
Developmental Robots: Theory, Method and Experimental Results

Juyang Weng, Wey S. Hwang, Yilu Zhang and Colin H. Evans

Department of Computer Science and Engineering
Michigan State University

East Lansing, MI 48824, USA
E-mail:fweng,hwangwey,zhangyil,evansco1 g@cse.msu.edu

Abstract

It is very challenging for humans to program a humanoid
robot to act properly in human environment. Humans have
a fundamental limitation in constructing an adequate model
for the world or an adequate behavior model for the robot,
because of the complexity of such models and the unpre-
dictable unknown environments that the models must apply.
This article introduces a new approach to intelligent robots,
the developmental approach, which is different from other
existing major approaches: knowledge-based, behavior-
based, learning-based, and evolutionary approaches. The
developmental approach is motivated by human mental de-
velopment from infancy to adulthood, during which each
human individual develops his cognitive and behavioral ca-
pabilities through interactions with the environment. This
approach results in a new kind of robots, developmental
robots — robots that can develop automatically. These
robots require a new kind of algorithm — developmental
algorithm — which enables the robot to learn new tasks
without a need of reprogramming, including those tasks that
the human programmer does not understand or cannot pre-
dict. This paper introduces the basic theory of developmen-
tal robots, the SAIL robot, the SAIL developmental architec-
ture, the SAIL-2 developmental algorithm, and some exper-
imental results from our SAIL project.

1 Introduction

The conventional mode of developmental process for a
robot is not automated — the human designer is in the loop.
Given a robotic task, it is the human designer to understand
the task. Based on his understanding, he comes up with a
representation, chooses a computational method, and writes
a program that implements the method for the robot. During
this developmental process, some machine learning may be
used, during which some parameters are adjusted according
to the collected data. However, these parameters are defined

by the human designer for the task given. The resulting pro-
gram is for this task only, not for any other tasks. This man-
ual development paradigm has met tremendous difficulties
for tasks that require complex cognitive capabilities, includ-
ing tasks that autonomous robots must perform.

Since 1996, we have been working on a robotic project
called SAIL (short for Self-organizing, Autonomous, Incre-
mental Learner) and SHOSLIF is its predecessor [16]. The
goal of the SAIL project represents a fundamental depar-
ture from traditional engineering paradigm — toautomate
thedevelopmentalprocess of robots. In this paper, we de-
scribe the theory, method and experimental results of the
SAIL-2 developmental algorithm for the SAIL robot.

Our developmental algorithm is motivated by the human
development. At the birth time of the SAIL robot, its de-
velopmental algorithm starts to run. This developmental
algorithm runs in real time, through the entire “life span”
of the robot. The robot learns while performing simultane-
ously. The human trainers train the SAIL robot by interact-
ing with it, very much like the way human parents interact
with their infant. The SAIL developmental algorithm up-
dates the robot memory in real-time according to what is
sensed by the sensors and what is sent to the effectors as
control signals.

Automated development requires a capability of learn-
ing but it requires something more fundamental. A de-
velopmental algorithm for automated development must be
able to learn new tasks and new skills without requiring re-
programming, including those tasks and skills that the pro-
grammer cannot predict. This basic capability of human
developmental algorithm enables humans to learn more and
more skills without a need to change his brain.

2 The Developmental Approach

Automated development requires a drastic departure
from the current task-specific nature of all the existing ap-
proaches. Table 1 outlines the major characteristics of ex-
isting approaches to constructing artificial systems and the

1



Table 1. Comparison of Approaches

Approach Species World System Task
architecture knowledge behavior specific

Knowledge-based programming manual modeling manual modeling Yes
Behavior-based programming avoid modeling manual modeling Yes
Learning-based programming treatment varies special-purpose learning Yes
Evolutionary genetic search treatment varies genetic search Yes
Developmental programming avoid modeling general-purpose learning No

new developmental approach. The developmental approach
relieves humans from explicit design of (a) any task-specific
representation and knowledge and (b) system behavior rep-
resentation, behavior modules and their interactions.

