider processing a visual image will probably not translate well into arobot. Instead, by allowing the evolutionary process to operate on the sensory apparatus, amore e�cient robot-based solution can emerge.A similar conclusion was drawn by Nol� with respect to modularization. Through acomparison of a number of network architectures for a trash collection task, Nol� found thatproviding a network with modularization options was extremely bene�cial. Again because ofthe di�erences between humans and robots in sensory capabilities, the way in which a humanmight subdivide a task may not translate well into a robot. Allowing the evolutionary processto consider how to break up a task can lead to simpler robot-centered solutions.In the light seeking and avoiding task, Meeden demonstrated that an evolutionary algo-rithm is a robust method for determining a good gross solution to a robot control problem.9



She suggested that such a solution can be improved and �ne tuned through additional train-ing with a local learning method such as back-propagation. A hybrid of this kind can berobust across large environmental changes and yet sensitive to subtle features.Finally in Baluja's studies, a fast, new evolutionary computation method called PBIL wasemployed to create controllers for driving. Both the topology and the weights of the networkswere determined by the evolutionary process. The results demonstrated that automaticallydesigned controllers out-performed hand-designed controllers.Some questions arise from these studies. How large a role should the human designer playin shaping the robot's behavior through the �tness function? Should our models of evolutiontry to be more true to natural evolution? Or should we as engineers try to inuence theevolutionary process more directly?A related question that also emerges from these studies is: What aspects of the robotcontrol system should be manipulated by the evolutionary process|the parameters, thearchitecture, or the robot itself? It appears that the more features that are accessible to theevolutionary process then the more successful the adapted controllers will be.4 SimulationThere is currently a hot debate among people trying to understand and reproduceintelligent agents, that could be stated as follows: Is the simulation a powerfulenough tool to draw sound conclusions, or should a theory or an approach betested on a real agent, i.e. a robot? [11]Simulation in robotics, control theory, and AI has mostly been a complete wasteof time. Of course there are certain cases in which simulation is inevitable ...what is at issue is whether results \demonstrated" using simulation only shouldbe accorded worth. We think not. [27]However, it does appear that simulations are not quite the dead-end some hadsuggested. For simpler cases at least it has been shown that they can be madeaccurate enough. Their attractive qualities of speed and ease of data collectioncan then be made use of. [24]It is frankly easier to use robots situated in the real world than it is to try tobuild some all encompassing super-simulation. [23]What makes a robot distinct from any other arti�cial intelligence project is that onemust actually deal with hardware and the intrinsic limitations that all physical sensing andacting systems have [20]. By using a simulation, one can sidestep these di�cult hardwareinteractions completely, and this is what is at issue in the simulation debate. For example,the term "robot" is often used loosely to refer to a simulated "agent" or "animat" which maynot have any physical counterpart upon which it is modeled [42]. In fact some such simulated"robots" could never be implemented in the real world because they depend on non-existent"sensors" to provide object-level information about the environment. The danger is thatsimulations simplify the learning problem too much by making the environment and the10



