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ABSTRACT

This paper presents Blender, a framework that enables network op-
erators to improve tenant performance by tailoring the network’s
behavior to tenant needs. Tenants may upgrade their provisioned
portion of the network with specific features, such as multi-path
routing, isolation, and failure recovery, without modifying hosted
application code. Network operators may differentiate themselves
based on upgrades they offer, creating new upgrades via a light-
weight programming interface. Blender safely executes multiple
tenants’ selections simultaneously across a shared network infras-
tructure. We show that the Blender model can express and extend
recently proposed network functionality on existing SDN networks.
We use an OpenFlow-based prototype to quantify Blender’s perfor-
mance and potential for deployment at scale.

Categories and Subject Descriptors

C.2.1 [Network Architecture]: Network topology; C.2.3
[Network Operations]: Network management

Keywords

network isolation; multiple tenants; SDN

1. INTRODUCTION
Data centers are rapidly evolving to accommodate the perfor-

mance demands of the cloud computing model, in which raw com-
puting resources are provisioned for users on demand. However,
despite the recent explosion in the popularity of cloud comput-
ing services, the underlying data center network remains difficult
to virtualize. While all users expect the network to provide basic
packet forwarding, they have contradictory preferences regarding
the behavior of supplemental functionality like performance isola-
tion, latency management, multi-path route selection, failure recov-
ery, and so on. Despite many strong proposals to augment existing
networks with such features, each tackles one part of the problem
in a disparate way, with no prevailing unifying approach.

This work presents Blender, a framework that supports tenants
mixing desired network functionality. Regardless of whether a data
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center is public, i.e., its resources are rented out to anyone willing
to pay, or private, supporting only the services of the data center’s
owner, we make a distinction between the infrastructure provider
and their tenants. Each actor holds a vested interest, from a dif-
ferent perspective, in the network provisioning process. The ten-

ants, who use their allotted resources to support Web, corporate,
social media, or other user-facing services, desire a mechanism to
tailor the network’s behavior to their specific needs, ideally with-
out modifying their applications. The data center providers, who
own and manage data center resources, wish to cater to tenants’
requirements to differentiate themselves from competition, attract
new customers, and increase revenue. However, since network de-
sign and ensuring tenant privacy provide competitive advantages,
providers often prefer to limit tenant visibility into their networks,
opting instead to supply tenants with a choice of pre-approved com-
ponents. In Blender, providers can create network upgrades that
each export functionality and network visibility in accordance with
their business model.

On one hand, operators wish to support a wide variety of ten-
ants with different performance and reliability demands [7]. On
the other hand, they want to reason about network bandwidth and
latency in a manner consistent with the isolated, chargeable units
of CPU, disk, and memory that server virtualization provides. A
consequence is that cloud providers today, such as Amazon, only
make qualitative (e.g., low, moderate, high) assurances for network
performance. With unpredictable network loads, today’s data cen-
ter operators must accept hot spots (i.e., tenants pay to wait [35])
or monitor and dynamically adjust VM placement [20], application
components [39], or network flows [2] to improve utilization.

Using Blender, tenants augment their network environment by
selecting and applying only the upgrades that best meet their needs.
As an example, consider three tenants that share the physical data
center network of a public cloud computing platform: a tenant
managing a three-tiered Web service, a tenant executing a bulk
data processing job (e.g., MapReduce or Hadoop), and a tenant
hosting back-end business logic. Each tenant might prefer a dif-
ferent form of performance isolation, ranging from fully oppor-
tunistic work conservation [33] for the bulk processing tenant to
reserved, predictable performance [5] for the business logic ten-
ant. Furthermore, each tenant would benefit from a different set of
supplemental upgrades to support their execution: the Web service
may require bounded latency [38] to meet customer performance
objectives, while the bulk processing service may fare better with
support for performance-aware flow placement [2]. Such flexibility
allows operators to better support tenant needs while differentiat-
ing their cloud offerings through custom resource management and
charging models.



In designing such a system, we face two key challenges. First,
we must ensure that the programming model used by network pro-
viders to build upgrades balances simplicity with the ability to ex-
press complex functionality. To do so, Blender defines a concise set
of abstractions that capture a range of upgrades, while also enabling
the run time to check and ensure that the underlying network can
support the co-existence of multiple upgrades. The second primary
challenge is scale. Blender must account for the finite resources
available in switching hardware for managing traffic and storing
forwarding entries. We overcome these hardware capacity limita-
tions by combining a specialized tenant model with optimization
techniques to prevent resource exhaustion.

This paper makes the following contributions:

• Blender framework: Blender supports multiple network ten-
ants, each of whom may simultaneously deploy many upgrades
on a shared physical network. Network providers use a program-
ming model that exposes eight high-level network attributes, such
as routes and rate limits, to create upgrades. Ultimately upgrades
compile into a set of resource reservations across the physical net-
work. Many upgrades use few attributes, maybe 3-4, and this is
sufficient to provide upgrade modules that provide fixed or propor-
tional network isolation. In addition, upgrades may work in con-
cert with one another, providing work conservation, deadline-aware
flow scheduling, dynamic flow placement, and other services.

• Blender network architecture: Blender provides this flexibility
while ensuring a consistent and scalable forwarding infrastructure.
It multiplexes network resources at the granularity of network ten-
ants, which can represent an entire service or distinct applications
with specific network demands. Transactional tenant allocation en-
sures atomic and isolated changes to network forwarding state.

• Implementation and evaluation: We illustrate these concepts
through an OpenFlow-based [19] prototype. We demonstrate the
ability to author, compose, and execute multiple network upgrades,
including functionality found in recent work [2, 5, 26, 33, 38].
Blender leverages switch-based traffic policers to simplify resource
allocation and dynamic traffic control; we describe the resource
requirements for tenant allocations and show that for realistic re-
source allocation strategies, per-switch rule and policer counts are
bounded by O(numTenants ∗ portCount). Even without those as-
sumptions, our tenant-churn experiments on a 50-node, 200-VM,
fat-tree testbed easily fit within the resource constraints of HP’s
prototype OpenFlow switches.

2. RELATED WORK

Multi-tenant SDNs. Blender is one of several systems that pro-
vision shared network infrastructure in support of multiple tenants
and applications. FlowVisor [32] provides strict tenant separation
by dividing the network into independent “slices”, each of which
maintains management routines in the form of a private SDN con-
troller. Each tenant is free to choose, and is responsible for pro-
viding and managing, custom SDN software within their assigned
slice. At the other end of the spectrum, Onix [17] provides an all-
purpose controller framework designed to be shared by simulta-
neously executing applications. Akin to Blender, Onix provides a
graph-based model of the physical network for applications to ma-
nipulate, but it requires that tenant applications mediate their own
interactions.

