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Abstract

Imitation is a highly complex cognitive process, involving vision, perception, representation, memory and motor con-

trol. The underlying mechanisms that give rise to imitative behavior have attracted a lot of attention in recent years and

have been the subject of research in various disciplines, from neuroscience to animal behavior and human psychology. In

particular, studies in monkeys and humans have discovered a neural mirror system that demonstrates an internal corre-

lation between the representations of perceptual and motor functionalities. In contradistinction to previous engineering-

based approaches, we focus on the evolutionary origins of imitation and present a novel framework for studying the

evolution of imitative behavior. We successfully develop evolutionary adaptive agents that demonstrate imitative learn-

ing, facilitating a comprehensive study of the emerging underlying neural mechanisms. Interestingly, these agents are

found to include a neural ‘‘mirror’’ device analogous to those identified in biological systems. Further analysis of these

agents� networks reveals complex dynamics, combining innate perceptual-motor coupling with acquired context-action

associations, to accomplish the required task. These findings may suggest a universal and fundamental link between the

ability to replicate the actions of other (imitation) and the capacity to represent and match others� actions (mirroring).

� 2004 Elsevier B.V. All rights reserved.

Keywords: Mirror-neurons; Imitation; Evolution; Agents; Context-based imitation
1389-0417/$ - see front matter � 2004 Elsevier B.V. All rights reserv

doi:10.1016/j.cogsys.2004.11.004

* Corresponding author.

E-mail address: borens@post.tau.ac.il (E. Borenstein).

URL: http://www.cs.tau.ac.il/~borens.
1. Introduction

1.1. Imitation and mirror neurons

The past 20 years have seen a renewed interest in

imitation in various fields of research (Prinz &
ed.

mailto:borens@post.tau.ac.il 


1 Animal behavior and human psychology literature intro-

duces a wide range of definitions of imitation, focusing on what

can constitute true imitation vs. other forms of social learning

(Nehaniv & Dautenhahn, 2002; Zentall, 2001). Our definition

addresses the importance of the observed action�s context for a
successful behavior.
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Meltzoff, 2002) such as developmental psychology

(Meltzoff, 1996), experimental studies of adult so-

cial cognition (Bargh, 1997), and most relevant to

our work, neurophysiology and neuropsychology
(Rizzolatti, Fadiga, Gallese, & Fogassi, 1996; Riz-

zolatti, Fadiga, Fogassi, & Gallese, 2002). Re-

search in this last field had led to the exciting

discovery of mirror neurons. These neurons were

originally found in the ventral premotor cortex

(area F5) in monkeys, an area which is character-

ized by neurons that code goal-related motor acts

(e.g., hand or mouth grasping). Some of the neu-
rons in this area, which have been termed mirror

neurons, discharge both when the monkey performs

an action and when it observes another individual

making a similar action (Gallese, Fadiga, Fogassi,

& Rizzolatti, 1996; Rizzolatti et al., 2002). Most

mirror neurons exhibit a marked similarity in their

response to action observation and execution, and

in some cases this similarity is extremely strict (Riz-
zolatti, Fogassi, & Gallese, 2001). An analogous

mechanism, whereby cortical motor regions are

activated during movement observations was also

demonstrated in humans using TMS (Fadiga, Fo-

gassi, Pavesi, & Rizzolatti, 1995), MEG (Hari

et al., 1998), EEG (Cochin, Barthlmy, Lejeune,

Roux, & Martineau, 1998) and fMRI (Buccino

et al., 2001; Iacoboni et al., 1999). Mirror neurons
are thus the first identified neural mechanism that

demonstrates a direct matching between the visual

perception of an action and its execution. The abil-

ity to match the actions of self and other may have

a functional role in fundamental cognitive pro-

cesses, such as understanding the actions of others,

language and mind reading (Rizzolatti et al., 2001).

In particular, imitation of motor skills requires the
capacity to match the visual perception of a dem-

onstrator�s action to the execution of a motor com-

mand. The neural mirror system, demonstrating

such an internal correlation between the represen-

tations of perceptual and motor functionalities,

may form one of the underlying mechanisms of

imitative ability.

1.2. Context-based imitation

Learning by imitation, like any cognitive pro-

cess, must be considered an intrinsically embodied
process, wherein the interaction between the neu-

ral system, the body and the environment cannot

be ignored (Dautenhahn & Nehaniv, 2002a; Keij-

zer, 2002). In particular, every action, either ob-
served or performed, occurs within a certain

context. A context can represent the time or place

in which the action is made, various properties of

the environment, the state of the individual per-

forming the action or the social interaction part-

ners (see for example, Dautenhahn, 1995).

