
From exploration to imitation: using learnt internal
models to imitate others

Anthony Dearden and Yiannis Demiris1

Abstract. We present an architecture that enables asocial and social
learning mechanisms to be combined in a unified framework on a
robot. The robot learns two kinds of internal models by interacting
with the environment with no a priori knowledge of its own motor
system: internal object models are learnt about how its motor system
and other objects appear in its sensor data; internal control models
are learnt by babbling and represent how the robot controls objects.
These asocially-learnt models of the robot’s motor system are used to
understand the actions of a human demonstrator on objects that they
can both interact with. Knowledge acquired through self-exploration
is therefore used as a bootstrapping mechanism to understand others
and benefit from their knowledge.

1 Introduction

A robot, like humans and other animals, can learn new skills and
knowledge both asocially, by interacting with its environment, and
socially, by observing the actions of other agents [23, 20]. Interac-
tion enables a robot to learn basic low-level models about its own
motor system - for example, the appearance of its motor system and
how it is controlled [1]. There is, however, a limit to what a robot
can learn efficiently just from its own actions. To learn higher-level
models, involving sequences of actions or the position of interesting
objects for example, the role of other agents in the robot’s environ-
ment becomes important. Social learning mechanisms such as imi-
tation have been shown to be a powerful way to transfer knowledge
from one agent to another [5, 22]. In robotics this has the particu-
lar advantage of relieving the user of the necessity of programming
hard-coded knowledge, and instead allowing them to teach actions or
movements by demonstration.

Many existing asocial and social models of learning in robotics are
based, to varying degrees, on psychological or neuroscientific models
of learning in animals, and in particular humans, e.g. [24, 18, 4].
The benefit of turning to the biological sciences for inspiration in
robotic learning architectures is clear. Human infants are capable of
effortlessly combining learning from both their own interactions, and
the actions of a caregiver. Both asocial and social learning methods
have previously been studied separately in robotics. In this paper, we
present an architecture that enables these learning mechanisms to be
combined in a unified framework. The underlying components of this
architecture are internal models, internal structures or processes that
replicate the behaviour of the robot’s environment [11]. In this work
we describe how the robot can learn two specific kinds of internal
models: Internal Object Models (IOMs), which model the state of

1 Department of Electrical and Electronic Engineering
BioART group, Imperial College London
E-mail: {anthony.dearden99, y.demiris}@imperial.ac.uk

Figure 1. Overview of the learning software.

objects such as the robot’s or a demonstrator’s motor system, and
Internal Control Models (ICMs), which model how the state of these
objects can be controlled by the robot.

Drawing inspiration from motor babbling in infants [13], a sys-
tem is presented that enables a robot to autonomously learn internal
models with no a priori knowledge of its motor system or the exter-
nal environment. Using the HAMMER architecture [5], the models
that the robot learns of its own motor system are used to understand
and imitate the actions of a demonstrator. Although learning is pos-
sible from observing movements, for example gestures, that do not
involve interacting with objects, we are particularly interested in ob-
ject manipulation.

Figure 1 shows an overview of the software components control-
ling the robot. Although the results are divided between the sections
in this paper, each component runs simultaneously on the robot. Fig-
ure 2 shows the experimental setup. The robot used was an Active-
media Peoplebot, a mobile robot with a pan-tilt camera and a gripper.

in Proceedings of the AISB-2007, pp. 218-226, (2007)

Figure 2. The experimental setup.

2 Discovering internal object models from visual
data

Before a robot can learn how to control its environment, it needs to
be able to model its environment. The robot’s environment here is
considered to consist of:

1. Its own motor system;
2. External, independent objects that its motor system can interact

with;
3. The motor system of other agents.

IOMs are used by the robot to track and represent the state of these
objects. There are clearly more properties that could be modelled,
such as the position of walls, but these are not needed by a robot to
imitate actions applied to objects.

