
CS 31: Intro to Systems C Programming
L24-25: Synchronization and Race Conditions

Vasanta Chaganti & Kevin Webb
Swarthmore College

Dec 7, 12, 2023

Reading Quiz

Threads

• Modern OSes separate the concepts of processes and threads.
– The process defines the address space and general process attributes (e.g., open

files)
– The thread defines a sequential execution stream within a process (PC, SP,

registers)

• A thread is bound to a single process
– Processes, however, can have multiple threads
– Each process has at least one thread (e.g. main)

Threads

This is the picture we’ve
been using all along:

A process with a single
thread, which has execution
state (registers) and a stack.

Text

Data

Stack

OS

Heap

Thread 1 PC1

SP1

Kernel-Level Threads

Text

Data

Process 1

Text

Data

Process 2

Text

Data

Process n

…

KernelSystem
Calls

write

read

fork

Stack 3
Stack 2
Stack 1

Stack 2

Stack 1
Stack 1

System Management

Thread +
Process

Scheduling

Thread
Context

Switching

Kernel Context
switching over
threads

Each process
has explicitly
mapped
regions for
stacks

Common Thread Patterns

• Producer / Consumer (a.k.a. Bounded buffer)

• Thread pool (a.k.a. work queue)

• Thread per client connection

Thread Pool / Work Queue

• Common way of structuring threaded apps:

Thread Pool

Thread Pool / Work Queue

• Common way of structuring threaded apps:

Thread Pool

Queue of work to be done:

Thread Pool / Work Queue

• Common way of structuring threaded apps:

Thread Pool

Queue of work to be done: Farm out work to threads
when they’re idle.

Thread Pool

Queue of work to be done:

As threads finish work at their own
rate, they grab the next item in queue.

Common for “embarrassingly
parallel” algorithms.

Works across the network too!

Thread Pool / Work Queue

• Common way of structuring threaded apps:

Thread Per Client
• Consider Web server:

– Client connects
– Client asks for a page:

• http://web.cs.swarthmore.edu/cs31
– Server looks through file system to

find path (I/O)
– Server sends back html for client

browser (I/O)

• Web server does this for MANY
clients at once

What synchronization primitives do we need to serve
each client with a dedicated thread?

Is there an advantage to using multiple threads in this
example if we only have one CPU core?

Thread Pool

Queue of work to be done:

As threads finish work at their own
rate, they grab the next item in queue.

Common for “embarrassingly
parallel” algorithms.

Works across the network too!

Thread Per Client

• Server “main” thread:
– Wait for new connections
– Upon receiving one, spawn new client thread
– Continue waiting for new connections, repeat…

• Client threads:
– Read client request, find files in file system
– Send files back to client
– Nice property: Each client is independent
– Nice property: When a thread does I/O, it gets blocked

for a while. OS can schedule another one.

Credit/Debit Problem: Race Condition

Thread T0

Credit (int a) {
 int b;

 b = ReadBalance ();
 b = b + a;
 WriteBalance (b);

 PrintReceipt (b);
}

Thread T1

Debit (int a) {
 int b;

 b = ReadBalance ();
 b = b - a;
 WriteBalance (b);

 PrintReceipt (b);
}

Say T0 runs first

Read $1000 into b

Switch to T1
Read $1000 into b
Debit by $100
Write $900

Switch back to T0
Read $1000 into b
Credit $100
Write $1100

Bank gave you $100!

What went wrong?

“Critical Section”

Thread T0

Credit (int a) {
 int b;

 b = ReadBalance ();
 b = b + a;
 WriteBalance (b);

 PrintReceipt (b);
}

Thread T1

Debit (int a) {
 int b;

 b = ReadBalance ();
 b = b - a;
 WriteBalance (b);

 PrintReceipt (b);
}

Bank gave you $100!

What went wrong?

Badness if
context
switch here!

Danger Will Robinson!

To Avoid Race Conditions

1. Identify critical sections

2. Use synchronization to enforce mutual exclusion
– Only one thread active in a critical section

Thread 0

- Critical -
- Section -

Thread 1

- Critical -
- Section -

Critical Section and Atomicity

• Sections of code executed by multiple threads
– Access shared variables, often making local copy
– Places where order of execution or thread interleaving will affect the

outcome
– Follows: read + modify + write of shared variable

• Must run atomically with respect to each other
– Atomicity: runs as an entire instruction or not at all. Cannot be divided into

smaller parts.