CloudNaaS [6] allows tenants to select their desired functional-
ity similarly to Blender, though it emphasizes end-host naming and
addressing, accepting verbose network specifications in a rich lan-
guage. In contrast, Blender focuses on developing a model for com-
bining network features based on short, high-level tenant requests.

In Participatory Networking (PANE) [10], a centralized controller
provides an API with which modified tenant applications can obtain
network visibility and reserve link capacity. Like Blender, PANE
hierarchically subdivides network resources and resolves conflict-
ing requests with resource-specific routines. PANE exposes net-
work information to tenant applications and requires them to en-
gage in custom resource provisioning. With Blender, tenants make
brief requests prior to executing unmodified applications in a fash-
ion similar to a tenant’s virtual machine requests from PaaS cloud
providers.

Network performance isolation. Multi-tenant data centers bal-
ance the need to run the network at maximum efficiency with the
desire to provide performance guarantees for individual tenants.
Some schemes provide predictability via fixed performance guar-
antees [5, 14], but limit the number of concurrent tenants placed on
the network. Others maintain proportional network shares, allow-
ing tenants to receive performance relative to tenant demand [18,
28, 33]. These are fundamental trade-offs that any isolation model
must make—no single network allocation strategy can provide ev-
ery isolation property desired by a tenant or network operator [24].

Blender resolves this situation by allowing network operators to
create and deploy multiple isolation models across a shared infras-
tructure. As opposed to monolithic approaches, tenants are free to
choose the model that best represents their needs. We demonstrate
this flexibility in our prototype by implementing two performance
isolation upgrades, inspired by Oktopus [5] and Seawall [33] using
Blender’s upgrade programming model in Section 4.

Augmenting network functionality. In addition to performance
isolation, Blender allows operators to offer supplemental feature
upgrades to tenants. Recent proposals have demonstrated the ben-
efits of supplying cloud tenants with functionality like latency con-
trol [3, 38], flow placement [2], load balancing [4, 36], middle-
boxes [25, 30, 31], and other services. Blender allows tenants to
request such services via a unified resource request model, and we
describe several examples upgrades based on D3 [38], Hedera [2],
and DRL [26].

Network programming. Blender is far from the first system to
empower applications with explicit control over the behavior of
the network fabric. For example, active networking [37] provides
differentiated network behavior in response to user-supplied for-
warding directives. In Blender, however, tenants make concise,
high-level resource requests—as opposed to active networks’ per-
packet model. Contemporary to active networks, Tempest [29] al-
lows users to create virtual private networks over an ATM substrate.
Tempest partitions switches into “switchlets”, on which users may
execute forwarding programs.

More recent projects address the need for higher-level languages
for constructing and maintaining SDN controller software. Net-
tle [34] is a domain-specific, functional language embedded in Has-
kell that allows network operators to write declarative programs
for reacting to OpenFlow network events. Frenetic [11] com-
bines a declarative query language for classifying and aggregat-
ing network traffic with a functional library for describing reac-
tive packet-forwarding policies. Like Blender, Frenetic enables the
network to compose reusable software modules, however it does
not provide explicit support for multi-tenancy or performance iso-
lation. Pyretic [21] extends the ideas of Frenetic with an imperative
Python-like language for sequentially composing modules that can
process packets with virtual traffic headers. These efforts enable
the composition of applications from the parallel and sequential
execution of modular components, but efficiently compiling their
directives into forwarding hardware remains challenging.



Table 1: Blender’s programming attributes.

Attribute name Conflicts Allows upgrade to . . .

Create zones Static Sub-divide network regions.

Choose routes Static Establish VM reachability.

Create rate limits Dynamic Add or remove rate limits.

Modify rate limits Dynamic Change the enforced rate limit.

Read statistics N/A (r/o) Receive network traffic information.

Assign flow paths Static Bind a flow to a set of hops.

Intercept traffic Static Inspect packet content.

Modify traffic Static Re-write packet content.

3. THE BLENDER FRAMEWORK
Blender allows network providers to specify network function-

ality using a small number of high-level abstractions that we call
upgrades. A logically centralized controller executes upgrades at
the request of tenants and ultimately translates their directives into
forwarding and rate limiting state within a configurable subset of
the network, allowing multiple upgrades to compose and execute
across the same physical infrastructure. We require that the cloud
provider—rather than the tenants—author and supply upgrades to
ensure that they are not malicious or otherwise abusive to the net-
work.

From the provider perspective, Blender’s programming model
abstracts the features and functionality of the network forwarding
hardware, for example, rate limiting, providing traffic statistics,
selecting flow paths, modifying packets, etc. Despite many de-
vices implementing and exposing these features differently (e.g.,
in switch hardware vs. at end-host hypervisors), Blender exports a
single interface for each resource; the runtime translates these calls
for the particular underlying device(s) in a given network. Blender
requires the network provider to enumerate the set of available fea-
tures and their interface definitions. While providers are free to
define their own attributes to match their hardware, environment,
and goals, Table 1 summarizes the abstract attributes in Blender’s
programming model (API).

When providers develop an upgrade, they must label the upgrade
with the required attributes to inform Blender of how the upgrade
will be using network resources. Labeling an upgrade as ‘using
an attribute’ provides two primary benefits. First, it provides the
upgrade with access to the attribute’s programming interface, ex-
panding the set of events or network state updates for the upgrade
to utilize (Section 3.2). Additionally, labeling assists in conflict
detection (Section 3.3).

To tenants, the implementation details of upgrades are hidden.
Instead, a tenant specifies a list of desired upgrades by submitting
a small, high-level request to Blender’s centralized controller. The
request includes the number of hosts in the virtual network and
the list of upgrades the tenant wishes to use (along with their pa-
rameters). Blender applies the upgrades without intervention from
the tenant’s application. In general, tenant applications need not be
modified, except in the case of upgrades that explicitly interact with
tenant code as a part of their design (e.g., deadline-aware schedul-
ing, Section 4.3). Note that a default virtual network (one with no
upgrades) provides best-effort connectivity over a spanning tree.