2.1 AA-learning

A robot agentM may have several sensors. By defini-
tion, theextroceptive, proprioceptiveandinteroceptivesen-
sors are, respectively, those that sense stimuli from external
environment (e.g., visual), relative position of internal con-
trol (e.g., arm position), and internal events (e.g., internal
clock).

The operational mode of automated development can be
termed AA-learning (named afterautomated,animal-like
learningwithout claiming to be complete) for a robot agent.

Definition 1 A robot agentM conducts AA-learning at dis-
crete time instances,t = 0; 1; 2; :::, if the following condi-
tions are met: (I)M has a number of sensors, whose signal
at timet is collectively denoted byx(t). (II) M has a num-
ber of effectors, whose control signal at timet is collectively
denoted bya(t). (III) M has a “brain” denoted byb(t) at
time t. (IV) At each timet, the time-varying state-update
functionft updates the “brain” based on sensory inputx(t)
and the current “brain”b(t):

b(t+ 1) = ft(x(t); b(t)) (1)

and the action-generation functiongt generates the effector
control signal based on the updated “brain”b(t+ 1):

a(t+ 1) = gt(b(t+ 1)) (2)

wherea(t + 1) can be a part of the next sensory input
x(t + 1). (V) The “brain” of M is closed in that after the
birth (the first operation),b(t) cannot be altered directly by
human teachers for teaching purposes. It can only be up-
dated according to Eq. (1).

As can be seen, AA-learning requires that a system cannot
have two separate phases for learning and performance. An
AA-learning agent learns while performing.

Sensor 1
Effector 1

Effector 2

PP

STA

Sensor 2 PP

Figure 1. A schematic illustration of the coarse architec-
ture of the proposed learning mechanism. A circle repre-
sents an attention selector. It is also an effector. PP: prepro-
cessor. STA: spatiotemporal associator.

2.2 Outline of developmental architecture

Fig. 1 gives a schematic illustration of the coarse archi-
tecture of the proposed AA-learning mechanism SAIL. The
preprocessor in Fig. 1 performs some sensor-specific trans-
formation, such as intensity normalization, automatic gain
(contrast) control, filtering, etc. The attention selector in
Fig. 1 is an intero-effector, which selects, e.g., a subpart of
the image frame for later processing. As shown in the fig-
ure, the input to the STA includes not just information from
the sensors, but also the current control signal of the effec-
tors.

2.3 Level: length of temporal context

As a basic point of developmental approach summarized
in Table 1, we do not define architecture levels in terms of
either domain knowledge hierarchy or system behavior hi-
erarchy, as is common in existing works (e.g., see a recent
survey article about machine learning by Langley [10]). In-
stead, our proposed level-based architecture corresponds to
the length of temporal context.

In the AA-learning mechanism, the global states of the
“brain” b(t) at any timet is represented distributedly by
states at different levels:s = (s0; s1; s2; :::; sL), wheresi,
i = 0; 1; 2; :::; L, represents the state at leveli. The cur-
rent number of levels is determined automatically based on
the maturation schedule of the system which depends on the

2



Level−based action priority

LBE

Level 1 Level 2

To effectors

Level 0

Input

LBE0 LBE

Figure 2. The levels that are built automatically in the
STA. Each level corresponds to a level-building element
(LBE).

experience as well as the virtual age1 of the system. Level
0 is context free, to model S-R (stimulus-response) reflex.
Starting from level 1, temporal context is incorporated. The
higher the leveli, the more temporal context each state at
level i represents. Fig. 2 illustrates the level building in
STA. The basic mechanism of the level-building elements
for each level is basically the same. The differences be-
tween levels will be explained later. From Fig. 2, one may
immediately see the similarity between this scheme and the
level arrangement with Rodney Brooks’ well-known sub-
sumption architecture [4]. The major differences are: (1)
Levels in SAIL are not defined in the sense of behavior as
in the subsumption architecture, but rather in the extent of
temporal context that is recorded. Each level in SAIL can
incorporate many behaviors as long as each behavior has a
similar amount of temporal context. (2) Mediation among
many behaviors both within each level and among different
levels are automatically learned in SAIL, instead of being
programmed in. Such a mediation is extremely difficult to
hand craft and program when the number of behaviors is
large. In the following discussion, we will concentrate on a
single level. Integrating different levels is beyond the scope
of this paper.

