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Abstract
Most robotic approaches begin with a �xed robot

hardware design and then experiment with control

structures. We take a di�erent approach that con-

siders both the robot hardware and control structure

as variables in the evolutionary process. This paper

reports the results of experiments which explore the

placement of sensors and e�ectors around the perime-

ter of a simulated agent's body, and the Neural Net-

work (NNets) that controls them.

1 Introduction

Evolutionary algorithms have been used in the design

of robot controllers for some time and with great suc-

cess. Almost all work on evolving autonomous agents

and robots has focused on evolution of the control

structure, often a NNet. This work has taken as a

basic assumption that the agent body is immutable.

This is a consequence of the 
exibility of software over

that of hardware: in the past it has not been feasible

to explore the space of robot morphology. In contrast

to this, the course of natural evolution shows a history

of body, nervous system and environment all evolving

simultaneously in cooperation with and in response to

each other. The research proposed below investigates

the interaction between co-evolved body and control

structures.

The most successful agents we know of are those

found in real life. These agents are well adapted to

their environment and can handle many small and

large surprises to their world and themselves without

failures. Because of this we look to biology for much

of our inspiration for this work. However, in contrast

to some biorobotic models, we are not trying to re-


ect the results of our work back to the biology that

inspires it.

The methods by which we investigate this is to

specify the agent's body and NNet using a grammar.

Grammars o�er modularity in terms of encompass-

ing detailed structures at various levels of granularity.

That is, a grammar can provide a compact represen-

tation for complicated and repeated structures. By

using grammars we are able to build hierarchical so-

lutions to problems based on the solutions found at

lower levels. These grammars are then evolved using

common Genetic Algorithm techniques based on the

performance of the instantiated agent.

Many aspects of this research have been investi-

gated in isolation by others. Examples of evolved

robots that have implemented NNet controllers in-

clude six legged walking controllers (Whitley [3], Kod-

jabachian [8]), maze following (Floreano [5]), predator-

prey behavior (Floreano [6]), and food tracking (An-

geline [1]).

An early experiment applying grammatical models

to the construction of feed-forward NNets is due to

Kitano [7]. Other researchers who have used gram-

mars to develop NNets are Whitley and Gruau [3] and

Lucas [10].

Very little prior work in evolving morphology ex-

ists. Menczer and Belew [12] investigated the nature of

sensor usage by providing their agents with an evolv-

able NNet connected to sensors and e�ectors. Marks,

Polani, and Uthmann [11] explored eye types and po-

sitioning. Sims [13] demonstrated a simulation where

the complete morphology of the individuals was in-

volved. Sims created an arti�cial world in which each

agent was grown from a genome that de�ned both the

physical structure and the control structure. Eggen-

berger [4] has developed an evolutionary system that

simulates the growth of a body based on di�erential

gene expression. Lee et. al. [9] have also worked on

evolving both control structures and body plans.

2 Background

We have carried out several experiments based on the

paradigms listed above. The experiments begin with

a population of genome strings which are converted to

individual grammars. The grammars are used to gen-

erate agent bodies and their associated NNet control



w1

w2

w3

Figure 1: Terminal Cell Example

systems. Through a development process that trans-

forms a single undivided cell (the gamete) into a body

consisting of several interconnected cells.

The body/controller pair is then evaluated in the

context of an environment and the genomes for the

more successful individuals are preferentially selected

for reproduction in the next generation.

The process of cell division, neural network extrac-

tion, and �tness evaluation are described in the next

sections.

2.1 Production Rules

The grammar consists of an alphabet of terminal and

non-terminal symbols, a set of production rules, and a

single starting symbol from the set of non-terminals.

In our experiments the terminals are the hexadecimal

characters f0-9a-fg, and the non-terminals are a subset

of the uppercase characters fA-Zg.

Each production rule is made up of a left side and

a right side. The left side is a single non-terminal

symbol; the right side is a speci�cation for the creation

of one or two cells. A non-terminal may appear as the

left side of more than one production rule.

The speci�cation of each cell de�nes it to be either

a single non-terminal symbol or a terminal cell which

is a list of directed, weighted edges from the sides of

the cell to each other (See Figure 1). The production

rule also contains the orientation of the cell (whether

it is horizontally or vertically 
ipped). Specifying a

cell to be a non-terminal allows it to be subject to the

application of further production rules.

A production rule also speci�es whether the non-

terminal produces one or two cells, and if two, the

relative position (i.e. above, below, to the left of, or

to the right of) of each.