Clearly, there is no sense in learning a novel behav-

ior by imitating another�s actions if you do not
know the context in which these actions are made

– a certain action can be extremely beneficial in

one context, but have no effect (or even be delete-

rious) in a different context. Discussing an agent-

based perspective on imitation, Dautenhahn and

Nehaniv (2002a) consider the problem of imitating

the right behavior in the appropriate context, i.e.,

‘‘when to imitate’’, as one of the five central ques-
tions (‘‘Big Five’’) in designing experiments and re-

search on imitation. We hence use the term

context-based imitation in the sense of being able

to reproduce another�s observed action whenever

the context in which the action was originally ob-

served, recurs. 1 For example, an infant observing

his parents may learn by imitation to pick up the

phone (action) whenever the phone is ringing
(context).

Context-based imitation can thus be conceived

as constructing a set of associations from contexts

to actions, based on observations of a demonstra-

tor performing different actions within various

contexts. These associations should comply with

those that govern the demonstrator�s behavior,

and should be learned (memorized) so that each
context stimulates the production of the proper

motor action even when the demonstrator is no

longer visible. It should be noted, however, that

‘‘action’’ is an abstract notion, and in reality, an

imitating individual (agent) should also be capable
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of matching a visual perception of the demonstra-

tor�s action to the corresponding motor command

that activates this action. 2 The key objective of

this study is to gain a comprehensive understand-
ing of the mechanisms that govern such context-

based imitative learning and to examine the nature

of the associations between visual perception, mo-

tor control and contexts that are being formed in

the process.

1.3. Evolving imitating agents

Imitation is an effective and robust way to learn

new traits by utilizing the knowledge already pos-

sessed by others and it has already been applied by

researchers in the fields of artificial intelligence and

robotics. Hayes and Demiris (1994) presented a

model of imitative learning to develop a robot con-

troller. Billard and Dautenhahn (1999) studied the

benefits of social interactions and imitative behav-
ior for grounding and use of communication in

autonomous robotic agents. Borenstein and Rup-

pin (2003) employed learning by imitation to en-

hance the evolutionary process of autonomous

agents. For an up-to-date introduction to work

on imitation in both animals and artifacts see the

cross-disciplinary collection (Dautenhahn &

Nehaniv, 2002b). Furthermore, some researchers,
motivated by the recent discovery of a neural mir-

ror system, have implemented various models for

imitative learning, employing neurophysiologically

inspired mechanisms. Billard (2000) presented a

model of a biologically inspired connectionist

architecture for learning motor skills by imitation.

The architecture was validated through a mechan-

ical simulation of two humanoid avatars, learning
several types of movements sequences. Demiris

and Hayes (2002) and Demiris and Johnson

(2003) developed a mirror-neuron based computa-

tional architecture of imitation inspired by Meltz-

off�s Active Intermodal Matching mechanism

(Meltzoff & Moore, 1997) and combined it with

an ‘‘active’’ distributed imitation architecture.
2 In this study, we focus on visually based imitation.

However, it should be noted that other forms of imitation,

such as vocal imitation, need not involve visual modality (see

for example, Herman, 2002; Nehaniv & Dautenhahn, 2002).
They have demonstrated that this dual-route

architecture is capable of imitating and acquiring

a variety of movements including unknown, par-

tially known, and fully known sequences of move-
ments. Oztop and Arbib (2002), focusing on the

grasp-related mirror system, argued that mirror

neurons first evolved to provide visual feedback

on one�s own ‘‘handstate’’ and were later general-

ized to understanding the actions of others. They

have conducted a range of simulation experiments,

based on a schema design implementation of that

system, providing both a high-level view of the
mirror system and interesting predictions for fu-

ture neurophysiological testing. Other researchers

(Kozima et al., 2002; Marom, Maistros, & Hayes,

2002) claimed that the mirror system structure can

be acquired during life through interaction with

the physical or social environment and demon-

strated models whereby perceptual and motor

associations are built up from experience during
a learning phase.