2.4 State

In behavior-based learning approaches, the states of a
robot agent are manually bound to a set of predefined task
concepts before training. A developmental algorithm must
automatically generate states without being given any task.

Let us first consider level 1 in Fig. 2. The part of the
“brain” state at this level is denoted by a state vectors(t).
If s(t) is considered a random process, Eqs. (1) and (2)
are closely related to the formulations for Markov decision

1The virtual age is the time of operation since the birth of the system.

processes (MDP) [12], or HMMs (hidden Markov models)
if the action part is omitted [8]. Indeed, the state transi-
tion functionf and the decision functiong can be based on
probability distributions shown below to take into account
the uncertainty in states, observations and actions:

P(s(t+ 1) = s0 j x(t); s(t) = s)

and

P(a(t+ 1) = a j s(t+ 1) = s0)

where P(�) denotes the probability. However, the states in
MDPs have been typically defined as a set of symbols and
there is no distance metric defined to measure the similar-
ity between any two symbols (see, however, various MDP
generalization techniques surveyed by Kaelbling, Littman
& Moore [9]).

In contrast to existing MDP methods, we define the state
space at level 1 to beS = X � R(S), where� denotes
Cartesian product and R(�) denotes a re-sampling operator.

We define a states to be a vector in a high dimensional
spaceS. Thus, our state has an explicit representation.S
must contain all the possible sensory inputx 2 X . In con-
trast to existing MDP methods, we require that the state
records temporal context. Thus, we define the state space
at level 1 recursively to beS = X � R(S), where� de-
notes the Cartesian product and R(�) denotes a re-sampling
operator. The design of the re-sampling operator needs to
take into account (a) the nature of the signal, (b) the desired
temporal span in the state vector, and (c) the recursive rela-
tion S = X � R(S). For example, for 1-D signal,R() can
be 2:1 uniform resampling. That is, ifs = (s1; s2; :::; s2m),
R(s) = (s0

1
; s0

2
; :::; s0

m
) is computed by average resampling:

s0
i
= (s2i�1 + s2i)=2, i = 1; 2; :::;m.
Thus, the state transition function in Eq. (1) represents

a simplified mappingf : X � R(S) 7! S at level 1. First,
since the state space cannot be manually designed, we letf
map(x(t);R(s(t))) directly to itself:

s(t+ 1) = (R(s(t); x(t)): (3)

In other words, the next states(t+1) keeps all the informa-
tion of sensory inputx(t) and the re-sampled version of the
current states(t). Given sensory inputsx(0); x(1); :::, this
simplifiedf defines a trajectory of statess(1) = (0; x(0)),
s(2) = (R(s(1); x(1)) and so on. Fig. 3 gives an illustra-
tion of a state at timet = 3, which uses 1-D, 2:1 uniform
resampling. The 2:1 resampling rate reduces the resolution
by a factor of 2 through time. Ifx(t) of a particular sens-
ing modality has low dimensionality but a longer history is
necessary in the state representation, a slower resolution re-
duction rate is necessary. For example, 3:2 or 5:3 ratios can
be used.

3



x(1) x(2) x(3)x’(0)

Figure 3. The state representation att = 3 for 1-D sig-
nal with 2:1 uniform resampling in space, from sensory in-
putsx(0), x(1), x(2), ... . For this illustration,S is an
8-dimensional space.x0(0) is the average ofx(0) and the
initial zeros in the state vector.

3 The Mapping Engine

The two functions (1) and (2) are realized by the same
mapping engine. In the work reported here, teaching is done
by supplying desired action in real time. When action is not
supplied, the system provides the action using the estimated
mapping. In other words, we use supervised learning in the
work reported here.