In this work we are interested in vision-based robots - vision of-
fers the richest information about the scene, despite the complexi-
ties involved in processing. A visual tracking system such as colour
histogram-based tracking or even a full 3D tracking system could be
used to find and track objects. The robot is much more autonomous,
however, if it can discover objects for itself. Instead of being told
about the appearance of objects, it would be able to learn about their
appearance from the low-level vision data it receives. In [6, 14], vi-
sual knowledge acquired through experimentation and segmentation
of motion history images is used at the image processing level to find
interesting regions, which can be classified as objects. The focus in
this work, however, is not currently on how new objects could be
discovered and classified through interaction, but how they can be
controlled and and used for imitation.

Algorithm 1 runs online to learn IOMs, with low-level input from
the movement of pixel-level features in the scene tracked using the
KLT optical flow algorithm [12]. Instead of calculating the optical
flow for every point in the image, which would be inefficient and in-
accurate, only corner features are tracked; these points are the easiest
to track robustly. New points are automatically tracked and dropped
as the robot’s camera moves or new objects enter the scene.

Algorithm 1 Learning IOMs from optical flow data
• The input is a list of tracked optical flow points. Each point, p, is

defined by its position and velocity in 2D space, {x,y,dx,dy}.
• The output is a list of objects. Each object is defined as the mean

and covariance of its state, O = {X,Y,DX,DY}.
• If objects have previously been detected:

– Given the previous state of the object, O[t-1], estimate its cur-
rent state, O[t]. This prediction can be done using basic dy-
namic information, or if they have already been learnt, using a
forward prediction from the internal models given the previous
motor commands.

– For each optical flow point, on each existing object, O[t], calcu-
late the probability this point is part of that object - P(p | O[t]).

– If P(p | O[t]) is greater than a threshold probability, pthresh,
assign it to object O.

• Whilst there are unassigned points:

– Create a new object Onew using one unexplained point as a
‘seed’.

– Add other points for which P(p | Onew) is greater than the
threshold probability, pthresh.

– Update the mean and covariance of the object’s state.

– Repeat until all points are modelled, or no more points can be
successfully modelled.

• Update the mean and covariance of each object’s state with the
new sensor data.

Algorithm 1 details how the IOMs are created and tracked by re-
cursively clustering tracked points together. Unlike other clustering
algorithms, such as K-means, the number of clusters does not need to
be specified beforehand - this is important, because the robot should
be capable of adapting to different numbers of objects. Instead, a
probabilistic threshold of the variation in optical flow determines
when points are added to or removed from IOMs - a value of 0.7
was found to work well.

The shape of objects can be estimated by fitting a convex hull to
the clustered points, and by using the mean and the covariance of
all optical flow points clustered to an object. The elements of the
state vector of an IOM is defined by its position, size and shape. It is
not just objects that can be tracked by this algorithm; the pan and tilt
movement of the camera is tracked by clustering according to tracked
points’ velocities.

Clearly, objects cannot be detected unless they move. If the objects
are part of the robot’s own motor system, then it can discover them
as it issues motor commands. If they are objects the robot could only
interact with indirectly (such as the object in figure 3), then the robot
has to either nudge into it, or be shown to it by a human teacher by
shaking or waving the object.

Figure 4 shows the tracking of objects in an experiment. The
robot’s grippers are detected as soon as it starts to explore its motor
system. The human hand and the object is detected when the human
teacher moves. Figure 5 shows how the robot can also detect non-
motor system objects by disturbing them with its own motor system.

Figure 3. Moving image regions are clustered together; these regions are
the robot’s IOMs - internal models of where objects are in the scene. In this
example, the grippers were moved by the robot, and the biscuit box object
was shaken by a human demonstrator to make the robot aware of it. The

thick black lines are the convex hull, and the thin ellipse shows represents
the mean and covariance of the optical flow points’ positions.

Figure 4. The movement of the IOMs in an experiment, as the grippers
open and close and a human hand pushes a box of biscuits.

2.1 Classifying IOMs
A robot cannot imitate until it knows:

1. What it should imitate with;
2. Who to imitate;
3. What objects the imitation should involve;

This is equivalent to classifying objects in the environment accord-
ing to how they can be controlled. The three kinds of IOMs are:
self IOMs, objects that are part of the robot’s own motor system and
can be directly controlled; demonstrator IOMs, objects that are part
of the demonstrator’s motor system and cannot be controlled; and
shared IOMs, objects that both the demonstrator and the robot can
control indirectly. The imitation task considered here is for the robot
to replicate, using its own motor system, the actions that the demon-
strator takes on a shared object.