The studies cited above, however, assume that

the agents� basic ability and motivation to imitate

are innate, explicitly introducing the underlying

functionality, structure or dynamics of the imita-

tion mechanism into the experimental system. In

contrast to this engineering-based approach, we wish

to study the neuronal mechanisms and processes

underlying imitation from an evolutionary stand-

point, and to demonstrate how imitative learning

per se can evolve and prevail. Evolutionary autono-

mous agents form an intuitively appealing ap-

proach for modelling and studying the evolution

of biological neural mechanisms (Ruppin, 2002).

Using a simulated environment, wherein agents

evolve to perform a simple imitative task, facili-
tates a thorough examination of the resulting

mechanism in ‘‘ideal conditions’’: full control of

the environment and experimental setup, and per-

fect knowledge of the agents� behavior and neural

dynamics. Clearly, acknowledging the evolution-

ary origins of imitation and examining the emerg-

ing (rather than engineered) device can shed light

on the common fundamental principles that give
rise to imitative behavior. It is important to note,

however, that our key goal in this model is not

to simulate the neural mechanism that underlie

imitative behavior in the human or primate brain
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nor to incorporate the full range of social skills re-

quired for imitative learning (e.g., extraction of the

context from the environment or coping with a dif-

ferent embodiment). The model described in this
paper is clearly a simplified conceptual model

and does not presume to encapsulate many of

the well established biological and neuronal data

on imitation. Rather, the aim of such evolutionary

autonomous agents model is to examine generic

and universal properties of complex living systems

(the ‘‘life as it could be’’ paradigm (Langton, 1988;

Langton, 1995)). The key point in this study is thus

to examine the emerging characteristics of the

mechanism evolved to support imitation in a system

where no constraints on the underlying mechanisms

or representations were explicitly encoded.

In this study, we thus set out to pursue two

objectives: We first present a novel experimental

framework for evolving context-based imitative

learning in evolutionary adaptive autonomous

agents (Floreano & Urzelai, 2000; Ruppin,

2002). We demonstrate the evolution of imitating

agents that comprise a simple mechanism of imita-

tive behavior. We then turn to systematically ana-

lyze the structure and dynamics of the resulting

neurocontrollers. This analysis reveals neural de-

vices analogous to those found in biological sys-

tems, including clear examples of internal
coupling between observed and executed actions.

Further analysis of the network adaptation

dynamics reveals a hybrid mechanism, combining

innate perceptual-motor coupling with acquired

context-action associations. We conclude with a

discussion of the implications of our findings for

imitation theory and a description of future work.
2. The experimental setup

2.1. The environment

The agents in our simulation inhabit a world

that can be in one of several world states

{s1, s2, . . ., sn}. In each time step, the world state
is randomly selected from {s1, s2, . . ., sn} with a uni-

form distribution. These states can represent, for

example, the presence of certain food items or

the size of an observed object and hence form
the context in which actions are observed and per-

formed. The world state, however, is not visible in

every time step and is seen (i.e., included in the

agent�s sensory input) only in 60% of the time
steps. An additional set, {a1,a2, . . .,am}, represents
the repertoire of motor actions that can be per-

formed by the agent or by the demonstrator. A

state-action injective mapping is also defined,

assigning a certain action as the proper action

for each world state si. Within the simulations de-

scribed below, both n and m are set to 4, allowing

4! = 24 different state-action mappings. Regularly
performing the proper action assigned to the cur-

rent state of the world is deemed a successful

behavior and confers a positive fitness. Similarly,

when the world state is not visible, a successful

agent should not perform any action. It is assumed

that the environment is also inhabited by a demon-

strator (teacher), successfully performing the prop-

er action in each time step. The demonstrator�s
action is visible (i.e., included in the agent�s sen-

sory input) only in 20% of the time steps. The par-

tial visibility of the world state and demonstrator

ensures that during the agent�s life it will encounter
both scenarios wherein the demonstrator is not

visible, forcing the agent to ‘‘memorizing’’ the

proper state-action mapping, and scenarios where-

in the world state is not visible, in which a success-
ful agent should ‘‘observe’’ the demonstrator�s
action but not perform any action. The specific vis-

ibility values defined above have no significant ef-

fect on the resulting agent, but rather provide a

good blend of the various visibility scenarios dur-

ing the agents� life, facilitating the examination of

the agents� neurocontroller in these scenarios. Fur-

thermore, the above mapping, from world states to

actions, is randomly selected anew in the beginning

of each agent�s run in the world. The motivation

for this state-action mapping shuffle is twofold.