The developmental algorithm needs to map high dimen-
sional inputs to numerical outputs. We introduce a new
technique to incrementally achieve this mapping. Let us
consider a general regression problem: approximating a
mappingh : X 7! Y from a set of training samples
f(xi; yi) j xi 2 X ; yi 2 Y ; i = 1; 2; : : : ; ng. If yi
was a class label, we could use linear discriminant analysis
(LDA) [6] since the within-class scatter and between-class
scatter matrices are all defined. However, ifyi is a numeri-
cal output, which can take any value for each input compo-
nent, it is a challenge to figure out an effective discriminant
analysis procedure that can disregard input components that
are either irrelevant to output or contribute little to the out-
put. We introduce a new hierarchical statistical modeling
method. Consider the mappingh : X 7! Y , which is
to be approximated by a regression tree, called incremen-
tal hierarchical discriminating regression (IHDR) tree, for
the high dimensional spaceX . Our goal is to automati-
cally derive discriminating features although no class label
is available (other than the numerical vectors in spaceY). In
addition, for real-time requirement, we must process each
sample(xi; yi) to update the IHDR tree using only a mini-
mal amount of computation.

Two types of clusters are incrementally updated at each
node of the IHDR tree — y-clusters and x-clusters, as
shown in Fig. 4. The y-clusters are clusters in the output
spaceY and x-clusters are those in the input spaceX . There
are a maximum ofq (e.g.,q = 6) clusters of each type at
each node. Theq y-clusters determine the virtual class la-
bel of each arriving sample(x; y) based on itsy part. Each
x-cluster approximates the sample population inX space
for the samples that belong to it. It may spawn a child
node from the current node if a finer approximation is re-
quired. At each node,y in (x; y) finds the nearest y-cluster
in Euclidean distance and updates (pulling) the center of

X space

+
+

++
+

+

+

+
+ +

+ +

+
+

+
+

+

+

+
+

+

++

+
+

+
+

+
++

+ +++

+

+ +

+
+

+

+

+

+
+

++

+

+
+

+
+

+

++
+

+
+

+

+
+

+

+
+

+ +++

+

Y space

+

+

+
+++

+

+

+ +

Figure 4. Y-clusters in spaceY and the corresponding x-
clusters in spaceX . The first and the second order statistics
are updated for each cluster.

the y-cluster. This y-cluster indicates which corresponding
x-cluster the input(x; y) belongs to. Then, thex part of
(x; y) is used to update the statistics of the x-cluster (the
mean vector and the covariance matrix). These statistics of
every x-cluster are used to estimate the probability for the
current sample(x; y) to belong to the x-cluster, whose prob-
ability distribution is modeled as a multidimensional Gaus-
sian at this level. In other words, each node models a region
of the input spaceX usingq Gaussians. Each Gaussian will
be modeled by more small Gaussians in the next tree level
if the current node is not a leaf node.

Moreover, the center of these x-clusters provide essen-
tial information for discriminating subspace, since these x-
clusters are formed according to virtual labels inY space.
We define a discriminating subspace as the linear space that
passes through the centers of these x-clusters. A total ofq
centers of theq x-clusters giveq�1 discriminating features
which span(q � 1)-dimensional discriminating space. A
probability-based distance called size-dependent negative-
log-likelihood (SNLL) [7] is computed fromx to each of
theq x-clusters to determine which x-cluster should be fur-
ther searched. If the probability is high enough, the sample
(x; y) should further search the corresponding child (maybe
more than one but with an upper boundk) recursively, until
the corresponding terminal nodes are found.

The algorithm incrementally builds an IHDR tree from a
sequence of training samples. The deeper a node is in the
tree, the smaller the variances of its x-clusters are. When
the number of samples in a node is too small to give a good
estimate of the statistics ofq x-clusters, this node is a leaf
node.