Figure 5. The robot can discover objects by moving them with its own
motor system. The top images show frames from the robot ‘babbling’ in the
environment. The bottom frames show the IOMs the robot has discovered

before and after the movement.

The robot can learn to distinguish self IOMs from the other IOMs
using the ICMs it has learnt for how to control IOMs. If a robot
can directly control the state of an IOM, then it can classify it as
its own motor system. Differentiating between active, demonstrator
IOMs and passive, shared IOMs is more difficult because the robot
can control neither. To solve this problem, the order in which ob-
jects are discovered is used. Shared IOMs do not move of their own
accord, and therefore must be discovered by either being moved by
the demonstrator or the robot. Therefore if an object is discovered
close (less than 10 pixels) to the position of an existing object, it is
classified as a shared IOM.

3 Internal control models

ICMs are used by a robot to model and learn how its motor command
changes the state of IOMs. They are used as forward models to pre-
dict the consequences of its motor actions, or as inverse models to
estimate the motor commands that will lead to a desired object state
[1]. Coupling inverse and forward models gives a robot the ability
to perform internal simulations of actions before physically execut-
ing them; through the Simulation Theory approach of the HAMMER
architecture, these internal simulations can be used for action recog-
nition and imitation [8, 17, 4].

A learnt ICM will not be able to completely accurately model a
robot’s motor system - errors will occur because of incorrect models,
insufficient or noisy training data or the necessarily simplified inter-
nal representations of the model. The system that is being modelled
may itself be stochastic. To overcome this uncertainty, it makes sense
for an ICM to include information regarding not just its prediction,
but how accurate it expects that prediction to be. This inaccuracy can
be modelled by representing the internal model as a a joint probabil-
ity distribution across the motor commands and and the state of ele-
ments of the robot’s environment. The uncertainty in the model can
be estimated from the variance of this distribution. Giving the robot
information about the uncertainty of its internal models enables it to
estimate how accurate, and therefore how useful, its internal models’
predictions are - if multiple models are learnt, their predictive ability
can be compared using the variance of their predictions. Section 5

shows how the robot can also use the variance in prediction to guide
its exploration.

The basic elements of ICMs are the robot’s motor commands and
the state of the objects it has discovered - which are either part of its
motor system or other objects. ICMs represent the causal structure

Random variable Description
M1:N [t− d] Motor commands for N degrees of

motor freedom, with different possible
delays, d

Sx[t], Sy [t],
Sdx[t], Sdy [t] ...

The state of each object - its position
and velocity. For more complex

objects, more statistical information
can be calculated from its convex hull

Sx[t− 1], Sy [t− 1],
Sdx[t− 1], Sdy [t− 1] ...

The state of each object at the previous
time step

P1[t], P2[t] Proprioception information from other
sensors, such as the touch sensors on

the robot’s grippers

Table 1. The variables the robot can use for its internal model. The robot
has to learn Bayesian network structures and parameters using these

variables as nodes on the network.

of how these elements interact as a Bayesian network [19]. Bayesian
networks are used in [7] to model how infants develop and test causal
relationships. Here, we have taken this idea and applied it to the mo-
tor system of the robot. Figure 8 in section 4 shows an example of the
Bayesian network structures that the robot learns. The motor com-
mands and state of the IOMs are the random variables (nodes) in the
Bayesian network, and the causal relationships between them are rep-
resented with arcs. The Bayesian network represents a learnt proba-
bility distribution across N possible motor commands, M1:N [t− d],
the current states and previous states of the each object Sx[t], Sy[t],
Sdx[t], Sdy[t], and the state of the proprioception feedback from the
robot (e.g. gripper touch sensors). The variable d represents the delay
between a motor command being issued and robot’s state changing;
in real robotic systems it cannot be assumed that the effect of a mo-
tor command will occur after just one time-step, so this is a param-
eter that the robot must model and learn. Table 1 shows the possible
components of each internal model’s Bayesian network. A benefit
of using Bayesian networks to represent internal models is that their
causal structure is understandable by a human. They can therefore be
used to verify the correctness of what the robot is learning.