robot clean and predictable. Thus there is no guarantee that results obtained in simulationwill transfer to the noisy real world. This is termed the "correspondence problem".Despite the di�culties simulations present they are still very attractive primarily becauseof their speed. An evolutionary experiment that takes several days on a physical robotmay only require several hours on a simulated robot. This ability to obtain results quicklyfacilitates a more open-ended exploration of robot control ideas. In addition, simulated resultsare more easily collected, analyzed, and reproduced.To lessen the correspondence problem, every e�ort should be made to keep simulationsin close step with reality. Some speci�c suggestions have been made along this line: (1) basethe simulation on carefully collected empirical data of a real physical robot; (2) add noise tothe simulated sensory readings and the actuator outcomes; and (3) calibrate the simulationthrough tests on the real physical robot [19].Calibration tests have provided interesting and somewhat contradictory results. In onecase, neural network robot controllers adapted in simulation always performed better whentested in the real world than they had when tested in simulation [31]. The suspected cause ofthis improvement was that the physical robot's movements and sensor readings were not noisyin the same ways as the simulator's. The physical robot's experience was occasionally noisywhile the simulator's experience was systematically noisy, and this was bene�cial to learning.In another case, experiments were conducted to determine how the amount of simulatednoise a�ects the correspondence between behavior evolved in simulation and then tested insimulation versus being tested in the real world [24]. Three noise levels were examined: nonoise, observed noise, and double the observed noise. The results revealed that networks thatevolved in an environment that is less noisy than the real world will behave more noisily inreality. Conversely, networks evolved in an environment that is noisier than the real worldwill behave less noisily in reality. Furthermore the correspondence between simulation andreality was maximized when the noise level of the simulation most closely matched reality.In the �rst case additional noise appeared to be bene�cial while in the second case it didnot. Perhaps these contradictory results could be resolved with further experiments. It maybe that twice the observed noise is too drastic a change to realize a bene�t, whereas a smallerincrement above observed noise would be helpful. This issue of the appropriate amount ofnoise is just one of the many open questions related to the use of simulations for adaptingrobots.In doing evolutionary robotics, one has three options for evaluating possible control sys-tems: use a physical robot, use a simulated robot, or use a hybrid of the two [36]. Usinga physical robot is obviously the most desirable but may be too time consuming. Using asimulated robot leads to the correspondence problem. Using a hybrid approach, one canbegin the evolutionary process on a simulated robot to quickly develop a high performingpopulation. Assuming that the simulation was developed through close observation of theactual robot, this should provide a good starting point for the slower evolutionary process onthe physical robot. Also a simulated robot can be used to quickly prune the set of possibleexperiments one may want to eventually conduct on a physical robot [8]. For these reasons,the hybrid approach to evolutionary robotics may o�er the best compromise between speedand accuracy.
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5 Domain KnowledgeThe role of domain knowledge in evolutionary robotics can be viewed as a continuum. Atone extreme, robots can have complete domain knowledge and require no ability to adapt,while at the other extreme robots can have no domain knowledge and be seen as tabula rasasystems. At a recent workshop on robot learning, most of the research presented incorporateda substantial amount of domain knowledge. [21]. Many of the presenters argued that toconstruct a successful robotic system, learning must be limited in use to portions of thesystem where the designer's knowledge is too sketchy to engineer a solution. Learning fromscratch was seen as too ine�cient for any problem of reasonable complexity.A middle ground along this continuum is an approach that treats knowledge acquisitionas a cooperative e�ort between the human engineer and the robot itself [17]. Grefenstettedeveloped an evolutionary method known as SAMUEL, which stands for Strategy AcquisitionMethod Using Empirical Learning [16]. SAMUEL is an evolutionary process that developsentire behaviors which are de�ned as sets of rules. The rules are expressed in a high-levellanguage to make it easy to incorporate existing knowledge and to make it easy to understandthe results of learning. The initial population of behaviors are not random but consist of avariety of rule sets including human generated ones and automatically generated variants ofthese. By seeding the initial population, it is hoped that the search space will be usefullyconstrained thus leading to faster search times (refer back to Section 3.3 for another exampleof this). Another technique used to constrain the search space, is the creation of virtualsensors. For instance, rather than basing rules on sixteen raw sonar values, one could createfour virtual sensors|left, forward, right, and backward|which combine the raw values in ameaningful way.Although beginning with a signi�cant amount of domain knowledge seems more practicalthere may be a disadvantage. By imposing our perspective on the learning problem we mayactually make it harder. Nol� argues that a designer views a robot task from an observer'spoint of view or a distal perspective, but a robot must solve the task in terms of its senso-rimotor system or a proximal perspective [35]. There may be no simple mapping from thedistal perspective to the proximal perspective. For instance, consider the trash collectiontask described in Section 3.2. One distal description of this task is the following:1. Explore the environment avoiding walls.2. Recognize trash and approach it for pickup.3. Pickup trash.4. Move towards a wall avoiding other trash.5. Release trash over the wall.Recall that the Khepera robot used in these experiments only had access to infra-red sensors.Using human vision (the distal perspective) it is a simple matter to distinguish a wall fromtrash, but using the robot's infra-red sensors (the proximal perspective) it is not. For therobot, these two objects can only be distinguished from a relatively small number of closepositions. Thus a modular division of the task into distal subtasks such as "move towards a12



wall avoiding other trash" is not viable because trash and walls appear the same except froma very local view.It has been argued that arti�cial neural networks o�er one of the most promising meansfor investigating robot control because they allow the task demands rather than the designer'sbiases to be the primary force in shaping the system's development [29]. Yet the designerstill has an important role to play in the evolutionary process which includes: determiningwhat aspects of the neural network will be operated on by evolution, the input and outputrepresentations, the robot's physical characteristics (which could also be manipulated by evo-lution), and the robot's environment. After this adaptive process has been set in motion anda successful control system has been produced, its method must be dissected to understandthe underlying control principles. The use of evolutionary computation with neural networksinverts the classical order of problem solving in which a high-level understanding comes �rstand closely guides the search for algorithms [4]. Through the evolution of neural networkcontrollers a solution to the task emerges which is not simply a product of the designer'sunderstanding of the domain.6 Future Trends in RoboticsHans Moravec likens today's robots to simple invertebrates in the global evolutionary sense[34]. He predicts that in the next decade robots should improve to the level of reptilesand within 50 years to the level of mammals. One of the crucial impediments to modelingadaptive behavior in robots, besides the lack of modeling techniques, has been the size andspeed of computers. Employing evolutionary techniques for developing neural network basedcontrollers is computationally expensive. Signi�cant progress has been made recently partlydue to continuing exponential increase in the computational resources. As Moravec pointsout, the amount of computational power that a dollar can purchase has increased thousandfoldevery two decades since the beginning of the century. There has been a trillionfold decline inthe cost of computation. If this trend continues, as seems to be the case at present, Moravecpredicts that the computational power required for a humanlike robot would be available in a$10 million super computer before 2010 and in a $1000 personal computer by the year 2030.Work on a humanlike robot has already begun at MIT with the COG project [2]. Theirapproach is to build a humanoid robot that develops and acts in the real world in the sameway that humans develop and act. This human-inspired development plan has so far led tothe incorporation of several behaviors: the arms have grasping, withdrawal, and reexes likethose of a child; the arms also have adaptive spring-like behavior; the arms follow smoothmotion trajectories; the eyes have foveation behavior that can be used to coordinate hand-eyemovements in reaching for objects; and the eyes and the head exhibit saccading motion andgaze control [10, 28]. Even though COG's performance today is below those of conventionalrobots, it is expected that the developmental approach will eventually pay o�. Most of themodels incorporated in Cog are based on biological models.It has been suggested that the combination of arti�cial intelligence with evolutionarycomputation represents one of the most innovative research directions that may lead to thedevelopment of e�cient, robust, and easy-to-use solutions to complex real-world problems[1]. Given the incredible computational power at hand, it is becoming increasingly attractiveto experiment with evolutionary methods in robots. Onboard computers in mobile systems13
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