The above incrementally constructed tree gives a coarse-
to-fine probability model. If we use Gaussian distribution
to model each x-cluster, this is ahierarchical versionof the
well-known mixture-of-Gaussian distribution models: the
deeper the tree is, the more Gaussians are used and the
finer are these Gaussians. At shallow levels, the sample dis-
tribution is approximated by a mixture of large Gaussians
(with large variances). At deep levels, the sample distribu-
tion is approximated by a mixture of many small Gaussians

4



(with small variances). The multiple search paths guided
by probability allow a samplex that falls in-between two
or more Gaussians at each shallow level to explore the tree
branches that contain its neighboring x-clusters. Those x-
clusters to which the sample(x; y) has little chance to be-
long are excluded for further exploration. This results in
the well-known logarithmic time complex for tree retrieval:
O(logm) wherem is the number of leaf nodes in the tree,
assuming that the number of samples in each leaf node is
bounded above by a constant.

4 Experiments

4.1 SAIL robot

Figure 5. The SAIL robot built at the Pattern Recognition
and Image Processing Laboratory at Michigan State Univer-
sity.

A real robot called SAIL was assembled at MSU, as
shown in Fig. 5. SAIL robot’s “neck” can turn. Each of its
two “eyes” is controlled by a fast pan-tilt head. Its torso has
4 pressure sensors to sense push actions and force. It has 28
touch sensors on its arm, neck, head, and bumper to allow
human to teach how to act by direct touch. Its drive-base is
adapted from a wheelchair and thus the SAIL robot can op-
erate both indoor and outdoor. Its main computer is a high-
end dual-processor dual-bus PC workstation with 512MB
RAM and an internal 27GB three-drive disk array for real-
time sensory information processing, real-time memory re-
call and update as well as real-time effector controls. This
platform is being used to test the architecture and the devel-
opmental algorithm outlined here.

4.2 Experimental results for the IHDR tree algo-
rithm

Before real-system online tests, we conducted careful
experiments on the performance characteristics of the pro-

posed architecture and the algorithm. Here we present some
experimental results for our mapping engine – IHDR tree
algorithm.

Since the input to our developmental algorithm contains
very high dimensional data, we first show the performance
of the IHDR tree algorithm applied to the face recogni-
tion problem. We treat each face image ofm rows andn
columns as amn-dimensional vector, where each compo-
nent of the vector corresponds to the intensity of each pixel.
The experimental data set used here is face images from the
Weizmann Institute at Israel. The image database were con-
structed from 28 human subjects, each having thirty images
all combinations of two different expressions under three
different lighting conditions with five different orientations.
The preprocessed images have a resolution of88 � 64, re-
sulting an input space of5632. The task here is to classify
images into person’s ID as class label. We used the mean
of all training images of each person as the correspondingy
vector.

The data set was divided into two groups: training set
and testing set. The training set contains504 face images.
Each subject contributed18 face images in the training set.
The18 images include three different poses, three different
lightings, and two different expressions. The remaining336
images were used for the testing set. Each subject had12
images for testing, which include two different poses, three
different lightings, and two expressions. In order to present
enough training samples for the IHDR algorithm to build a
stable tree, we artificially increase the samples by present-
ing training samples to the program20 times (20 epochs).
Table 2 compares different appearance-based methods. We
used95% sample variance in determining the number of ba-
sis vectors (eigenvectors) in the principal component anal-
ysis (PCA). PCA is faster than nearest neighbor (NN) and
shares a similar accuracy. However, the95% of variance
results in about98 eigenvectors which are much less than
that of NN (5632-D!). PCA organized with a binary tree
was faster than straight NN as shown in the Table. It is the
fastest algorithm among all the methods we tested but the
performance is worse than those of PCA and NN. The ac-
curacy of LDA is the third best. Our new IHDR method is
faster than LDA and resulted in the lowest error rate.