3.1 Learning through exploration

Practically any environment a robot works in will change, or have
properties which cannot be modelled beforehand. Even if the envi-
ronment is assumed to be completely predictable, endowing the robot
with this knowledge may be beyond the abilities or desires of its pro-
grammer. A truly autonomous robot, therefore, needs to be able to
learn and adapt its own internal models of its external environment.
Unlike most machine learning situations, a robot has active control
over the commands it sends to its as yet unknown motor system; this
situation, where a learner has the ability to gather its own training
data, is referred to as active learning [9]. Having the ability to inter-
act with the system you are trying to model has the advantage that
the data can be selected either to speed up the learning process, or to
optimise the learnt model to be most useful for a particular task. The
simplest way for a robot to learn about its environment through in-
teraction is to issue random motor commands. This ‘motor babbling’

was used to learn internal models for a robot’s grippers in [1]. A more
sophisticated technique is to use an estimate of the ICM’s prediction
variance as function of motor command, C (m, t). The actual mo-
tor command issued is the one expected to minimise this error. This
technique was used to learn the control of a pan-tilt unit on both a
real robot [2] and a camera in a football game simulation [3].

The decisions a robot makes about how to interact with the envi-
ronment become more complex as more degrees of freedom (DOF)
of the motor system or more exploration strategies are introduced.
The robot has to decide what DOF or objects to learn about, not
just what motor commands to send to its motor system. Instantly
exploring all DOF at same time would take exponentially longer as
the number of exploration possibilities increases. It would also lead
to many more internal models having to be learnt simultaneously,
which is computationally expensive. A developmental approach can
be used to control how a robot explores its environment; more specif-
ically, the robot needs to be able to decide on two things:

• When should the current exploration strategy be stopped?
• What should the next exploration strategy be?

We want the robot to realise when its current exploration strategy
is not increasing the quality of the models it is learning. This infor-
mation is available from the model learning system as the rate of
change of the most accurate model’s prediction variance, C (m, t)−
C (m, t− 1). When this approaches zero, the robot knows the cur-
rent exploration strategy is not improving the quality of the model.
This is similar to using a ‘meta-model’ to estimate a predicting
model’s error to guide exploration [18].

The second question relates to what the robot should do next. The
robot’s goal is to learn models that explain how objects in its environ-
ment move. In the absence of any human intervention, the only cause
of this can come from the robot’s own interventions. In this situation,
the robot can keep on exploring new degrees of freedom. Currently
the degrees of freedom a robot explores are released in order of their
distance from the vision system (camera movement, gripper move-
ment then robot wheel movement).

3.2 Online learning of multiple internal models
ICMs consist of a structure, which represents how particular mo-
tor commands affect particular states of objects, and the parameters
of the particular probability distribution being used for the model.
Learning the parameters of a particular model is an online learn-
ing problem, with motor commands being the input data and IOMs’
states being the output data. In the results here two types of distribu-
tions were used to represent the conditional probability distributions
of the Bayesian network. For discrete motor commands such as the
gripper controls, Gaussian distributions were used. The mean and the
variance of the distribution are estimated recursively as:

µ [t] =
t

t + 1
µ [t− 1] +

1

t + 1
S [t]

C [t] =
t

t + 1
C [t− 1] +

1

t + 1
(S [t]− µ [t])2

For continuous motor commands such as the robot’s pan-tilt unit
control the conditional probability distributions can be represented
using the non-parametric LWR algorithm [15]. The results of previ-
ous trials are stored in memory and used to predict the consequence
of future trials by performing linear regression on the set of data in

Algorithm 2 Learning multiple ICMs
• For the current motor command(s) being explored, multiple inter-

nal models are formed for the motor system. Table 1 shows the
search space for possible model structures for a given motor com-
mand.

• At each timestep, the state of objects, s1...sn, in the scene is esti-
mated by the vision system using algorithm 1.