Which code region is a critical section?
Thread A

main ()
{ int a,b;

 a = getShared();
 b = 20;
 a = a - b;
 saveShared(a);

 a += 1

 return a;
}

Thread B

 s = 40;

shared
memory

main ()
{ int a,b;

 a = getShared();
 b = 10;
 a = a + b;
 saveShared(a);

 a += 1

 return a;
}

A
C

B

D
E

Which code region is a critical section?

Thread A Thread B

shared
memory

D

read + modify + write of shared variable

Large enough for correctness + Small enough to minimize slow down

main ()
{ int a,b;

 a = getShared();
 b = 20;
 a = a - b;
 saveShared(a);

 a += 1

 return a;
}

 s = 40;

main ()
{ int a,b;

 a = getShared();
 b = 10;
 a = a + b;
 saveShared(a);

 a += 1

 return a;
}

Atomicity

• The implementation of acquiring/releasing critical section must be
atomic.
– An atomic operation is one which executes as though it could not be interrupted
– Code that executes “all or nothing”

• How do we make them atomic?
– Atomic instructions (e.g., test-and-set, compare-and-swap)
– Allows us to build “semaphore” OS abstraction

Four Rules for Mutual Exclusion

1. No two threads can be inside their critical sections at the same time
(one of many but not more than one).

2. No thread outside its critical section may prevent others from entering
their critical sections.

3. No thread should have to wait forever to enter its critical section.
(Starvation)

4. No assumptions can be made about speeds or number of CPU’s.

Railroad Semaphore
- Help trains figure

out which track to
be on at any given
time.

Railroad Semaphore
- Help trains figure

out which track to
be on at any given
time.

O.S. Semaphore:
- Construct that the

OS provides to
processes.

- Make system calls
to modify their
value

Mutual Exclusion with Semaphores

T0

lock (mutex);

< critical section >

unlock (mutex);

T1

lock (mutex);

< critical section >

unlock (mutex);

mutex = 1; //lock and unlock mutex atomically.

Atomicity: run the entire instruction without interruption.

Mutual Exclusion with Semaphores

T0

lock (mutex);

< critical section >

unlock (mutex);

T1

lock (mutex);

< critical section >

unlock (mutex);

mutex = 1; //unlocked.

Atomicity: run the entire instruction without interruption.

T0: Wants to execute the critical section
T0: Reads the value of mutex,
 Changes the value of mutex = 0 (acquires lock)
 Enters critical section.

Mutual Exclusion with Semaphores

T0

lock (mutex);

< critical section >

unlock (mutex);

T1

lock (mutex);

< critical section >

unlock (mutex);

mutex = 0; //locked.

Atomicity: run the entire instruction without interruption.

T0: Wants to execute the critical section
T0: Reads the value of mutex,
 Changes the value of mutex = 0 (acquires lock)
 Enters critical section.

Atomic Execution

Mutual Exclusion with Semaphores

T0

lock (mutex);

< critical section >

unlock (mutex);

T1 (blocked)

lock (mutex);

< critical section >

unlock (mutex);

mutex = 0; //locked.

Atomicity: run the entire instruction without interruption.

T0: In the critical section
T1: Wants to enter the critical section.
 Reads the value of mutex (mutex = 0)
 Cannot enter critical section.
 Blocked.

Mutual Exclusion with Semaphores

T0

lock (mutex);

< critical section >

unlock (mutex);

T1 (blocked)

lock (mutex);

< critical section >

unlock (mutex);

mutex = 0; //locked.

Atomicity: run the entire instruction without interruption.

T0: Completes execution of critical section
 Updates mutex value = 1. (release lock)

Atomic Execution

Mutual Exclusion with Semaphores

T0

lock (mutex);

< critical section >

unlock (mutex);

T1 (blocked)

lock (mutex);

< critical section >

unlock (mutex);

mutex = 1; //unlocked.

Atomicity: run the entire instruction without interruption.

T0: Completes execution of critical section
 Updates mutex value = 1. (release lock)

Mutual Exclusion with Semaphores

T0

lock (mutex);

< critical section >

unlock (mutex);

T1

lock (mutex);

< critical section >

unlock (mutex);

mutex = 1; //locked.

Atomicity: run the entire instruction without interruption.

T1: Can now acquire lock atomically and
 Enter the critical section

Mutual Exclusion with Semaphores

• Use a “mutex” semaphore initialized to 1
• Only one thread can enter critical section at a time.
• Simple, works for any number of threads

T0

lock (mutex);

< critical section >

unlock (mutex);

T1

lock (mutex);

< critical section >

unlock (mutex);

mutex = 1; //lock and unlock mutex atomically.