First, it prevents such a mapping from becoming

genetically determined. To demonstrate a success-

ful behavior, agents must learn the proper map-

ping by observing the demonstrator, promoting

an imitation based mechanism to evolve. Second,
it represents a scenario of a changing environment,

wherein novel world states appear over time (new

food sources, other species, etc.), making prior

state-action mappings obsolete.



Fig. 1. The agent�s sensorimotor system and neurocontroller. The sensory input is binary and includes the current world state and a

retinal ‘‘image’’ of the demonstrator�s action (when visible). The retinal image for each possible demonstrator�s action and a retinal

input example for action a4 are illustrated. The motor output determines which actions are executed by the agent. The network

synapses are adaptive and their connection strength may change during life according to the specified learning rules.
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2.2. The agent

Fig. 1 illustrates the structure of the agent�s sen-
sorimotor system and neurocontroller. The agent�s
sensory input in each time step comprises 8 binary

values, including the current world state (if visible)
and a four-cell retinal ‘‘image’’ of the demonstra-

tor�s action (if visible). The retinal image is deter-

mined according to a predefined mapping from

actions to retinal binary patterns which remains

fixed throughout the simulation. 3 In time steps

wherein the world state or demonstrator are not

visible, the corresponding input neurons are set

to 0. Each of the agent�s output neurons represents
a motor action command, determining which ac-

tions (if any) will be executed by the agent. The

output neurons (as well as the hidden neurons)

are continuous neurons ranging from 0 to 1, and

can thus be perceived as indicating the probability

of activating each motor action. A successful agent

should thus produce in each time step an activa-

tion level close or equal to 1 in the motor neuron
3 The selected retinal representation is of no specific signif-

icance, however, we use the representation illustrated in Fig. 1

(wherein each action is represented by a multi-bit configuration)

rather than a trivial one (wherein each action is represented by a

single bit) to examine the emergence of internal localized

representation of complex input patterns.
that corresponds to the appropriate action, and

values close or equal to 0 in the rest of the motor

neurons. In time steps where the world state is not

visible (and thus, no action should be performed

by the agent), a successful agent should produce
activity level close or equal to 0 in all motor

neurons.

Considering the agent�s task and the environ-

ment it inhabits, the architecture of the agent�s
neurocontroller should encompass several charac-

teristics. Clearly, it should be capable of acquiring

new behaviors during the agent�s life to allow imi-

tative learning. However, to support complex
dynamics which may employ both a fixed compo-

nent and a learned behavior, the neurocontroller

should also allow a combination of innate and

acquired elements. Moreover, the precise blend

of innate and acquired properties should be deter-

mined through genetic evolution. An interesting

architecture that satisfies these requirements has

been proposed by Floreano and Urzelai (2000),
and is applied with a few modifications in the

model described below.

Each agent employs a simple feed-forward neu-

ral network as a neurocontroller (i.e., the agent

cannot perceive its own actions). These networks,

however, are adaptive, whereby the genotype of

each individual encodes not only the initial synap-

tic weights but also a Hebbian learning rule and
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learning rate for each synapse (Floreano & Urze-

lai, 2000). In particular, each synapse in the net-

work, (i, j), connecting neuron j to neuron i, is

encoded by 4 genes, defining the following
properties:

(i) w0
ij – the initial connection strength of the syn-

apse (real value in the range [0,1]).

(ii) sij – the connection sign (1 or �1).

(iii) gij – the learning rate (real value in the range

[0,1]).

(iv) Dwij – the learning rule applied to this
synapse.

Each synaptic weight wij is initialized with w0
ij at

the beginning of the agent�s life and is updated

after every time step (a sensory-motor cycle)

according to:

wt
ij ¼ wt�1

ij þ gijDwij:

Dwij encodes one of five learning (modification)

rules (here, oj and oi denote the activity of the pre-

synaptic neuron and postsynaptic neuron,

respectively):

(1) No learning: Dwij = 0.

(2) Plain Hebb rule: Dwij = (1 � wij)ojoi.
(3) Postsynaptic rule: Dwij = wij(�1 + oj)oi +

(1 � wij)ojoi.

(4) Presynaptic rule: Dwij = wijoj(�1 + oi) +

(1 � wij)ojoi.

(5) Covariance rule:

Dwij ¼
ð1� wijÞF ðoj; oiÞ; if F ðoj; oiÞ > 0;

ðwijÞF ðoj; oiÞ; otherwise;

�

where F(oj,oi) = tanh(4(1 � |oj � oi|) � 2).