• Each model predicts what it expects the states of the objects and
interactions to be given the previous motor command. This is
given as a Gaussian distribution: P (S1...Sn | M [t− d] = m) ∼
N (µ, C)

• The likelihood of each model’s prediction is calculated:
P (S1...Sn = s1...sn | M [t− d] = m). This gives a metric for
how well each candidate model is performing.

– If processing or memory resources are limited, models with
consistently low scores can be removed, as they are unable to
predict accurately.

– Objects which are moving in an unpredictable way, such as hu-
mans or objects they are interacting with, will have low likeli-
hoods for all model predictions. This can be used by the robot
to find objects which are not part of its motor system, which it
may want to interact with.

• If the variance of the most accurate model’s prediction converges,
i.e. C (m, t) − C (m, t− 1) ≈ 0, then the robot’s exploration of
this motor command is not improving the accuracy of model. This
is the cue to try a new exploration strategy.

memory, which is weighted according to its distance from the query
point. Various other distribution types exist that can be learnt online
but these methods were chosen principally for their quick conver-
gence properties and ease of implementation [16].

The learnt structure of the Bayesian network represents which mo-
tor commands control which objects. The task of the robot is to
search through the space of structures connecting every possible ran-
dom variable to find the one that maximises the likelihood of the
sensor data given the evidence, which here is the state of the objects
given the sensor data. In this situation, learning the structure is sim-
plified by the fact that the most recently observed change can be most
likely explained by the most recent motor command issued. Further-
more, motor commands are always the parent node of the Bayesian
network, as none of the other variables being modelled can influence
it.

The online internal model learning system works by simultane-
ously training multiple possible internal model structures, and is de-
scribed in algorithm 2. One difference between the models learnt
here and those learnt by similar systems such as mixture of experts
[10], is that there is no need for a responsibility estimator module to
decide when each individual internal model should be used. Instead,
as each model learns to estimate what the variance of its prediction
is, C (m, t) , the ‘responsible’ model is chosen as the one with the
smallest variance for a given prediction.

As multiple ICMs are trained, their prediction variance converges.
In the experiments performed here, using models for estimating dif-
ferent delays in the motor-sensor system, the model which predicts
most accurately is for the delay d=5 timesteps, equivalent to 0.33
seconds. This is reasonable given the latencies of the motor system
and the lags which are present in the vision capture system. Figure 6
shows how this model’s prediction varies as it is being learnt . The

Figure 6. The robot learns online the mean and variance (shown with the
error bars) of its velocity as it ’babbles’ forwards and backwards. This is the
prediction from the most accurate model, for which d=5. The large spikes in

the actual data are because of dropped frames from the camera; the robot
models this as noise.

error bars on the graph show the variance in the prediction, C (m, t).
Figure 7 compares two model structures being learnt for the wheel
velocity motor command, which moves the robot forwards or back-
wards. Interestingly, the model it learns relates to how the motor
command affects the position of objects in its environment: mov-
ing forward makes objects in front of it move closer. Figure 8 shows
the structures of the internal models which the robot learns to be the
most accurate for predicting the effects of its gripper and its wheel
velocity motor commands.

This learning system is similar to the HAMMER architecture [5],
used by the robot to perform imitation with learnt models in section
4, as it involves multiple competing internal models. The difference
when learning is that the command fed to the motor system is not
related to the models’ predictions. Instead the predicted variance,
C (m, t), and its rate of change, C (m, t) − C (m, t− 1), is used
by the active learning system to control how the robot interacts with
the environment.

4 Imitating interactions using learnt internal
models

The previous sections introduced the two types of internal models a
robot learns from exploration: models of the objects in its environ-
ment, IOMs, and models of how to control them, ICMs. The HAM-
MER architecture presented here allows the robot to use these mod-
els to learn how to manipulate objects by observing the actions a
demonstrator takes; we assume here that the robot has already learnt
to classify IOMs, as discussed in section 3, so it knows the object to
imitate (the demonstrator), the object to act with, and the object the
action is performed on.