3.1 Tenant allocation
Before a tenant can begin using the network, Blender must ini-

tialize each of the tenant’s selected upgrades. The instantiation of
each upgrade begins with a static allocation phase followed by an
optional runtime component. Allocation determines the structure
of, reserves capacity for, and instantiates a tenant’s virtual network.

Table 2: Upgrade allocators manipulate graphs G that con-

tain the following logical elements. Here links and switches are

given unique identifiers: lid and sid .

Name Item Definition
Graphs G :={Switches,Links}
Links l :={lid ,capacity, weight, state dict}
Switches s :={sid,state dict}

Assignments res :={AsnType,lid ,Traffic,args}
AsnType rt :={<upgradeID>}
Traffic tc :={pattern}

If the upgrade must react to tenant’s traffic in real time, Blender
allows it to subscribe to event notifications exposed by specific net-
work attributes in the programming model (Table 1).

Thus for a new tenant request, each upgrade analyzes how to
meet the tenant’s objectives and generates a proposed set of net-
work changes. Blender then determines whether the changes are
allowed and feasible, and if so, admits the tenant, configuring the
underlying network to enforce the directives. Note that this might
result in reconfiguration of the rate limits for other tenants’ virtual
networks, e.g., to enforce proportional bandwidth shares1.

Blender represents resources as a logical graph of switches/hosts
(vertices) and links (edges). Blender and its upgrades use these
graphs to maintain state on behalf of the tenant’s virtual network.
The top half of Table 2 describes the graph, link, and traffic assign-
ment elements to which upgrades have access. Links and switches
contain a state annotation, a provider-defined dictionary that al-
lows upgrades to maintain bookkeeping information across tenant
arrivals and departures.

Capacity reservations. While all upgrades go through static allo-
cation, reserving link capacity will typically be the responsibility
of only one isolation upgrade, selected from a set of mutually ex-
clusive upgrades that provide inter-tenant performance isolation.
When a tenant submits a request, its isolation upgrade computes
paths to connect the tenant’s endpoints and creates capacity reser-
vations via the API’s rate limiting attribute to describe how to treat
the tenant’s flows.

The API’s rate limiting attribute supports fixed-rate and propor-
tionally weighted bandwidth reservations. By default, such reser-
vations are not work conserving, however work conservation can
easily be introduced by the inclusion of an additional upgrade.

The tenant’s selected isolation upgrade claims resources by mod-
ifying the state of its input graph according to the type, link, and
any additional arguments the reservation may require (e.g., ca-
pacity or weight). For example, for an upgrade to create a pro-
portional reservation with a weight of w and associate it with
link l the rate limiting attribute increments l’s weight in the input
graph by w and later installs policers to rate limit traffic over l to
l.capacity∗ w

l.weight+w .
The isolation upgrade takes a tenant t and a network graph G

as input. The upgrade is restricted to using only the resources de-
scribed in G, even if additional resources may be physically avail-
able2. The upgrade analyzes the graph and computes a new graph
representing the tenant’s desired resources: allocate(G, t, . . .) →
G′. If Blender admits the tenant, it removes the resources in G′

from G. Subsequent allocations may either use the remaining re-

1This work considers Blender in the context of a trusted environ-
ment; providers install upgrades that do not sabotage other tenants.
2This mechanism may be combined with ACLs or other high-level
resource management policies to control resource access.



Table 3: The Blender upgrade API for managing event sub-

scriptions and performing network state updates.

Function Description

subscribe(event, location, cb func) Registers for event callbacks.

unsubscribe(event, location) Unsubscribes from a callback.

update(attribute, location, [args]) Updates attribute network state.

sources in G\G′ or subdivide those allocated to G′. This ability to
pass modified graphs through successive allocations supports on-
line allocation of sub-tenants. Thus, the sequence of tenant arrivals
and departures forms a logical hierarchy of network graphs.

When hierarchically composing capacity reservations, we im-
pose a simple restriction: We allow fixed allocations to sub-divide
a fixed allocation, and proportional allocations may also sub-divide
a fixed allocation, but never the opposite. Thus, a proportional al-
location can be used to sub-divide a fixed allocation, but any future
allocation after the transition to proportional must also be propor-
tional.

Assigning upgrades to traffic. When a tenant’s virtual network
has been provisioned by the isolation upgrade, the remaining up-
grades apply their functionality to tenant traffic and subscribe to
attribute events by annotating the tenant’s network graph with traf-
fic assignments as shown in the bottom half of Table 2. Note that
each link on a given network graph may have multiple traffic as-
signments, one for each upgrade, and those assignments are not
required to be exclusive. This supports combining a fixed capacity
allocation with features like work conservation and traffic-aware
flow assignment. Upgrades record their assignments by annotating
the state dictionaries associated with the tenant’s graph. The anno-
tations are later used to compile the tenant into hardware directives
(Section 5).

3.2 Runtime upgrade execution
After allocation, the tenant may start using the virtual network,

and upgrades may begin their runtime execution. While some up-
grades use only static API attributes (e.g., those that reserve only
fixed capacity), many upgrades wish to adapt to dynamic network
conditions. Blender supports such functionality by allowing up-
grades to subscribe to network events (e.g., link failures or new
flows starting) and to define a control loop that continues to execute
for the lifetime of a tenant. Table 3 describes the API available to
upgrades for subscribing to events and updating network state.

Unlike the static allocation stage, upgrade control loops do not
manipulate tenant network graphs. Instead, they interact directly
with the underlying network equipment to monitor and modify the
state of the network. Upgrades receive notifications when their
events are triggered. An upgrade may execute an arbitrary call-
back function in response to an event notification, where the up-
grade may choose to change its event subscriptions or update net-
work state. We describe example upgrades that take advantage of
dynamic events in Section 4.

3.3 Network attribute conflicts
In Blender, a conflict occurs when two or more upgrades attempt

to modify the network, using the same network attribute, in a man-
ner that is unsafe without external coordination. To account for
the differences in attribute behavior, the specific conditions that
represent a conflict are attribute-dependant. Blender uses spatial
zone separation to reduce the likelihood of conflicts and performs

attribute-specific resolution for conflicts that cannot be avoided.
Zones are defined hierarchically, as subsets of the graph represent-
ing the tenant’s network devices and links. Blender expects tenants
to specify in which zone each of their upgrades will execute. We
provide a special zone creation attribute that allows for the defini-
tion of new zones. By convention, our implementation restricts this
attribute to isolation upgrades.