These rules have been selected based on neuro-

physiological findings (i.e., they encapsulate some

of the common mechanisms of local synaptic adap-
tation found in biological nervous systems) and

were modified to satisfy some computational con-

straints (e.g., in this adaptation process synapses

cannot change sign and their strength is kept in

the range [0,1]). For a detailed description of these

adaptation dynamics, see Floreano and Urzelai

(2000). The network topology is static throughout

the process and for the purpose of our simulation
was set to 8–7–4 (i.e., eigtht input neurons, a hid-

den layer with seven neurons, and four output neu-

rons), with an additional threshold unit in each

layer. Such evolutionary adaptive autonomous

agents, inspired by those presented in Todd and
Miller (1991) and Floreano and Urzelai (2000),

demonstrate a learning process that is supervised

only indirectly, through natural selection.

2.3. The evolutionary process

A population of the agents described above

evolve to successfully behave in the environment.
Each agent lives in the world for 500 time steps.

Fitness is evaluated according to the agent�s suc-

cess in performing the proper action assigned to

the current world state (i.e., activating only the

appropriate motor neuron), according to the

state-action mapping, in each time step. An agent

should perform an action only if the world state

is visible and regardless of the demonstrator�s vis-
ibility. We use the mean-square error (MSE) mea-

sure to calculate the distance between the agent�s
motor output (continuous values ranging from 0

to 1) and the desired output (a value of 1 for the

appropriate motor neuron and 0 for the rest),

averaged over the agent�s life. A MSE value of 0

thus indicates a perfectly behaving agent. The

agent performance during the first 100 time steps
is not evaluated (infancy phase). Fitness value is

then calculated as (1 �MSE) and averaged over

20 trial runs in the world.

The initial population is composed of 200 indi-

viduals, each assigned a randomly selected haploid

genome (i.e., each individual holds one copy of the

genome), encoding the initial connection weights,

learning rules and learning rates. Each new gener-
ation is created by randomly selecting agents from

the previous generation and allowing them to

reproduce. Agents are selected according to their

fitness, using linear scaling and a roulette wheel

selection scheme (Mitchell, 1996). During repro-

duction, 2% of the genes are mutated. Connection

strength genes and learning rate genes are mutated

by adding a randomly selected value from the
interval [�0.3,0.3], connection sign genes are mu-

tated by flipping the sign and learning rule genes

are mutated by randomly selecting one of the
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available rules. The genomes of the top 20% of

individuals are copied to the next generation with-

out mutation. Variations in these parameter values
have no significant effect on the resulting agents.
3. Results

3.1. The evolution of imitation

Within the settings described in the previous sec-
tion the proper action assigned to eachworld state is

randomly selected anew at the beginning of the

agent�s life. The appropriate state-action associa-

tions can thus be inferred only from the demonstra-

tor�s observed actions. Agents cannot rely on

genetically coded behavior and must incorporate

some sort of imitation-based learning strategy in
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Fig. 3. The activation level of one motor neuron (m2) during the first

state was s4 and whether it was visible. The triangles at the bottom fur
order to demonstrate a successful behavior.

Although no such learning strategy was explicitly

introduced into the system, examining the fitness

of the best agent in the population as a function of
generation clearly demonstrates that such imitating

agents have evolved (Fig. 2). Evidently, after

approximately 2000 generations, the evolved agents

successfully master the behavioral task, regularly

executing the proper action in each world state.

Having successfully evolved imitating agents,

we turned to examine the structure, dynamics

and neural mechanisms that these agents employ.
We have performed numerous evolutionary simu-

lation runs, of which approximately half resulted

in near-optimal imitating agents (exhibiting an

evolutionary dynamics similar to those shown in

Fig. 2). Unsuccessful simulation runs seemed to

stem from early convergence of the population to

sub-optimal solutions (wherein agents did not pro-

duce a distinct motor action in each time step). In
the remainder of this paper, we focus on analyzing

one such successful agent – the best agent in the

last generation of a specific evolutionary simula-

tion run. Other successful agents, from various

evolutionary runs, were analyzed and demon-

strated similar dynamics.

