CS 43: Computer Networks Naming and DNS

Kevin Webb Swarthmore College September 21, 2017

Agenda

Identifiers and addressing

- Domain Name System
 - History
 - Query sequences
 - Record types
 - Load balancing

Recall: TCP/IP Protocol Stack

host

host

Recall: TCP/IP Protocol Stack

host

host

Identifiers

- Host name (e.g., www.swarthmore.edu)
 - Used by humans to specify host of interest
 - Unique, selected by host administrator
 - Hierarchical, variable-length string of alphanumeric characters
- IP address (e.g., 130.58.68.164)
 - Used by *routers* to forward packets
 - Unique, topologically meaningful locator
 - Hierarchical namespace of 32 bits
- MAC address (e.g., D8:D3:85:94:5F:1E)
 - Used by *network adaptors* to identify interesting frames
 - Unique, hard-coded identifier burned into network adaptor
 - Flat name space (of 48 bits in Ethernet)

What's in a name?

- Host name: web.cs.swarthmore.edu
 - Domain: registrar for each top-level domain (e.g., .edu)
 - Host name: local administrator assigns to each host
- IP addresses: 130.58.68.164
 - Prefixes: ICANN, regional Internet registries, and ISPs
 - Hosts: static configuration, or dynamic using DHCP
- MAC addresses: D8:D3:85:94:5F:1E
 - OIDs: assigned to vendors by the IEEE
 - Adapters: assigned by the vendor from its block

What's in a name?

- Host name: web.cs.swarthmore.edu (today)
 - Domain: registrar for each top-level domain (e.g., .edu)
 - Host name: local administrator assigns to each host
- IP addresses: 130.58.68.164 (a few weeks)
 - Prefixes: ICANN, regional Internet registries, and ISPs
 - Hosts: static configuration, or dynamic using DHCP
- MAC addresses: D8:D3:85:94:5F:1E
 - OIDs: assigned to vendors by the IEEE
 - Adapters: assigned by the vendor from its block

Mapping Between Identifiers

- Domain Name System (DNS)
 - Given a host name, provide the IP address
 - Given an IP address, provide the host name
- Address Resolution Protocol (ARP)
 - Given an IP address, provide the MAC address
 - To enable communication within the Local Area Network
- Dynamic Host Configuration Protocol (DHCP)
 - Automates host boot-up process
 - Given a MAC address, assign a unique IP address
 - and tell host other stuff about the Local Area Network

What's the biggest challenge for DNS?

What's the biggest challenge for DNS?

- A. It's old.
- B. The fact that the Internet is global.
- C. The fact that DNS is now critical infrastructure.
- D. The sheer number of name lookups happening at any given time.
- E. How and when the name -> IP address mapping should change.

In the old days...

- Pre-1982, everyone downloads a "hosts.txt" file from SRI
- Pre-1998, Jon Postel, researcher at USC, runs the Internet Assigned Numbers Authority (IANA)
 - RFCs 882 & 883 in 1983
 - RFCs 1034 & 1035 in 1987

- Emailed 8/12 root DNS servers, asked change to his authority. They did.
- <u>http://www.wired.com/w</u> <u>iredenterprise/2012/10/j</u> <u>oe-postel/</u>

Since 1998...

- Control of Internet Assigned Numbers Authority (IANA) transferred to Internet Corporation for Assigned Names and Numbers (ICANN)
 - ICANN is a private non-profit (formerly) blessed by US DOC
 - Global advisory committee for dealing with international issues
 - 2000's: Many efforts for UN control, US resisted
 - 2016: ICANN no longer partnered with DOC
- Lots of geopolitics here...

Who should control DNS?

A. US government

B. UN / International government

- C. Private corporation
- D. Someone else

Recent Controversy

• Is ICANN working in the world's best interest?

• New "top level domains" added, for auction

• Example: the ".sucks" TLD (+ many others)

Reality

 As computer scientists, it's probably not up to us to decide. ☺

• Let's focus on the technical aspects of DNS. ③

DNS Services

- DNS is an application-layer protocol. (E2E design!)
- It provides:
 - Hostname to IP address translation
 - Host aliasing (canonical and alias names)
 - Mail server aliasing
 - Load distribution (one name may resolve to multiple IP addresses)
 - Lots of other stuff that you might use a directory service to find. (Wikipedia: List of DNS record types)

DNS Records

DNS: distributed DB storing resource records (RR)