Even with zones scoping the use of attributes, multiple upgrades
may wish to share a particular attribute within a single zone. When
such a conflict is discovered, Blender executes a provider-defined,
attribute-specific resolution routine3. The conflict resolution rou-
tine is free to take any information about the state of the network
or the tenant’s upgrade set into account. Depending on the cloud
provider’s policies and the attribute in question, resolution strate-
gies may involve prioritizing one upgrade over another, process-
ing each upgrade sequentially, coordinating the upgrades such that
they safely share network resources, or rejecting the request. For
upgrades that require coordination, the requirement is enforced in
the attribute API they use.

The Blender model makes a distinction between two forms of
conflicts, static and runtime conflicts, which correspond to the two
stages of upgrade execution. To ensure safe execution, a static con-
flict is one that must be detected and resolved during the upgrade
allocation stage. Consider an example in which a tenant requests
multiple upgrades that assign flows to routes. We leverage attribute
labeling to detect this condition, and for this example, resolve the
conflict by rejecting this (nonsensical) tenant request. With a dif-
ferent attribute, for example modifying traffic, Blender may choose
to resolve a conflict by ensuring a sequential ordering on the flow
of traffic through the set of conflicting upgrades.

For some attributes, the presence of a conflict may depend not
only on upgrades sharing a zone, but how the network is man-
aged by the upgrades within that zone. For example, if multiple
co-located upgrades declare that they modify rate limits, whether
or not they conflict depends on their traffic assignments. For net-
work attributes whose API have additional parameters, like traffic
assignment, the network provider may opt to resolve their conflicts
at runtime. These runtime conflicts are detected and resolved by
the network provider’s implementation of attribute update calls.

4. SAMPLE UPGRADES
This section demonstrates Blender’s flexibility in expressing a

variety of upgrades. We take inspiration from recent proposals
and create two network performance isolation upgrades along with
upgrades for flow path assignment, work conservation, deadline-
aware scheduling, failure recovery, and distributed rate limiting.

4.1 Performance isolation upgrades
Our prototype includes a pair of performance isolation upgrades:

Squid and Jetty. Squid creates fixed-capacity, predictable alloca-
tions in the spirit of Oktopus [5] and FairCloud’s PS-P [24] models,
allocating over-subscribed virtual network topologies. Jetty cre-
ates proportional allocations in the fashion of Seawall [33] and PS-
L [24], providing isolation at the link level. Our descriptions of
these upgrades focuses on our adaptation of the models and their
interaction with the Blender framework. We refer the reader to the
original proposals of these models for additional details of their
operation.

Squid: predictable virtual networks. Squid mimics the data
center isolation model provided by Oktopus [5] and PS-P [24],

3Blender’s per-attribute conflict resolution routines are similar to
those of PANE [10], which handles conflicts on a per-‘atom’ basis.



which allows tenants to request virtual networks that emulate non-
blocking switches. Each switch i connects ni VMs with bisection
bandwidth bi. The switch may be further connected to other virtual
switches, forming clusters, based on an over-subscription factor O.
Thus, a virtual switch must have uplink capacity (bi ·ni)/O to each
other switch. Like Oktopus, we assume the input graph is a singly-
rooted, multi-level tree. A complete Squid request is specified as
(G,squid,CVMs, j,n,b,O).

This request will cause the Squid upgrade to embed j virtual
switches, each connecting n VMs with links of capacity b, in the
input network graph G. Squid will arrange the virtual switches to
have an over-subscription ratio of O. The upgrade is free to choose
the n · j endpoints from the provided CVMs ∈ G candidates.

Squid uses a first-fit strategy to find feasible virtual switch (clus-
ter) placements. It uses a depth-first recursive algorithm that at-
tempts to place each cluster as low in the topology as possible,
minimizing the number of links traffic crosses. For each switch
in the topology, Squid records the number of clusters that can be
placed beneath it. To determine if a given cluster of size ni can
be placed under a switch, Squid first checks the links l in G for
sufficient capacity b to connect a cluster. It then ensures that each

found cluster has capacity bi∗ni

O to every other feasible cluster. If
sufficient capacity does not exist (or if too few candidate endpoints
were supplied), the Squid upgrade rejects the tenant.

If successful, this process returns a subtree under which all clus-
ters fit, and each cluster is considered a separate zone. Squid then
traverses this subgraph from the top down, creating a fixed band-
width reservation and assigning additional upgrades to each link.
The capacity it reserves is the sum of the connectivity requirements
of all clusters under this link.

Jetty: proportional tenant allocations. Jetty provides propor-
tional link capacity sharing similar to PS-L [24] at the granular-
ity of tenants (in contrast to Seawall’s entity-based proportional
shares [33]). For each tenant, Jetty ensures a proportional share of
capacity on each physical network link the entity uses. While we
simplify our discussion of Jetty by assuming a singly-rooted, multi-
level tree topology, it may be trivially extended to multi-rooted
topologies. A Jetty request consists of (G,jetty,CVMs,n,w).

Jetty begins by finding the n endpoints in CVMs that are best con-
nected to the network core. It calculates the bottleneck bandwidth
on the shortest path from the top-level core switch to each end-
point and then chooses the top-n highest-capacity endpoints. Un-
like Squid, Jetty never rejects requests (assuming CVMs ∈ G con-
tains at least n endpoints). Like Squid, Jetty notes the lowest level
root switch under which all VMs connect, and it creates reserva-
tions in a similar top-down process. Each reservation is propor-
tional and uses the same weight w.

4.2 Performance isolation discussion
It is instructive to discuss how Squid and Jetty differ from their

inspirations, which install traffic policers only on sending VMs.
Our upgrades use in-network traffic policers in addition to end-
host rate limiting. This decision allows Squid and Jetty to collapse
the collection of tenant traffic across each reservation and elimi-
nates the need for the tightly coupled VM sending rate coordina-
tion found in Oktopus. Under our scheme, the upgrades create at
most one reservation per link per tenant, meaning a 48-port switch
connecting hosts with 8 VMs would require at most 2∗8∗48 = 768
rate policers (assuming the worst case scenario in which every VM
is in a different tenant). This is well within the hardware policer
count of modern top-of-rack switches; for example Cisco’s 4948
E/F top-of-rack switch supports as many as 8K policers [9]. Rule

optimization (Section 6) often also allows Blender to combine the
policers for multiple tenants, further reducing the hardware require-
ment.