We also applied support vector machines (SVM) [5] to
this image set to compare the performance. Support vec-
tor machines utilizes the structural risk minimization prin-
ciple [15]. It results in a maximum separation margin and
the solution depends only on the training samples (support
vectors) which are located on the supporting planes. SVM
has been applied on both classification and regression prob-
lems. We used the SVM software obtained from Royal Hol-
loway, University of London [14] for this experiment. We
used the PCA of the face images as the input features for

5



the SVM2 The best result we obtained by tuning the pa-
rameters of the SVM software is reported in Table 2. The
recognition rate of the SVM with PCA is similar to that of
PCA alone. However, SVM with PCA is faster than PCA.
This is because SVM has more compact representation and
PCA alone needs to conduct linear search for every training
sample.

We compared the error rate of the proposed IHDR al-
gorithm with some major tree classifiers. CART [3] and
C5.0 [13] are among the best known classification trees3 .
However, like most other decision trees, they are univariate
trees in that each internal node used only one input compo-
nent to partition the samples. This means that the partition
of samples is done using hyperplanes that are orthogonal to
one axis. We do not expect this type of tree can work well in
a high dimensional space. Thus, we also tested a more re-
cent multivariate tree OC1 [11]. We realize that these trees
were not designed for high dimensional spaces like those
from images We also tested the corresponding versions by
performing PCA before using CART, C5.0, and OC1 and
call them CART with PCA, C5.0 with PCA, and OC1 with
PCA, respectively.

We have also compared the batch version of this algo-
rithm. The batch version, named hierarchical discriminat-
ing regression (HDR) tree, computes statistics of training
samples in a batch fashion. We expect the batch method
out-perform the incremental one. However, the error rate
of IHDR tree is lower than that of HDR tree for this set of
data. The reason is that the same training samples might
distribute in different leaf nodes for the IHDR tree because
we run several iterations during training. For batch version,
each training sample will only be allocated in one leaf node.

Table 2. The performance for Weizmann face
data set

Method Error rate Avg. testing time (msec)
PCA 12.8% 115

PCA tree 14.58% 34
LDA 2.68% 105
NN 12.8% 164

SVM with PCA 12.5% 90
C5.0 with PCA 45.8% 95
OC1 with PCA 44.94% 98

HDR tree 1.19% 78
IHDR tree 0.6% 74

2The software failed when we used the original image input with di-
mensionality5362.

3We have experimented the same data set using CART implemented by
OC1. The performance is significantly worse than those reported in the
Table 2.

4.3 Experiments with autonomous navigation
problem

A vision-based navigation system accepts an input image
X and outputs the control signalC to update the heading di-
rection of the vehicle. The navigator can be denoted by an
functionf that maps the input image spaceX to control sig-
nal spaceC. The learning process of the autonomous navi-
gation problem then can be realized as a function approxi-
mation. This is a very challenging task since the function to
be approximated is for a very high dimensional input space
and the real application requires the navigator to perform in
real time.

-21 -19 -17 -15 -13 -11 -9 -7

-5 -3 -1 0 1 3 5 7

9 11 13 15 17 19 21 23

Figure 6. A subset of images used in autonomous naviga-
tion problem. The number right below the image shows the
needed heading direction (in degrees) associated with that
image.

We applied our IHDR algorithm to this challenging prob-
lem. Some of the example input images are shown in Fig 6.
Totally 318 images with the corresponding heading direc-
tions were used for training. The resolution of each image
is 30 by 40. We used the other204 images to test the perfor-
mance of the trained system. Fig 7 shows the maximum er-
ror rates and the mean error rates versus the number of train-
ing epochs. Both maximum error and mean error converge
around the 15th epoch. Fig 8 gives plots of the histograms
of the error rates at different epochs. As shown even after
the first epoch, the performance of the IHDR tree is already
reasonably good. With the increase of the epochs, we ob-
served the improvement of the maximum error and mean
error. The improvement stopped at the 15th epoch because
we did not use any new training samples in each epoch and
the system has perfectly fit the existing training data set. our
test on real mobile robot has shown that a system of such an
error level can navigate the robot very reliably for hours un-
til the batteries are exhausted.