ICMs can be used directly as inverse models to imitate movements
[1], but their usefulness is limited; they only model low-level motor
commands and the sensory consequences over short time periods.
The robot is unable to learn long term models from exploration be-
cause the motor commands it has available to explore with are all
low-level commands: we are not assuming the existence of higher-
level pre-programmed ‘motor primitives’ that control complex move-
ments over multiple degrees of freedom.

Figure 9. The imitation architecture, using internal models learnt through exploration.

Despite being of limited use on their own, asocially learnt inter-
nal models provide the building blocks of the imitation architecture,
shown in figure 9 . A generative approach to imitation is used: the in-
ternal models of the robot’s motor system are used to understand the
observed movements of a demonstrator by generating motor com-
mands that will produce the closest match to this movement. The
most important part of the system is the forward models, which pre-
dict how a motor command will change the state of objects.

These forward models are created from the learnt ICMs, and en-
able the robot to simulate numerous different motor commands. In
the current set of experiments, the total number of commands is suf-
ficiently small that each possible motor command can be simulated.
In general, with limited computational resources and more degrees
of freedom, this will not be the case. Future work will use the ICMs
as inverse models to provide a smaller subset of relevant motor com-
mands to simulate.

Internal models are learnt relative to the robots own visual system,
so it has no way of directly understanding the actions it perceives
others taking. Indeed, the robot’s own motor system may not be ca-
pable of imitating the complex gestures and actions of a human motor
system because of the different morphology. To overcome this ‘cor-
respondence problem’, the observed action is represented, not using
the states of the objects, but by the difference between the states of
IOMs. This enables the interaction between the demonstrator and the
shared object to be modelled in the same coordinate system as the in-
teraction between the robot and the shared object.

The information about object interactions is a continuous stream
of data. To perform the imitation at a more abstract level the sequence
is split into sub-goals using peaks in the spatio-temporal curvature of
the interaction distance between objects, as shown in figure 10. This
technique is used in [21] to perform gesture recognition of humans
by splitting the action into a sequence of movements. It is used here
to find a sequence of interactions between objects; each element in
the sequence is a sub-goal for the robot to imitate. By breaking a con-

tinuous stream of interaction data up into a set of key points in the
interaction, the represented action and imitation is now independent
of the specific timings involved in the movement - for most actions,
it is the sequence of states in the movements that are important, not
the time between the movements. Splitting a demonstration into a se-
quence also means it can easily be recognised if demonstrated again.
Figure 11 shows screen-shots of the first three sub-goals extracted
from an object interaction.

The confidence function’s role is to assign a value to each possible
motor command according to how close the robot estimates it will
move it to the current sub-goal state. The confidence of each motor
command, m, is calculated as:

confidence(m) = exp

(
−

(
abs

(
Ŝself,m − Ŝshared,m

)
−Gn

)2
)

where Gn is desired interaction distance of the current sub-goal,

and abs
(
Ŝself,m − Ŝshared,m

)
is the predicted distance between

the self IOM state and the shared IOM state. Confidences are higher
for motor commands that make the robot’s predicted motor system
interaction with an object closest to the desired interaction. The con-
fidences displayed in the graphs are normalised to sum to 1 at each
time step for easy visualisation. To imitate a demonstrated sequence,
the robot uses the motor command with the highest confidence.

The imitation process can be carried out entirely in simulation and
visualised to the demonstrator. Figure 12 shows the simulated con-
sequences of the robot imitating the first two sub goals of a demon-
strated sequence. The simulation enables the intentions of the robot
to be communicated to the demonstrator before executing them. The
demonstrator can use this information to stop the robot performing
an incorrect imitation, and potentially find out what is incorrect in
the robot’s knowledge. Future work will involve looking at how the
demonstrator can become a more active element in the robot’s de-
velopment by adapting his actions according to visualisations of the

Figure 7. The predictions of two internal model structures for estimating
the effect of the velocity motor command as the robot ‘babbles’ forwards

and backwards. The top one can be seen to be the most accurate because it
has the lowest estimated prediction variance, shown with the error bars. The

structure of this model is shown in figure 8.

Figure 8. The most useful Bayesian network structures learnt for the
gripper motor control (left) and the wheel velocity motor command (right).