4.3 Functionality-enhancing upgrades
We leverage Blender’s modularity to design a variety of upgrades

that improve the performance and capabilities of tenant virtual net-
works. At the tenant’s request, Blender mixes these upgrades with
the reservations applied by the isolation upgrade. For instance, a
work-conserving version of Squid simply pairs a work conserva-
tion upgrade with each fixed reservation.

Flow path selection. When multiple paths connect a pair of com-
municating endpoints, Blender selects only one route for any in-
dividual flow that passes between them to avoid TCP reordering
problems. Here, we describe two upgrades we have built for as-
signing flows to paths. The first upgrade, random assignment (RA),
randomly maps each flow to an available route, which closely
approximates conventional ECMP [16]. The second, bandwidth-
maximizing assignment (BMA), is inspired by the global first-fit
algorithm of Hedera [2]. BMA assigns a flow to the route with the
largest available capacity.

Both flow assignment upgrades are similarly structured, and we
label each with the ‘assign flow paths’ attribute. This label enables
upgrade subscription to a ‘new flow’ event notification, which is
triggered by the end host hypervisor when a flow begins at one of
its VMs. RA simply chooses a random path in response, whereas
BMA additionally utilizes the ‘read statistics’ attribute to read and
compare path utilizations before returning a decision. While they
currently perform placement for all new flows, either could eas-
ily be extended to selectively optimize only long-running or high-
volume flows for bandwidth maximization.

Work conservation. Work conservation allows a tenant to con-
tribute the unused portion of a bandwidth reservation on a link
to an excess capacity pool. If other tenants on the same link are
operating below their reserved capacities, capacity-hungry tenants
can draw capacity from this pool. Note that the work conserva-
tion upgrade described here is implemented by querying for traffic
demands and modifying the rate limits of the hardware policers
that are already associated with the tenants’ reservations. It does
not require weighted fair queueing or any other explicitly work-
conserving hardware mechanisms. This design also illustrates the
flexibility of upgrades, as the excess capacity pool may be shared
among all reservations on the link, regardless of their upgrade, or it
may be scoped to a subset of the link’s reservations.

Deadline-aware flow scheduling. While the conventional perfor-
mance metric for data center applications has been bandwidth, sev-
eral recent projects [3, 38] have begun to focus on latency. This
work is largely motivated by reports from industry [15], which in-
dicate that even small increases in latency can lead to a significant
reduction in customer satisfaction.

For the Blender prototype, we constructed a deadline-aware up-
grade that was inspired by D3 [38], which uses deadlines to sched-
ule flow completions. Similar to D3, making use of the upgrade re-
quires explicit interaction from the tenant application, possibly re-
quiring application modifications. The tenant application informs
its local shim of the size and deadline for each new flow that it
starts. The shim then periodically computes the rate necessary for
the flow to complete on time and issues a request for that capac-
ity to the upgrade. At the same interval, the upgrade reviews its
requests and produces a schedule of flow rates, which it uses to
update switch rate policers.



Like D3, our flow scheduling upgrade would ideally execute di-
rectly within the network’s devices. Unfortunately, our experimen-
tal switch platform was not optimized for fast rate policer updates
and could not keep up with the upgrade’s proposed changes. The
poor performance is an issue of software (fast rate policer updating
is not a frequently requested feature) and not a fundamental limita-
tion of the hardware. To stand-in for programmable switches, we
substitute the controller to execute the upgrade, which reduces the
responsiveness.

Failure recovery. As the size of a network increases, so does the
likelihood of a component failure. We recognize that different ten-
ants may wish to respond to such failures in numerous ways, and
the Blender model allows for such diversity. For example, one ten-
ant may want to minimize the service interruption by automatically
routing around the failure, a second tenant might want to allocate
a new virtual network in a different physical location, and a third
may wish to halt execution until the failure is resolved.

For our Blender prototype, we construct a failure recovery up-
grade that executes at the controller and operates like the first of
the three examples described above. When a link failure occurs,
the upgrade determines which of a tenant’s routes crossed that link
and searches for an alternative path, among the network’s free re-
sources, whose annotated characteristics indicate that it could serve
as an equivalent replacement. Upon finding such a link, it then ap-
plies the reservations from the failed link to the replacement and
informs the appropriate end hosts to mark their future packets to
use the replacement (Section 6.2).

Distributed rate limiting. DRL [26] provides a mechanism
whereby multiple senders coordinate their sending rates to ensure
that their aggregate traffic rate is below a maximum global rate
limit, without statically limiting their rates. The DRL upgrade peri-
odically checks the rates, across multiple links, of a coordinated set
of traffic and adjusts link-local rate limits in proportion to the traf-
fic’s demand across those links. The application of DRL is useful
in a situation in which a tenant would like to control the aggregate
sending rate across paths that may not share any common hops. For
example, in a multi-tiered, distributed service, a tenant may want
to limit the global rate at which one tier can transmit to another.

5. ARCHITECTURE
This section describes Blender’s architecture that compiles, in-

stalls, and monitors upgrades for multiple tenants. This de-
sign builds on a software-defined network (SDN) substrate whose
switches accept rules that dictate how packets move through the
network [8, 19]. In addition to the standard rule primitive that
matches header fields and dictates output ports, we utilize traffic
rate limiting primitives.

Unlike other SDN architectures that allocate at the granularity
of flows [2, 8], Blender allocates resources to tenants as a whole.
Thus, Blender needs to ensure two important forms of concurrency
control. First, upgrades must receive a consistent view of the input
network graph. A tenant should not observe other tenants’ allo-
cations and should execute only if it can receive all its resources.
Second, a tenant’s rules must be fully installed before sending traf-
fic. This provides per-tenant forwarding consistency; all packets of
a given tenant obey one set of forwarding and rate limiting rules at
a time.

Blender provides these semantics by processing a tenant request
as a transaction. Each allocation involves creating reservations,
generating switch rules, optimizing the rule count (Section 6.3),
and installing rules into the network. We call the first three steps
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traffic assignments.

Generation

Optimization

Commit: Update G and Install

Physical
Rules rule(switchID, pattern, action{port, limitID})

Check G for Resources

*

*

*

limit(switchID, limit)

Figure 1: After allocation, compilation converts an intermedi-

ate representation of abstract limits and routes into a concrete

set of rules. *’d stages can reject the tenant before it commits.

compilation as a tenant’s routes and resource reservations must be
converted into SDN-compatible forwarding rules. Figure 1 shows
this sequence of events as Blender handles a tenant request.