Direct evidence of the agent�s successful imita-

tive behavior and the resulting learning dynamics
are demonstrated in Fig. 3, depicting the activity

of one of the motor neurons (m2) in different states

of the world. In this specific simulation run, the

state-action mapping was arbitrarily set so that

a2 is the proper action in world state s4 and not

in any other state. In the beginning of its life, the

agent activates motor m2 (i.e., performs action
80 100 120 140

tep

World state = s
4

World state ≠ s
4

World state not visible
Demonstrator visible

150 time steps. The different shapes indicate whether the world

ther represent time steps in which the demonstrator was visible.
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a2) whenever the world state is visible. However,

after only a few demonstrations of the appropriate

behavior, the proper state-action mapping is

learned and this motor is activated only when

the world state is s4, as expected. In fact, as dem-

onstrated in Fig. 4, the ability to learn by imitation

the appropriate state-action mapping remains ac-

tive during the agent�s life, allowing the agent to
learn a new mapping when necessary. In this

experiment, the state-action mapping was initially

set, as before, so that a2 is the proper action in

world state s4. However, in the middle of the

agent�s life (time step 250) the state-action map-

ping, and accordingly the demonstrator�s behav-

ior, was changed so that a2 is the proper action

in world state s2. Evidently, although the agent
learned a certain mapping in the beginning of its

life, it can quickly adapt to a new mapping after

observing a few demonstrations of the new appro-

priate behavior.
4 Furthermore, the relatively small number of hidden

neurons may form a bottleneck that promotes the use of these

neurons for both action perception and action execution and

consequently the formation of mirror neurons. However, the

fact that the same single neuron is activated in the observation

and activation of the same specific action, the essence of

mirroring, is surprising.
3.2. The emergence of mirror neurons

Examining the network hidden layer reveals an

interesting phenomenon with regard to the inter-

nal representation of actions. As stated above, to

support imitative learning, wherein associations

from contexts to motor commands should be in-
ferred from observations of the demonstrator�s ac-
tions, an agent should be capable of matching the

visual perception of an observed action to the mo-

tor command that generates the corresponding ac-

tion. Fig. 5, depicting the activation level of three
hidden neurons, attests to the emergence of such

inherent perceptual-motor coupling. Apparently,

various neurons in the hidden layer are active both

when the agent performs a certain action and when

it observes the demonstrator making a similar ac-

tion, forming internal mirror neurons analogous to

those found in biological systems. For the purpose

of this study, we thus define mirror neurons as
neurons that show a neural activation level signif-

icantly higher than 0 for both observation and exe-

cution of a certain action, and are not active in any

other scenario. Although other definitions may be

applied, the above definition forms a suitable anal-

ogy to the characteristics of biological neural mir-

roring. Interestingly, as seen in Fig. 5, the

activation level of mirror neurons during action
observation is typically lower than the activation

level during action execution. An analogous phe-

nomenon can also be detected in neuronal record-

ing data in the literature, and should be further

investigated. However, in our simulation, the rela-

tively small number of hidden neurons and mainly,

the feed-forward nature of the network may ac-

count for this phenomenon, forcing mirror neu-
rons to participate also in motor excitation. 4
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Fig. 5. The activation level of three hidden neurons (h4, h5 and h6) during time steps 100–200 with an indication of the executed or

observed action. Circles, squares, diamonds and triangles represent actions a1, a2, a3, a4, respectively. An empty shape indicates that the

action was only observed but not executed, a filled shape indicates that the action was executed by the agent (stimulated by a visible

world state) but not observed, and a dotted shape indicates time steps in which the action was both observed and executed. (a) Neuron

h4; (b) neuron h5; (c) neuron h6.
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These constraining properties of the artificial net-

work, a direct consequence of several computa-

tional limitations, may also induce some

constraints on the biological implications of this

model, including, for example, the lack of clear dis-

tinction between active and passive perception.

Such mirror neurons were found in most of the

agents that evolved in our simulation environment.
However, typically, not all actions in the repertoire

were associated with a corresponding mirror neu-

ron, and there have been a few cases where success-

ful agents did not seem to incorporate any clear

neural mirroring matching our above definition.