Both show that the motor commands affect the position of objects in the
scene by changing their velocity. It has also learnt that the grippers’ touch

sensor can be used to predict how the grippers move.

robot’s current knowledge. Figure 13 shows the confidence for mul-
tiple motor commands in simulation for the first two sub-goals: the
robot moves forward, opens its gripper to touch the object, and then
closes its gripper to move away.

The same architecture is used to make the real robot imitate an in-
teraction with an object. Unlike the simulation, the state of the robot

Figure 10. Extracting key points to imitate from an interaction sequence,
shown in black circles. These points are extracted from peaks in the

spatio-temporal curvature of the distance between the robot’s motor system
and the object it wishes to interact with.

Figure 11. The first three sub-goals being imitated, extracted using the
spatio-temporal curvature. Even though this action is occurring as the robot
learns to control its gripper system, it is able to recognise it as an interesting
action to imitate because neither the human hand nor the pack of biscuits can

be accurately explained by its internal models.

and the objects are not updated using the simulation, but with feed-
back from its vision system. Figure 14 shows the confidence of each
motor command as the robot imitates the demonstrated interaction.
Figure 15 shows screen-shots from an imitation.

In both the simulation and on the robot the observed interaction
is successfully imitated. There are some interesting differences be-
tween the real system and the system simulated with the internal
models. The real robot finishes the interaction in less time than the
simulation. This is due to drift in the simulation, as errors in the in-
ternal models accumulate over time. When the gripper is fully open
on the real robot, the open gripper command receives a lower con-
fidence. As figure 8 shows, the ICMs had learnt during babbling
that the gripper proprioception sensor data affected how the grip-
pers move - when the gripper is fully open, the open gripper motor

Figure 12. The simulated visualisation of the IOMs as the robot tries to
touch the biscuits (left) and then moves away (right). The ellipses represent
the means and covariances of the predicted objects’ position, and the arrows
show the direction of movement. Note that all aspects of this simulation, the
appearance of the objects and their control with the motor system, are learnt
from exploration. This is why the biscuits do not collide with the gripper; the

robot has not learnt that objects can move when touched by other objects.

Figure 13. The progress of confidences of each learnt internal model in
simulation as the robot tries to touch the object of interest. After this, the first
goal state has been reached so the robot moves its grippers away to approach

the next sub-goal.

command will not have any effect and will therefore not be useful in
achieving the goal of moving the gripper closer to the object. This in-
formation is not available, however, in the simulation as the internal
models do not currently learn when the proprioception information
changes, just how to use it. The confidence values of the open grip-
per and move forward motor commands in the simulated imitation
oscillate. This is because the simulation, unlike the robot, does not
currently allow multiple motor commands to be issued simultane-
ously, so the two most appropriate motor commands end up being
executed alternately.

5 Discussion
The purpose of both exploration and imitation presented in the ex-
periments here is to enable a robot’s knowledge and motor control
ability to develop. So far, the process we have described is one-
directional: the robot learns basic internal models and uses these to
copy interactions on objects that both it and a human demonstra-
tor can control. We are currently looking into the next stages of this
teacher-imitator relationship, whereby imitation is not the final goal
of the robot, but another process in its developmental repertoire that

Figure 14. The progress of confidences of each motor command on the
actual robot as the robot tries to imitate an interaction with the object.

Figure 15. Frames 0, 50, 120 and 150 from the same imitation experiment
as as figure 14.

is used to help it to learn.
Further results and experiments are currently being performed for

more degrees of freedom in the robot’s motor system, such as using
its pan-tilt unit. With no a priori knowledge, the information avail-
able about the interactions is limited by the properties of objects the
vision system can represent. Currently this is just the position and
size of objects. This is why the only interaction the robot is currently
capable of is object ‘nudging’. Future work will involve investigating
how the robot can attempt different interactions with the same objects
so as to learn more detailed ways of interacting. This involves mod-
elling more complex representations of objects and their interactions.

ACKNOWLEDGEMENTS
This work has been supported through a Doctoral Training Award
from the UK’s Engineering and Physical Sciences Research Council
(EPSRC), and through a bursary from BBC Research. The authors
would like to thank the members of the BioART team at Imperial
College and Dilly Osbahr for their comments.