Stages marked with an asterisk may abort the transaction be-
fore any changes are made to the physical network. For instance,
SDN switches have limited storage capacity in their forwarding ta-
bles, and the Blender controller ensures that all network elements
have sufficient space for the tenant’s optimized rules. At this point
Blender commits updated annotations to the tenant’s input graph to
reflect the tenant’s resource claims. Blender commits tenants in the
order it receives them. If two tenants attempt to allocate the same
resources, one will ultimately commit before the other, causing the
second to roll-back and either try again or be rejected, thus pre-
venting tenants from executing without receiving their full set of
resources.

Finally, after successfully committing updates to the available
network resources, Blender pushes the tenant’s rules into the net-
work. To avoid the consistency issues described in [27], we wait
until the tenant’s network state is fully installed in all devices (i.e.,
consistent) before notifying the requesting tenant that the network
is available and ready for use.

6. IMPLEMENTATION
This section describes an OpenFlow-based implementation of

Blender. In the OpenFlow model [19], switches are simple for-
warding elements whose forwarding tables are populated by an in-
telligent, logically-centralized controller. While we have not modi-
fied our OpenFlow switches, we are leveraging HP Labs extensions
to our HP ProCurve switches. These allow an OpenFlow controller
to define limiters on a switch and add a rate limiting action to
OpenFlow rules that reference those limiters. This provides the
necessary statistics and fine-grained control over switch packet for-
warding and rate limiting.

6.1 Blender controller and rule installation
We implement the Blender controller in Python as a component

for NOX [13], an open-source OpenFlow controller. It maintains
Blender’s state, including the physical network representation, al-
located network graphs, connections to end-hosts, and the limiters
and rules installed in the network devices. The remaining compo-
nents of the system are implemented as modules within the con-
troller, including the library of operator-installed upgrades. Useful
upgrades may be written in a few hundred lines of code.

After Blender compiles and commits a tenant’s virtual network,
it installs routing rules and limiters on the switches. For perfor-
mance, it must ensure that all rules reside in fast-path hardware



lookup tables. Our switches can only install a limited number of
rules into their TCAM in a short period of time, and additional rules
are silently added to a slower software table. To prevent these slow
software rules, we rate limit our rule installation and periodically
check for and move any rules that are found to be in the software
table. We have empirically determined that issuing eight rules per
second works well for our switches.

6.2 End-system shim layer
Tenants interact with Blender by submitting resource requests.

They do so by communicating with a local Blender shim that is
running in user-space on each VM. Shims maintain a communica-
tion channel with the Blender controller. Upon connecting to the
controller, the shim transmits a unique identifier on behalf of the
host it represents. The controller considers this the endpoint iden-
tifier and associates it with the physical location of the VM. While
this binds the VM to a physical host in our prototype, it would be
straightforward to move the shim into a hypervisor or adopt recent
proposals for data center address virtualization [22].

Tenants submit their requests to the local shim, which relays
them to the Blender task controller. After the controller installs
rules and limiters at the switches, the controller replies to each shim
in the resulting virtual network. The reply contains a set of type of
service (TOS) bits and an optional rate limit for each destination
in the tenant’s network. Upon receiving this information, the shim
manipulates iptables to mark outgoing packets with TOS bits
and tc to rate limit flows. For destinations with multiple paths, the
shim installs TOS marking rules according to the directives of the
active flow path selection upgrade (Section 4.3), where the default
is random assignment. If a tenant is rejected during the allocation
phase, the shim will receive a callback to indicate this failure.

6.3 Rule optimization
OpenFlow rules eventually reside in switch memory, a limited

resource. Our testbed switches store rules in a TCAM, which al-
lows wildcard matching via “don’t care” entries. TCAM sizes are
limited due to cost and power requirements, and Blender’s rule op-
timization phase tries to conserve space in these switch tables by
combining rules into a single wildcarded TCAM entry, when ap-
propriate. This improves the scalability of the system by allowing
more (or larger) tenant networks to be installed.

Blender’s optimizer leverages two abstractions to combine for-
warding rules: our tenant-based allocation strategy and a hierar-
chical network identifier space, as enabled by several recently pro-
posed virtualization systems [12, 22, 23]. For each switch port in
use by a tenant, it uses wildcarding to collapse all of the port’s
rules into a match on the longest-prefix destination and TOS field
of the rule set. The optimizer is space-efficient and produces only
one forwarding rule per switch port per tenant. Unfortunately, our
switches do not respect OpenFlow rule priorities, making longest
prefix matching, and the use of this optimizer in our testbed, im-
possible.

We implemented a second optimizer that is simpler and less
space efficient, but does not require rule priorities, making it de-
ployable on our switches. It uses a simple heuristic that attempts to
wildcard the source address of rules at each switch. The algorithm
finds the set of rules that share the same destination, TOS field, lim-
iter, and output port. If the source address is identical for the entire
set, the optimizer will collapse them into one rule with a wild card
for the source address. Once this optimization occurs, the Blender
controller must not admit any future rules that match this wildcard.
We use this optimizer in our evaluation.

Figure 2: A composition of multiple isolation upgrades over a

shared physical path. The three figures show total utilization,

traffic for a 600-Mbps network slice, and traffic for a 300-Mbps

network slice, from top to bottom, respectively. Each slice’s

events do not impact the tenant tasks operating in the other.

7. EVALUATION
Our evaluation explores Blender’s ability to mix multiple up-

grades across a shared network. These experiments demonstrate
the functionality of the sample upgrades described in Section 4 and
allow us to quantify Blender’s network resource requirements.

7.1 Physical testbed
We explore Blender using a three-level, k = 6 fat tree [1] built

from six 48-port HP ProCurve 6600-series switches running the
K.14.87o OpenFlow firmware. The switches can store 1500 rules
and contain 256 hardware rate policers. We use VLANs to divide
each physical switch into eight six-port mini-switches. Note that
while our prototype runs across a fat tree topology, we limit our
topology to a single core mini-switch to reproduce topologies used
by Oktopus [5] and Seawall [33].

The switching fabric carries traffic for 50 hosts, each of which
contains an Intel Xeon X3210 and 4 GB of main memory. Every
host uses two gigabit Ethernet interfaces; the first connects to a
control network for system administration and interfacing with the
Blender controller, and the second interface connects to one of the
edge-level, Blender-enabled mini-switches. The hosts each house
four Linux-KVM virtual machines, totaling 200 VMs.