We also compare our experimental results with two ar-
tificial neural networks (ANN). with a consideration that
the pattern-by-pattern training mode of artificial neural net-
works is also an incremental learning method. A two-

6



0 5 10 15 20 25 30
0

5

10

15

20

25

30

M
ax

. e
rr

or
(d

eg
re

e)

Epochs

Resub

Test

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

M
ea

n 
er

ro
r(

de
gr

ee
)

Epochs

Resub

Test

(a) (b)

Figure 7. The performance of the autonomous naviga-
tion. (a) The plot for maximum error rates vs. epochs. (b)
The plot for mean error rates vs. epochs. The solid line rep-
resents the error rates for resubstitution test. The dash line
represents the error rates for the testing set.

Table 3. The performance for vision-based
navigation

Algorithm Mean error (degree) Max. error (degree)
Resub. Testing set Resub. Testing set

FF 1.02 2.00 10 12
RBF 1.53 1.84 12 12

IHDR tree 0.00 1.25 0 13

layer feed-forward (FF) network and a radial basis function
(RBF) network were used to train and test for the mapping
from the image space to control signal space using the same
data set as used in our IHDR tree algorithm. Both resub-
stitution (resub.) method and disjoint testing were applied
among those three algorithms. The results are listed in Ta-
ble 3 which shows that our algorithm outperforms these two
ANN methods.

4.4 Test for developmental algorithm

We run the developmental algorithm on the SAIL robot.
Since tracking objects and reaching objects are sensorimo-
tor behaviors first developed in early infants, we trained our
SAIL robot for two tasks. In the first task, called finding-
ball task, we trained the SAIL robot to find a nearby ball and
then turn eyes to it so that the ball is located on the center
of sensed image. In the second task, called reaching task,
we trained the SAIL robot to reach for the object once it has
been located and the eyes fixate on it.

Existing studies on visual attention selection are typi-
cally based on low-level saliency measures, such as edges
and texture [1]. In Birnbaum’s work [2], the visual attention
is based on the need to explore geometrical structure in the
scene. In our case, the visual attention selection is a result
of past learning experience. Thus, we do not need to de-

−20 −10 0 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Degree

P
er

ce
nt

ag
e

−20 −10 0 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Degree

P
er

ce
nt

ag
e

(a) (b)

−20 −10 0 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

−20 −10 0 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Degree

P
er

ce
nt

ag
e

(c) (d)

Figure 8. The histograms of the error rates. Plot (a), (b),
(c), and (d) correspond to the histograms at epoch 1, 6, 11,
20, respectively.

Figure 9. Real-time training and testing for developmen-
tal SAIL robot: finding the nearby ball and then reaching
for it.

fine any task-specific saliency features. It is the SAIL robot
that automatically derive most discriminating features for
the tasks being learned. At the time of learning, the ball was
presented in the region of interest (ROI) inside the stereo
images. The human trainer interactively pulls the robot’s
eyes toward the ball (through the touch sensors for the pan-
tilt heads) so that the ball is located on the center of the
region of ROI (fixating the eyes on the ball). The inputs to
the developmental algorithm are the continuous sequence of
stereo images and the sequence of the pan-tilt head control
signal. Three actions are defined for the pan-tilt head in pan
direction: 0 (stop), 1 (move to the left), or -1 (move to the
right). The size of ROI we chose for this experiment is de-
fined as120�320. In the mind of trainer, the ROI is divided
into five regions so that each region is of size120�64. The

7



Table 4. The performance for the finding ball
task

Row Column 2D
Average error (pixels) 12.9 6.8 14.58

Table 5. The performance for the arm reaching
task

Row Column 2D
Average error (pixels) 16.2 9.0 18.53

goal of the finding-ball task, is to turn the pan-tilt head so
that the ball is at the center region. Five training sessions
were conducted on line in real time. In each session, the
ball were presented at different five different regions. Dur-
ing testing, four test sessions were conducted to evaluate the
performance of the training sessions. The evaluation results
are listed in the Table 4.