Figure 2: Development Process

2.2 Cell Division

As described in the previous section, each cell is either

labeled with a non-terminal symbol or is a terminal

cell. Initally the gamete is labeled with the starting

non-terminal symbol of the grammar and cell di�er-

entiation proceeds by selecting and applying the rules

of the grammar. For each cell labeled with a non-

terminal, a rule is found whose left side matches the

non-terminal. The cell is then replaced with the one

or two cells speci�ed by the right side of the rule. If

there is no matching rule, the cell is replaced with a

terminal cell with random weights and edges.

The process continues replacing non-terminals with

terminals and non-terminals until there are only termi-

nals left or a maximum depth of replacements have oc-

curred. The rules are applied only a limited number of

times to keep rules of the form A!A from generating

an in�nite regress. In our experiments, the maximum

number of cell divisions was set to 6. This permits a

body to have at most 64 cells (one cell divided in half 6

times produces 26 = 64 cells). A derivation that con-

tinues beyond the sixth rule application will replace

the cell by a terminal cell with random weights and

edges.

A derivation that takes four generations is shown in

Figure 2. In this example the gamete is labeled with

the starting symbol, A. The production rule A!Bjt1
indicates that the non-terminal A is converted into two

cells. The �rst cell, a non-terminal B, is to be placed

to the left of the second which is the terminal cell, t1.

2.3 Neural Network Interpretation

Once the cell division is complete, the body consists of

a set of cells that have within them directed, weighted

edges. The cells and edges are interpreted as sensors,

e�ectors and the neural networks that connect them.

Each side of a cell has associated with it two values,



Figure 3: NNet edges formed from within cell connec-

tions

an input value and an output value. The input value

is dependent on the output values of all adjacent cells.

The output value of a side is dependent on the input

value of all sides and the internal weighted edges be-

tween the sides. Both the input and output values are

described in detail below.

2.3.1 Network Edges Within a Cell

There are three types of edges that can exist within

the cell: Corner, Cross, and Tonic. Corner edges run

from one side to an adjacent side. Cross edges run

from a side to the opposite side and Tonic edges are

interpreted as bias weights. The three types are shown

in Figure 3. The edge from I1 is of corner type with

weight w1, I2 is of cross type with weight w2, and T3

is of type tonic providing activation of value T3.

The output of a cell is the squashed sum of the

weighted inputs to that cell. The weighting is only

done across those edges that are de�ned for that cell.

In Figure 3 there are two edges and one tonic de�ned

for the cell pictured. The output of the cell on the right

edge is the squashed sum of the products I1w1, I2w2

and the Tonic weight T3. For all of our experiments the

squashing function is the hyperbolic tangent function:

tanh(x).

2.3.2 Edges Between Cells

When one or more cells are adjacent to the side of a

cell, the outputs of the incident cell are combined to

form the inputs to the adjacent cell. This is demon-

strated in Figure 4.

In this case the inputs labeled I1, I2, and I3 are

adjacent to the output labeled O4. Similarly, the in-

put labeled I4 is adjacent to the outputs labeled O1,

O2 and O3. A neural network layer is formed by set-

ting the input value on an edge of a cell equal to the

squashed sum of the outputs of the cells adjacent to

that edge.

Figure 4: NNet edges formed from connections be-

tween adjacent cells

Figures 7, 9, 10 and 11 illustrate some �nal agents'

terminal cell divisions and the neural networks that

result. In these diagrams the semicircles pointing out-

wards are e�ectors and those semicircles pointing in-

wards are sensors.

2.3.3 Sensors and E�ectors

Sensors and e�ectors are de�ned by the edges of the

terminal cells. Any directed edge that originates from

a cell side that is on the perimeter of the body be-

comes a sensor or input node. Any directed edge that

terminates on a cell side that is on the perimeter of

the body becomes an e�ector or output node.

Sensor nodes detect signals of the environment.

They provide the input that is propagated through

the NNet of the body. E�ector nodes are the outputs

of the NNet.

E�ector nodes provide propulsion to the agent's

body. The force of this propulsion is proportional to

their output activation. The direction of propulsion

of the agent is a result of summing all of these forces

based on their position on the body. The vector sum

of all e�ector outputs is broken into two forces: The

�rst is a pressure, which acts through the center of

the body and translates the body through the envi-

ronment. The second force is torque which acts per-

pindicular to a line through the center of the body and

causes the body to rotate. The net e�ect is demon-

strated in Figure 5.

2.4 Application in a Simple Environ-

ment

In order to judge the e�ectiveness of a given body

plan, and hence the e�ectiveness of the genome from

which the body plan developed, the mature agent is

placed within an environment. For our experiments

the environment consists of a 500x500 world that has

at its center a source of reward which produces a de-



Figure 5: Conversion of E�ector Outputs to Rotation

and Translation

tectable signal that falls o� as the inverse-square of

the distance.