7.2 Performance isolation

Hierarchical tenant allocation. We demonstrate Blender’s ability
to combine multiple isolation models on a shared physical network
by hierarchically composing upgrades, as described in Section 3.1.
This experiment uses the Squid upgrade to isolate pairs of Jetty-
allocated tenants from one another. We first use Squid to create
two virtual networks of fixed capacity: 600 Mbps (NetGraph1) and
300 Mbps (NetGraph2). Within each virtual network, we allocate
two tenants using the Jetty upgrade. We have engineered the tenant
requests to ensure that all six share a common path in the core of
the physical network4. We then start traffic flows within the four
Jetty-allocated tenants at various times.

Figure 2 shows the rate utilization across the shared physi-
cal path. The three sub-figures show total utilization, traffic for

4This was done by setting CVMs to control the placement of VMs.



Figure 3: A comparison of performance isolation while running

Zookeeper as provided by Blender and PANE [10]. Blender

similarly achieves low latency without requiring modifications

to Zookeeper.

NetGraph1, and traffic for NetGraph2, from top to bottom, respec-
tively. Initially, a single tenant, operating within a Jetty virtual net-
work with a weight 3, is executing a task on NetGraph1. At time
15, a tenant operating within a Jetty virtual network with weight
1 begins executing a task on NetGraph2. Fifteen seconds later, a
second Jetty-allocated tenant with weight 1 arrives on NetGraph2,
causing them to each share 50% of NetGraph2’s 300 Mbps capac-
ity. At time 45, a final Jetty-allocated tenant with weight 1 starts
a task on NetGraph1, triggering NetGraph1’s capacity to be reallo-
cated in a 3:1 ratio. At subsequent 15-second intervals, one of the
remaining tenants departs.

Notice that each pair of Jetty tenant tasks performs as if they
were on their own network, responding only to new tenant arrivals
on their Squid virtual network. Moreover, the combined traffic
never exceeds the sum of the capacities of the Squid virtual net-
works.

PANE comparison. To measure the effect of Blender’s perfor-
mance isolation upgrades on latency, we reproduce an experi-
ment performed by PANE [10] in which a client makes repeated
DELETE requests to five Apache Zookeeper servers in the pres-
ence of heavy background traffic (iperf). The experiment runs four
scenarios, and Figure 3 displays the results. The baseline, Pre, ex-
ecutes Zookeeper without background traffic, whilePost represents
the worst-case scenario with no isolation. The remaining two sce-
narios employ either PANE or Blender to isolate Zookeeper opera-
tions.

PANE requires modifications to Zookeeper for it to take advan-
tage of their participatory APIs. For the details of PANE’s behavior
see [10]. For Blender, we represent Zookeeper and the background
traffic as separate tenants, using the Squid upgrade to reserve 100
Mbps per host for Zookeeper. The background traffic receives the
remaining network capacity. Using Blender, Zookeeper achieves
comparable latency without application modifications.

7.3 Tenant throughput
Next, we evaluate the time for Blender to complete a set of 100

tenant tasks, using both Jetty and Squid, in a similar fashion to the
evaluation in [5]. Each of the 100 tenants request a number of VMs
drawn from an exponential distribution with a mean of 18. Each
VM in the tenant’s virtual network chooses one destination among
the other VMs and sends 1500 MB to it. The tenant’s task is consid-
ered complete when every VM has completed its transfer. A ten-
ant dispatcher issues tenant requests Blender, and each requested
tenant network is either accepted, in which case the tenant’s task
begins running, or it is rejected due to insufficient resources (lack
of capacity or available VMs). The dispatcher continues to request

Figure 4: The time it takes Jetty and Squid to complete a set of

100 tenant tasks as we vary the tenant request parameters.

Figure 5: The mean and standard deviation (bars) of the band-

width between the VMs of a 15-node experimental task with a

varying number of background tasks.

any rejected tenants until they are all completed. We measure the
time between the first tenant beginning and the final tenant ending.

For Jetty, each VM is equally likely to send to any other VM,
and all tenants request equal weights for their paths. For Squid, the
parameter selection process is similar to that in the evaluation of
Oktopus [5]. Because Squid sub-divides its virtual networks into
clusters, we assign VM destinations according to the oversubscrip-
tion factor O such that the likelihood of a VM choosing an inter-
cluster destination is 1

O for O> 1 and uniform likelihood for O= 1.
Finally, Squid-allocated tenants draw their bandwidth request value
from an exponential distribution whose mean we vary.

Figure 4 shows the time each configuration takes to complete the
set of tenant tasks. We plot the completion time for Squid over-
subscription factors of 1, 2, 5, 10, and 10 with work conservation
enabled. We also show Jetty with and without work conservation.
Jetty has no notion of bandwidth or oversubscription, so we present
Jetty’s completion times separately on the plotted results. Note that
Blender allowed us to seamlessly add work conservation to im-
prove performance, even for an isolation model that did not orig-
inally include such functionality. Without a system like Blender,
such a comparison would be difficult to perform.

7.4 Allocator bandwidth and variability
In the previous experiment, Jetty achieves a higher overall

throughput than Squid. However, the increase in throughput comes
at a cost with respect to Squid in the form of variance. To illus-
trate this effect, we adjust the load on the network by installing a
varying number of background Jetty tasks. Next, we install one ex-
perimental task and measure the capacity between all pairs of its
VMs. Figure 5 plots the mean and standard deviation of the ex-
perimental task as we vary the total number of VMs in use. As
expected, provisioning the experimental task with the Jetty allo-
cator yields a higher average capacity than Squid, which has a



Figure 6: Rule and policer count, along with the number and

average size of concurrently executing tenant tasks for a switch

during the Squid Mean = 150,Oversub = 5 run described in

Figure 4.

Figure 7: Work conservation’s CPU utilization at the controller

for a variety of switch counts and control loop intervals.

substantially lower variance. This experiment demonstrates that
if given the opportunity to choose, different tenants would benefit
from selecting an allocator that matches their applications’ band-
width and performance variability requirements. This experiment
demonstrates that, if given the opportunity to choose, different ten-
ants would benefit from choosing an allocator that best fits their
applications’ performance needs.