RR format: (name, value, type, ttl)

type=A

- name is hostname
- value is IP address

<u>type=NS</u>

- name is domain (e.g., foo.com)
- value is hostname of authoritative name server for this domain

type=CNAME

- name is alias name for some "canonical" (the real) name
- www.ibm.com is really servereast.backup2.ibm.com
- value is canonical name

type=MX

 value is name of mailserver associated with name

DNS protocol, messages

• *query* and *reply* messages, both with same *message format*

Message header

- identification: 16 bit # for query, reply to query uses same #
- flags:
 - query or reply
 - recursion desired
 - recursion available
 - reply is authoritative

Sent via UDP

- No connection established
- Not reliable

← 2 bytes → ← 2 bytes →		
	identification	flags
-	# questions	# answer RRs
	# authority RRs	# additional RRs
	questions (variable # of questions) answers (variable # of RRs) authority (variable # of RRs) additional info (variable # of RRs)	

Domain Name System (DNS)

- Distributed administrative control
 - Hierarchical name space divided into zones
 - Distributed over a collection of DNS servers
- Hierarchy of DNS servers
 - Root servers
 - Top-level domain (TLD) servers
 - Authoritative DNS servers
- Performing the translations
 - Local DNS servers
 - Resolver software

Why do we structure DNS like this? Which of these helps the most?

- A. It divides up responsibility among parties.
- B. It improves performance of the system.
- C. It reduces the size of the state that a server needs to store.
- D. Some other reason.

DNS: Root Name Servers

- Root name server:
 - Knows how to find top-level domains (.com, .edu, .gov, etc.)
 - How often does the location of a TLD change?

DNS: Root Name Servers

- Root name server:
 - Knows how to find top-level domains (.com, .edu, .gov, etc.)
 - How often does the location of a TLD change?
 - ~300 total root servers
 - Significant amount of traffic is not legitimate

Top Level Domains

Top-level domain (TLD) servers:

- Responsible for com, org, net, edu, gov, aero, jobs, museums, and all top-level country domains, e.g.: uk, fr, de, ca, jp, etc.
- Verisign maintains servers for .com and .net TLD
- Educause for .edu TLD (Verisign actually runs backend)
- Others managed by corresponding entity (e.g., local governments or companies)

Authoritative Servers

Authoritative DNS servers:

- Organization's own DNS server(s), providing authoritative hostname to IP mappings for organization's named hosts
- Can be maintained by organization or service provider, easily changing entries
- Often, but not always, acts as organization's local name server (for responding to look-ups)

Resolution Process

- End host wants to look up a name, who should it contact?
 - It could traverse the hierarchy, starting at a root
 - More efficient for ISP to provide a local server
- ISP's local server for handling queries not necessarily a part of the pictured hierarchy

Local DNS Name Server

- Each ISP (residential ISP, company, university) has (at least) one
 - also called "default name server"
- When host makes DNS query, query is sent to its local DNS server
 - has local cache of recent name-to-address translation pairs (but may be out of date!)
 - acts as proxy, forwards query into hierarchy

DNS name resolution example #1

 allspice wants IP address for gaia.cs.umass.edu

iterative query:

- contacted server replies with name of server to contact
- "I don't know this name, but ask this server"

qaia.cs.umass.edu

Caching

- Once (any) name server learns a mapping, it caches mapping
 - cache entries timeout (disappear) after some time (TTL: time to live)
 - TLD servers typically cached in local name servers
 - Thus root name servers not often (legitimately) visited

Caching

- Once (any) name server learns a mapping, it caches mapping
 - cache entries timeout (disappear) after some time (TTL: time to live)
 - TLD servers typically cached in local name servers
 - Thus root name servers not often (legitimately) visited
- (+) Subsequent requests need not burden DNS
- (-) Cached entries may be *out-of-date* (best effort!)
 - If host's name or IP address changes, it may not be known Internet-wide until all TTLs expire

The TTL value should be

- A. Short, to make sure that changes are accurately reflected
- B. Long, to avoid re-queries of higher-level DNS servers
- C. Something else

Inserting (or changing) records

- Example: new startup "Network Utopia"
- Register networkuptopia.com at *DNS registrar*
 - provide names, IP addresses of authoritative name server (primary and secondary)
 - registrar inserts two RRs into .com TLD server: (networkutopia.com, dns1.networkutopia.com, NS)
 (dns1.networkutopia.com, 212.212.212.1, A)
- Set up authoritative server at that name/address
 - Create records for the services:
 - type A record for www.networkuptopia.com
 - type MX record for @networkutopia.com email

DNS Load Balancing

• One load balancing option (others use routing)

- When the authoritative name server responds
 - Round robin between servers
 - Take server load into account?
 - Take location into account (content distribution)

Summary

• DNS maps human names to IP addresses

- DNS arranged into a hierarchy
 - Scalability / distributed responsibility
 - Autonomous control of local name servers
- Caching crucial for performance