References
[1] A. Dearden and Y. Demiris. Learning forward models for robotics. In

Proceedings of IJCAI 2005, pages 1440–1445, 2005.
[2] Anthony Dearden and Yiannis Demiris. Active learning of probabilis-

tic forward models in visuo-motor developmen. In Proceedings of the
AISB, pages 176–183, 2006.

[3] Anthony Dearden and Yiannis Demiris. Tracking football player move-
ment from a single moving camera using particle filters. In Proceedings
of the 3rd European Conference on Visual Media Production (CVMP-
2006), pages 29–37, 2006.

[4] Y. Demiris. Imitation, mirror neurons, and the learning of movement
sequences. In Proceedings of the International Conference on Neural
Information Processing (ICONIP-2002), pages 111–115. IEEE Press,
2002.

[5] Y. Demiris and B. Khadhouri. Hierarchical attentive multiple models
for execution and recognition (hammer). Robotics and Autonomous
Systems, 54:361–369, 2006.

[6] Paul Fitzpatrick and Giorgio Metta. Grounding vision through experi-
mental manipulation. Philosophical Transactions of the Royal Society:
Mathematical, Physical, and Engineering Sciences, pages 2165–2185,
2005.

[7] A. Gopnik and A. N. Meltzoff. Words, Thoughts, Theories. MIT Press,
1st edition, 1998.

[8] R. M. Gordon. Simulation without introspection or inference from me
to you. In M. Davies and T. Stone, editors, Mental Simulation, pages
53–67. Oxford: Blackwell, 1995.

[9] M. Hasenjager and H. Ritter. Active learning in neural networks. New
learning paradigms in soft computing, pages 137–169, 2002.

[10] R. Jacobs, M. Jordan, S. Nowlan, and G. Hinton. Adaptive mixtures of
local experts. Neural Computation, 3:79–87, 1991.

[11] M Jordan and D Rumelhart. Forward models: Supervised learning with
a distal teacher. In Cognitive Science, volume 16, pages 307–354, 1992.

[12] B. Lucas and T. Kanade. An iterative image registration technique with
an application to stereo vision. In Proc. of 7th International Joint Con-
ference on Artificial Intelligence (IJCAI), pages 674–679, 1981.

[13] A. N. Meltzoff and M. K. Moore. Explaining facial imitation: A thoret-
ical model. Early Development and Parenting, (6):179–192, 6 1997.

[14] G. Metta and P. Fitzpatrick. Better vision through manipulation. In Pro-
ceedings of 2nd International Workshop on Epigenetic Robotics, pages
97–104, 2002.

[15] A. W. Moore, C.G. Atkenson, and S. A. Schaal. Memory-based learn-
ing for control. Technical report, 1995.

[16] Richard E. Neapolitan. Bayesian Structure Learning. Prentice Hall,
2004.

[17] S. Nichols and S. P. Stich. Mindreading. Oxford University Press, 2003.
[18] P. Oudeyer, F. Kaplan, V. Hafner, and A. Whyte. The playground ex-

periment: Task-independent development of a curious robot. In pro-
ceedings of the AAAI Spring Symposium Workshop on Developmental
Robotics, 2005.

[19] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kauf-
mann, 1988.

[20] Jean Piaget. The Child and Reality. Viking Press Ltd., 111 edition,
1974.

[21] C. Rao and M. Shah. View-invariant representation ans learning of hu-
man action. In Conference on Computer Vision and Pattern Recognition
(CVPR’01). IEEE, 2001.

[22] S Schaal, A Ijspeert, and A Billard. Computational approaches to motor
learning by imitation. Phil. Trans. of the Royal Society of London B,
(358):537–547, 2003.

[23] Jessica A. Sommerville, Amanda L. Woodward, and Amy Needham.
Action experience alters 3-month-old infants’ perception of others’ ac-
tions. Cognition, 2005.

[24] Robert W. White. Motivation reconsidered: The concept of compe-
tence. Psychological Review, 66(5), 1959.