7.5 Hardware resources
Because it shares capacity evenly among concurrently execut-

ing tenants, Jetty is only constrained by the number of available
VMs. As a result, it tends to keep network utilization high, and
it performs relatively well, particularly with work conservation en-
abled. For low mean bandwidths, Squid tends to run out of VMs
before it exhausts the available network capacity, leading to poor
performance for larger oversubscription factors. Enabling work
conservation provides a significant benefit in this region due to im-
proved network utilization. As we increase the mean bandwidth,
oversubscription becomes more beneficial due to capacity, rather
than VMs, becoming the constraining resource. For the number
of VMs in our network, an oversubscription factor of 5 appears to
perform the best for Squid tenants.

Switches have a finite hardware capacity, which constrains their
ability to store rules and police traffic. This affects the number of
concurrent tenants Blender can support. This is a complex problem,
as the number of rules and policers needed by a switch depends on
tenant count, network size, network topology, and upgrade selec-
tion.

Figure 8: The work conservation upgrade controlling the traf-

fic of three senders across a shared physical path. Each sender

has a fixed-capacity reservation of 300 Mbps, which it con-

tributes to work-conservation pool for a total of 900 Mbps. The

work conservation upgrade divides the pool among the set of

active senders, which varies over time.

Figure 6 illustrates the rule and policer counts for a single
switch, along with the number of concurrently executing tenants
and their average task size, during the execution of the Squid
Mean = 150,Oversub = 5 run depicted in Figure 4. We selected
the switch with the maximum rule count during the run. The other
switches followed a similar pattern. As we described in Section 6.3,
we use a sub-optimal rule optimizer due to our switches not im-
plementing rule priority. With our better optimizer, the rule count
would be equal to that of the policer count, which is a significant
decrease.

Over the course of the experiment, we do not prescribe the order
in which tenants execute. Our dispatcher requests tenant networks
one at a time, cycling though all outstanding tenants until it finds
one for which the system has sufficient resources. As the lower
graph indicates, this scheme tends to initially execute smaller ten-
ants, as they are more likely to find the resources they desire as
tenants enter and leave. Around the time the 60th tenant begins ex-
ecuting, the switch reaches a peak of 65 allocated policers, which
corresponds to the maximum concurrently-executing tenant count
of 32. As the system shifts to larger task sizes, the concurrent tenant
count decreases. This leads to an inflection point in the graph, be-
yond which policer usage decreases and rule usage increases. The
trends for Jetty are similar to that of Squid, though less pronounced,
due to Jetty being less constrained by available capacity.

Another important resource in any SDN is the controller.
Blender allows for upgrades to execute code on the controller in
response to dynamic network conditions. While this may sound
like it would tax the controller, the upgrade programming model
naturally enables extensions that are light-weight, with a tunable
control loop interval to trade off accuracy and resource usage. As
an example, our work conservation extension executes a control
loop in which it periodically requests switch statistics and reassigns
rate limits. Figure 7 shows the processing requirement of the work
conservation extension at the controller, varying the control loop
interval and the number of switches.

7.6 Dynamic upgrades
To exhibit the functionality of our sample dynamic upgrades

(Section 4.3), we evaluate several upgrades:

Work conservation. To demonstrate work conservation, we con-
figure and install virtual networks for three tenants, each of which
reserves 300 Mbps across a shared path and contributes its reserva-
tion to a work-conserving pool. Figure 8 depicts the experiment’s
result. Initially, two of the tenants send UDP datagrams as quickly
as possible across the shared path. Due to the third tenant be-
ing idle, the UDP senders draw from the excess work-conservation



Figure 9: The Distributed Rate Limiting (DRL) upgrade en-

forcing an 800-Mbps global rate limit across three physically-

disjoint network paths. The plot shows the outgoing rates of

the three limiters, L1, ..., L3, that are responsible for policing

the three paths. As senders begin and end their transmissions,

the total traffic rate remains below the global 800-Mbps limit.

Figure 10: A combination of the BMA flow assignment upgrade

and a deadline-aware flow scheduling upgrade. Long flows

send one gigabyte of data with a deadline of 60 seconds, and

short flows send 200 megabytes with a deadline of 10 seconds.

pool and each send at just over 400 Mbps. After 30 seconds, the
third tenant begins sending TCP traffic over the shared path. De-
spite competing with UDP, the work conservation upgrade ensures
that the third tenant’s TCP traffic receives its 300-Mbps reserva-
tion. At 90 seconds, the TCP flow completes, and the UDP senders
are again given the excess pool capacity.

Distributed rate limiting. To test our DRL upgrade, we construct
a virtual network in which a set of three sending VMs transmit
to three receiving VMs across three fully-disjoint paths. For each
path, the sender creates a fixed 900-Mbps reservation along the path
to its corresponding receiver. We then configure the edge-switches
of all three senders to execute the DRL upgrade with a global rate
limit of 800 Mbps.

Figure 9 shows the traffic departure rates from the edge-switch
rate limiters associated with the traffic for each of the three senders.
Every 30 seconds, one sender begins or ends its transmission, caus-
ing the DRL upgrade to reallocate the 800-Mbps budget amongst
the active senders. Without DRL, we would see each sender fully
utilizing its 900-Mbps reservation, however with DRL enabled, the
aggregate sending rate of all three senders remains below the global
limit.

Flow path selection and deadline-awareness. To evaluate the
composition of these two upgrades, we configure a tenant with
three paths between two VMs within a pod in our testbed. Each
path is configured with a 300-Mbps reservation, and initially, the
sending VM transmits three TCP flows to a receiving VM across
three parallel paths. We use the BMA flow placement upgrade to

spread the flows across the available paths. Our traffic generator
aims to send one gigabyte of data over each of the three flows with
a deadline of 60 seconds. After 15 seconds, two additional flows
begin, each with a size of 200 megabytes and a deadline of 10 sec-
onds.

Figure 10 displays the results. Prior to the additional flows be-
ginning, the three original flows converge to the necessary rate for
on-time completion. When the two short-deadline flows start, our
upgrade displaces two of the longer flows until they complete. Af-
terwards, the two displaced flows converge on a higher rate to make
up for their displaced time. The third flow, which never shared a
link with either of the short-deadline flows, continues at its original
rate.

8. CONCLUSION
This work introduced Blender, a framework that enables data

center operators to author and compose modular upgrades on a
shared network infrastructure. Not only can Blender express many
recently proposed network performance isolation models, but it al-
lows them to easily compose with additional functionality. Data
center operators can differentiate their cloud network offerings by
offering tenants new upgrades, without requiring tenants to modify
their deployed code base. In addition, our experiments indicate that
enforcement of tenant- based resource allocation is practical given
current rate limiter facilities in modern top of rack switches.
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