The task of reaching is in fact to establish the coordi-
nation between eye and the arm in any eye direction. The
robot arm either turn left or right according to the pan-tilt
positions. This training session was also achieved by inter-
actively turning the robot arm by pressing its touching sen-
sors. The numbers of training and testing sessions for the
reaching task are the the same as the corresponding ones for
the finding-ball task. The evaluation result is shown in the
Table 5.

5 Conclusions

We introduced here a new kind of robots: robots that can
develop automatically through real-time interactions with
the environment. A technical challenge for the developmen-
tal algorithm is the mapping engine that scalable — keeping
real-time speed and a stable performance for a very large
number of high dimensional vector data. With our powerful
mapping engine, the developmental algorithm is able to op-
erate in real time. The SAIL-2 developmental algorithm has
successfully run on the SAIL robot for real-time interactive
training and testing for two sensori-motor tasks: finding ball
and reaching the centered ball, two early tasks that infants
often learn to perform. Since the developmental algorithm
is not task specific, we plan to train the SAIL robot for other
more tasks to study the limitation of the current SAIL-2 de-
velopmental algorithm as well as the SAIL robot design.

References

[1] Martin Bichsel. Strategies of Robust Object Recognition for
the Automatic Identification of Human Faces. Swiss Federal
Institute of Technology, Zurich, Switzerland, 1991.

[2] Lawernce Birnbaum, Matthew Brand, and Paul Cooper.
Looking for Trouble: Using Causal Semantics to Direct Fo-
cus of Attention. InProc of the IEEE Int’l Conf on Computer
Vision, pages 49–56, Berlin, Germany, May 1993. IEEE
Computer Press.

[3] L. Breiman, J. Friedman, R. Olshen, and C. Stone.Classifi-
cation and Regression Trees. Chapman & Hall, New York,
1993.

[4] R. Brooks. Intelligence without reason. InProc. Int’l
Joint Conf. on Artificial Intelligence, pages 569–595, Syd-
ney, Australia, August 1991.

[5] C. J. C. Burges. A tutorial on support vector machines for
pattern recognition.Data Mining and Knowledge Discovery,
2(2):121–167, 1998.

[6] K. Fukunaga.Introduction to Statistical Pattern Recognition.
Academic Press, New York, NY, second edition, 1990.

[7] W. Hwang, J. Weng, M. Fang, and J. Qian. A fast image re-
trieval algorithm with automatically extracted discriminant
features. InProc. IEEE Workshop on Content-based Access
of Image and Video Libraries, pages 8–15, Fort Collins, Col-
orado, June 1999.

[8] Jr. J. R. Deller, Jone G. Proakis, and John H. L. Hansen.
Discrete-Time Processing of Speech Signals. Macmillan,
New York, NY, 1993.

[9] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforce-
ment learning: A survey.Journal of Artificial Intelligence
Research, 4:237–285, 1996.

[10] P. Langley. Machine learning for intelligent systems. In
Proc. 14th National Conf. on Artificial Intelligence, pages
763–769, Providence, RI, July 1997.

[11] S. K. Murthy. Automatic construction of decision trees from
data: A multidisciplinary survey.Data Mining and Knowl-
edge Discovery, 1998.

[12] M. L. Puterman.Markov Decision Processes. Wiley, New
York, NY, 1994.

[13] J. Quinlan. Introduction of decision trees.Machine Learn-
ing, 1(1):81–106, 1986.

[14] C. Saunders, M. O. Stitson, J. Weston, L. Bottou,
B. Schlkopf, and A. Smola. Support vector machine refer-
ence manual. Technical Report CSD-TR-98-03, Royal Hol-
loway, University of London, Egham, UK, March. 1998.

[15] V. Vapnik. The Nature of Statistical Learning Theory.
Springer-Verlag, New York, 1995.

[16] J. Weng and S. Chen. Vision-guided navigation using
SHOSLIF.Neural Networks, 11:1511–1529, 1998.

8