Atomicity: runs as an entire instruction or not at all.

Semaphores

• Semaphore: OS synchronization variable
– Has integer value
– List of waiting threads

• Works like a gate
• If sem > 0, gate is open
– Value equals number of threads that can enter

• Else, gate is closed
– Possibly with waiting threads

critical
section

sem = 1
sem = 2

sem = 3

sem = 0

Semaphore Operations

sem s = n; // declare and initialize

wait (sem s) // Executes atomically(*)
 decrement s;
 if s < 0:
 block thread (and associate with s);

signal (sem s) // Executes atomically(*)
 increment s;
 if blocked threads:
 unblock (any) one of them;

(*) With help from special hardware instructions.

Barrier Example, N Threads

shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {
 while (…) {
 compute_sim_round()
 barrier_wait(&b)
 }
}

T1T0 T2 T3 T4

Barrier (0 waiting)

Time

Barrier Example, N Threads

Time

T1

T0 T2

T3

T4

Barrier (0 waiting)

Threads make progress computing
current round at different rates.

shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {
 while (…) {
 compute_sim_round()
 barrier_wait(&b)
 }
}

Barrier Example, N Threads

Time

Barrier (3 waiting)

Threads that make it to barrier must
wait for all others to get there.

T1

T0 T2

T3

T4

shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {
 while (…) {
 compute_sim_round()
 barrier_wait(&b)
 }
}

Barrier Example, N Threads

Time

Barrier (5 waiting)

Barrier allows threads to pass when
N threads reach it.

T1T0 T2 T3 T4

Matches

shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {
 while (…) {
 compute_sim_round()
 barrier_wait(&b)
 }
}

Barrier Example, N Threads

Barrier (0 waiting)

Threads compute next round, wait
on barrier again, repeat…

T1

T0 T2 T3

T4

Time

shared barrier b;

init_barrier(&b, N);

create_threads(N, func);

void *func(void *arg) {
 while (…) {
 compute_sim_round()
 barrier_wait(&b)
 }
}

Synchronization: More than Mutexes

• I want all my threads to sync up at the same point.
– Barrier: wait for everyone to catch up.

• I want to block a thread until something specific happens.
– Condition variable: wait for a condition to be true

• I want my threads to share a critical section when they’re
reading, but still safely write.
– Readers/writers lock: distinguish how lock is used

Synchronization: Beyond Mutexes
Message Passing

• Operating system mechanism for IPC
– send (destination, message_buffer)
– receive (source, message_buffer)

• Data transfer: in to and out of kernel message buffers
• Synchronization: can’t receive until message is sent

send (to, buf) receive (from, buf)

kernel

P1 P2

Common Thread Patterns

• Producer / Consumer (a.k.a. Bounded buffer)

• Thread pool (a.k.a. work queue)

• Thread per client connection

The Producer/Consumer Problem

• Producer produces data, places it in shared buffer
• Consumer consumes data, removes from buffer
• Cooperation: Producer feeds Consumer
– How does data get from Producer to Consumer?
– How does Consumer wait for Producer?

Producer Consumer3 5 4 92

in

out
buf

Producer/Consumer: Shared Memory

Data transferred in shared memory buffer.

Producer
while (TRUE) {
 buf[in] = Produce();
 in = (in + 1)%N;
}

Consumer
while (TRUE) {
 Consume(buf[out]);
 out = (out + 1)%N;
}

shared int buf[N], in = 0, out = 0;

Producer/Consumer: Shared Memory

Data transferred in shared memory buffer.

• Is there a problem with this code?
A. Yes, this is broken.
B. No, this ought to be fine.

Producer
while (TRUE) {
 buf[in] = Produce();
 in = (in + 1)%N;
}

Consumer
while (TRUE) {
 Consume(buf[out]);
 out = (out + 1)%N;
}

shared int buf[N], in = 0, out = 0;

Adding Semaphores

• Recall semaphores:
– wait(): decrement sem and block if sem value < 0
– signal(): increment sem and unblock a waiting process (if any)

Producer
while (TRUE) {
 wait (X);
 buf[in] = Produce ();
 in = (in + 1) % N;
 signal (Y);
}

Consumer
while (TRUE) {
 wait (Z);
 Consume (buf[out]);
 out = (out + 1) % N;
 signal (W);
}

shared int buf[N], in = 0, out = 0;
shared sem filledslots = 0, emptyslots = N;

Suppose we now have two semaphores to
protect our array. Where do we use them?