There was also no evident correlation between the

initial conditions or the simulation parameters

and the emergence of mirror neurons.
The functional characteristics of the emerging

mirror neurons were further examined through

a set of intervention experiments, wherein hid-

den neurons were externally activated (stimu-

lated) or inactivated (lesioned). These

experiments confirmed that the detected mirror

neurons convey the required information about

the action to be performed. For example, when
the world state is not visible (a scenario that

would usually result in no action being per-

formed) an �artificial� stimulus of a mirror neu-

ron resulted in the agent�s performance of the

action associated with that mirror neuron. Sim-

ilarly, inactivating a mirror neuron inhibits the

production of the associated action and in some

cases resulted in the production of the wrong



Fig. 6. An illustration of the connection strength variance (a)

and the overall contribution (b) of the synapses connecting the

sensory input layer (presynaptic) to the hidden layer (postsyn-

aptic). Neurons 1–4 of the presynaptic input layer represent the

world state while neurons 5–8 are the retinal neurons, repre-

senting the observed demonstrator�s action. Neurons 4–6 of the
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action. 5 Furthermore, applying multiple neurons

activation/inactivation settings, it has been

shown that even actions that could not be asso-

ciated with a fully localized representation (i.e.,
a single mirror neuron) are still represented in

the hidden layer through a distributed configu-

ration of neurons. These findings also account

for the cases mentioned above wherein success-

ful agents did not seem to incorporate any clear

localized mirror neurons.

3.3. The developmental dynamics

We finally turn to examine the ontogenic, devel-

opmental aspects of the resulting neurocontroller.

Our main objective is to identify which compo-

nents in the neural mechanism are innate and

which are acquired during the agent�s life. We first

determine which synapses play a significant role in

the learning process. Clearly, variation in the syn-
apse strength during life or the genetically coded

learning rate are not appropriate indicators as they

cannot differentiate between learning processes

that genuinely adapt the agent to the world and

unrelated self-organization processes. We thus

measure the variance in the connection strength

at the end of the agent�s life across 1000 simulation

runs (i.e., the particular agent that was analyzed
above, living 1000 different lifetimes). A low vari-

ance value indicates that the synapse dynamics

are independent of the world characteristics (e.g.,

the state-action mapping), and thus cannot con-

tribute to the learning process that adapt the agent

to the world. As demonstrated in Fig. 6(a), this

measure highlights the acquired nature of the syn-
5 Recent reversible inactivation studies (Fogassi et al., 2001)

demonstrated a distinction between two sectors in area F5 in

monkeys: mirror neurons are located in sector F5 convexity.

Canonical neurons (neurons that respond to the presentation of

three-dimensional objects of different size and shape) are

located in sector F5 bank. While inactivation of area F5 bank

produced a severe deficit of the required actions, inactivation of

the cortical convexity determined only a motor slowing,

preserving the appropriate action production. Clearly, within

our simple model, such distinction between canonical and

mirror neurons could not have developed and the mirror

neurons that have emerged play a crucial role in the visuomotor

pathway.

hidden postsynaptic layer have been identified as mirror

neurons.
apses connecting the world state neurons (input

neurons 1–4), with the mirror neurons we have

identified (hidden neurons 4–6). Clearly, the ac-

quired state-action associations are induced by these

synapses. The markedly lower variance values in

other synapses from this layer and in synapses con-

necting hidden layer neurons to motor neurons
(not illustrated here), suggest that these synapses

do not play an important part in the learning pro-

cess and encompass the innate properties of the
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network. We then turned to determining the over-

all contribution of each synapses to the agent�s
successful behavior, either learned or innate.

Examining the effect of numerous multiple lesion
configurations, we have utilized the Multi-pertur-

bation Shapley value Analysis (MSA), a rigorous

way to determine the importance of system ele-

ments (Keinan, Sandbank, Hilgetag, Meilijson, &

Ruppin, 2004). In each configuration, a set of syn-

apses are cancelled out by setting both their initial

strength and learning rate to 0. The resulting con-

tribution of each synapse connecting the input
layer to the hidden layer is illustrated in Fig.

6(b). Evidently, the synapses that have been iden-

tified above as participating in the learning process

possess a non-negligible contribution value. How-

ever, the most important synapses are among

those connecting the retinal neurons (input neu-

rons 5–8), representing the observed action, with

the mirror neurons (hidden neurons 4–6). These
connections manifest the strong innate associations

between the visual perception of observed actions

and the internal representation of these actions,

developed during the evolutionary process.