All agents' bodies are set to be 20 units on each

edge. The body has a mouth placed at its top. The

�tness is measured from the mouth. The perfect agent

would turn it's mouth toward the center of the world

and approach the center in as few time steps as possi-

ble.

The agents are placed at a random location in the

world and then allowed to wander freely (or to just sit

in the case of many agents) for 30 time steps. After

30 time steps the agent is moved to another random

location. This is repeated for 10 placements for a total

of 300 time steps. All agents in a given generation are

started from the same set of locations. If an agent gets

within a body length of the center of the world then

it is moved the next location.

The �tness, fi, at time step i is shown below where

d is the distance from the agent's mouth to the center

of the world.

fi =

�
1

d2
if d � agent body length

1 otherwise

The �tness, F , of an individual is the sum of the

�tnesses at each time step over its lifetime.

2.5 The Braitenberg Vehicle

A classic design in the �eld of robotic control is the

Braitenberg Vehicle 2b described in [2]. This agent has

two sensors on the front and two e�ectors on the back.

The agent's body is bi-laterally symmetric with each

sensor connected via a positive weight to the e�ector

on the opposite side. The e�ect of this connectivity is

to steer the agent to the side with the stronger sensor.

The e�ectiveness of this design has been demonstrated

in a number of robots.

Figure 6: Grammar for Generating Braitenberg Vehi-

cle

Figure 7: Braitenberg Vehicle with Cell and NNet

Representations

A simple grammar that generates a complete Brait-

enberg body is shown in Figure 6. The grammar con-

sists of two rules. The �rst rule rewrites the undi�er-

entiated cell body (start symbol A) into two nontermi-

nal B cells one of which is horizontally 
ipped relative

to the other. The second rule converts a B nontermi-

nal cells into a terminal cell with two edges de�ned.

Figure 7 shows Braitenberg's Vehicle 2b alongside the

one generated by this hand-designed grammar. The

parsimonious nature of the grammar that generates

the Braitenberg Vehicle under our system shows the

representational adequacy of the grammar system.

2.6 Preliminary Results

Using the experimental platform described above we

ran several experiments to determine the e�ectiveness

of our approach. Three such results are described in

the graph of Figure 8. The results show the average

of the best agent over ten di�erent runs with the same

starting conditions. The �rst experiment is our hand-

designed Braitenberg agent which is run in the envi-

ronment for 100 generations. Its performance is shown

by the short line around a �tness of 26. This experi-

ment provides a baseline with which we may compare

other results.

The top line of the graph begins with the same

Braitenberg agents of the �rst experiment, but in this



Figure 8: Average of Fitnesses (Best of Each Genera-

tion)

Figure 9: Agent and NNet evolved from Braitenberg

experiment they are allowed to evolve. Their perfor-

mance shows signi�cant improvement when compared

to the original run of Braitenberg agents. All ten pop-

ulations converged by the end of the run, although

they each converged on di�erent solutions. One com-

monality of all solutions was the preservation of the

original bi-lateral symmetry that was part of the Brait-

enberg population prototype. However in about half

of the �nal populations the connections were positive

and crossed as in the Braitenberg but, surprisingly,

the remaining populations converged on solutions that

had negatively weighted connections straight down the

body rather than across it. Most of the solutions also

added two negative bias weights to the front of the

agent which acted as tractor e�ectors pulling the body

forward constantly. This left new sensors and e�ectors

on the side free to steer the body towards the goal. A

typical solution is shown in �gure 9.

The �nal experiment (middle line) initialized the

Figure 10: Agent and NNet evolved from Random

Genome(Ex. 1)

Figure 11: Agent and NNet evolved from Random

Genome (Ex. 2)

population with random genomes. In this case results

varied widely. Some runs were able to �nd steadily

improving solutions within a few hundred generations

while others took quite a bit longer. Some solutions

found were Braitenberg-like in that they discovered

bi-lateral symmetry (�gure 10). Other solutions pro-

duced bizarre body types that performed very well

(�gure 11).

3 Summary

The conclusion that we can draw from these results

is that even in this very simple world a wide range

of potential solutions exist. Many of these solutions

are superior to the known good a priori Braitenberg

Vehicle solution. It was shown that we can evolve

agents whose body and control structures are tightly

coupled in order to solve the simple environment pre-

sented here. The fact that the system found so many

solutions is encouraging as we apply it to more com-

plex environments.

Our current work involves applying these tech-



niques to real robots including Kheperas and LEGO-

bots whose body shapes and sensor and e�ector place-

ment will be determined by the evolved grammars.
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