Based on the findings described above, a simple

model of the mechanism that evolved in our set-

tings to support imitative behavior can be inferred

(Fig. 7). Notably, the required perceptual-motor
coupling was not explicitly engineered into the

agents, but rather emerged through evolution as

an innate property. Furthermore, to support an
Fig. 7. A simple model of context-based imitation. Solid

arrows represents innate associations, while dashed arrows

represents associations that are acquired during the agent�s life
via Hebbian learning.
effective mechanism of imitation, visually per-

ceived actions are linked to the corresponding mo-

tor commands via fully localized internal elements,

representing each action, in the form of mirror
neurons. The acquired context-action stimuli can

then be constructed through a simple mechanism

of Hebbian learning without external supervision

or reinforcement signals.
4. Discussion

This study presents an experimental framework

for studying the evolution and dynamics of imita-

tion in evolutionary autonomous agents. This

framework provides a fully accessible, distilled

model for imitation and can serve as a vehicle to

study the mechanisms that underlie imitation in

biological systems. As stated in Section 1.3, our

experimental setup employs a simplified model
that is not presumed to encapsulate many of the

well established biological and neuronal data on

imitation, nor to simulate a fully realistic social

learning scenario. Rather, the aim of this model

is to examine the generic and universal properties

of imitative learning mechanisms. Our confidence

in this framework is based on two observations:

First, being an evolutionary developed mecha-
nism, rather than an engineered one, we believe

it is likely to share the same fundamental princi-

ples driving natural systems. Second, our analysis

of the resulting mechanism reveals phenomena

analogous to those found in biological neural

mechanisms.

The key point in our findings is that while creat-

ing a system in which only the evolution of imitation

is solicited, a neural mirroring system had emerged.

That is, even though no constraints on the under-

lying mechanisms or representations were explic-

itly encoded into the system, such mirror neurons

have been demonstrated. These findings imply a

fundamental and essential link between the ability

to imitate and a mirror system. In fact, in this re-

gard, we believe that the simplicity of our model
is one of its key assets: The emergence of neuronal

mirroring to support imitation even in such a sim-

ple model, may suggests a universal and funda-

mental link between the ability to replicate the
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actions of other (imitation) and the capacity to

represent and match others� actions (mirroring).

It is also important to note, that although it has

been hypothesized that mirror neurons underlie
imitative learning functionality, the precise role

of the mirror system remains unknown (Rizzolatti

et al., 2001). The linkage between imitation and

mirroring demonstrated in our study corroborates

this hypothesis and may prove to be interesting for

understanding the mechanisms that give rise to so-

cial cognitive skills. Moreover, the mirror neurons

that emerged in our model, being a clear instance
of shared internal representation between observed

and executed actions, also provide interesting in-

sights that may be applied to artificial intelligence

and robotic research. Although the use of internal

representation is prevalent in engineered systems,

the existence of such a representation in evolved

systems has been challenged (Cliff & Noble,

1997). The model presented in this paper, promot-
ing the use of observed actions of ‘‘others’’ for

learning proper motor actions of ‘‘self’’, provides

a simple example of evolved internal

representation.

Clearly, the simple model presented in this pa-

per cannot account for the full range of imitative

behaviors found in nature (e.g., recognition of no-

vel or compound actions). However, focusing on
low-level, innate imitation, this model addresses

the essential questions concerning the mechanism

underlying imitative behavior. It successfully dem-

onstrates how the required associations between

perceived actions, motor commands and contexts

can be constructed within a hybrid adaptation pro-

cess, combining evolution and lifetime learning.

The framework presented in this paper can be
further enhanced to examine central issues con-

cerning the development of imitation in animals

and artifacts and the functional role of the neural

mirror system. We wish to use this basic model to

determine the physical and social environmental

conditions that promote the emergence of mirror

neurons. In particular, our framework can be en-

hanced to simulate a more realistic scenario of so-
cial learning. For example, we wish to examine

how an extension of the agent�s sensory input,

and a complex social environment inhabited by

demonstrators with varying levels of success, affect
the resulting imitation strategy. Questions con-

cerning the dependencies between observed and

executed actions and the formation of neural mir-

roring are especially of great interest: How will the
representation of actions that cannot be executed

by the observer (e.g., due to different embodiment)

differ from those of imitated actions? How will a

hierarchical repertoire of actions affect the emerg-

ing representation? Another intriguing possibility

would be to utilize this framework to explore the

role of mirror neurons in the evolution of commu-

nication (Arbib, 2002; Rizzolatti & Arbib, 1998)
and in predicting the actions of others (Ramnani

& Miall, 2004). We hope that further extensions

of this basic model will allow us to obtain testable

predictions regarding imitative behavior in hu-

mans and primates, and shed new light on some

of the key issues concerning perception, mirroring

and cognition.
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