Answer choice X Y Z W

A. emptyslots emptyslots filledslots filledslots

B. emptyslots filledslots filledslots emptyslots

C. filledslots emptyslots emptyslots filledslots

Producer
while (TRUE) {
 wait (X);
 buf[in] = Produce ();
 in = (in + 1) % N;
 signal (Y);
}

Consumer
while (TRUE) {
 wait (Z);
 Consume (buf[out]);
 out = (out + 1) % N;
 signal (W);
}

shared int buf[N], in = 0, out = 0;
shared sem filledslots = 0, emptyslots = N;

Add Semaphores for Synchronization

• Buffer empty, Consumer waits
• Buffer full, Producer waits
• Don’t confuse synchronization with mutual exclusion

Producer
while (TRUE) {
 wait (emptyslots);
 buf[in] = Produce();
 in = (in + 1) % N;
 signal (filledslots);
}

Consumer
while (TRUE) {
 wait (filledslots);
 Consume(buf[out]);
 out = (out + 1) % N;
 signal (emptyslots);
}

shared int buf[N], in = 0, out = 0;
shared sem filledslots = 0, emptyslots = N;

Synchronization: More than Mutexes

• “I want to block a thread until something specific happens.”
– Condition variable: wait for a condition to be true

Condition Variables

• In the pthreads library:
– pthread_cond_init: Initialize CV
– pthread_cond_wait: Wait on CV
– pthread_cond_signal: Wakeup one waiter
– pthread_cond_broadcast: Wakeup all waiters

• Condition variable is associated with a mutex:
1. Lock mutex, realize conditions aren’t ready yet
2. Temporarily give up mutex until CV signaled
3. Reacquire mutex and wake up when ready

Condition Variable Pattern

cond_one, cond_two
while (TRUE) {
 //independent code

 lock(m); //acquire the lock
 while (conditions bad)
 wait(m, cond_one); //implicitly release lock to other thread
 while waiting for cond_one to be true.

 //proceed knowing that conditions are now good (as signaled by
 other thread)

 signal (cond_two); //your turn to signal a thread
 waiting on cond_two
 unlock(m); //release the lock
}

Condition Variable Example

Producer
while (TRUE) {
 item = Produce();

 lock(m);
 while (count == N)
 wait(m, notfull);

 buf[in] = item;
 in = (in + 1)%N;
 count += 1;

 signal (notempty);
 unlock(m);
}

Consumer
while (TRUE) {
 lock(m);
 while (count == 0)
 wait(m, notempty);

 item = buf[out];
 out = (out + 1)%N;
 count -= 1;

 signal (notfull);
 unlock(m);

 Consume(item);
}

shared int buf[N], in = 0, out = 0;
shared int count = 0; // # of items in buffer
shared mutex m;
shared cond notempty, notfull;

Synchronization: More than Mutexes

• “I want to block a thread until something specific
happens.”
– Condition variable: wait for a condition to be true

• “I want all my threads to sync up at the same point.”
– Barrier: wait for everyone to catch up.

• “I want my threads to share a critical section when
they’re reading, but still safely write.”
– Readers/writers lock: distinguish how lock is used

Summary

• Many ways to solve the same classic problems
– Producer/Consumer: semaphores, CVs, messages

• There’s more to synchronization than just mutual exclusion!
– CVs, barriers, RWlocks, and others.

“Deadly Embrace”

• The Structure of the THE-Multiprogramming System (Edsger Dijkstra,
1968)

• Also introduced semaphores

• Deadlock is as old as synchronization

What is Deadlock?

• Deadlock is a problem that can arise:

– When processes compete for access to limited resources

– When threads are incorrectly synchronized

• Definition:

– Deadlock exists among a set of threads if every thread is waiting for
an event that can be caused only by another thread in the set.

What is Deadlock?

• Set of threads are permanently blocked
– Unblocking of one relies on progress of another
– But none can make progress!

• Example
– Threads A and B
– Resources X and Y
– A holding X, waiting for Y
– B holding Y, waiting for X
– Each is waiting for the other; will wait forever

A

X

Y

B

waiting
for resource

waiting
for resource

holding lock

holding
lock

Traffic Jam as Example of Deadlock

• Cars A, B, C, D

• Road W, X, Y, Z

• Car A holds road space Y, waiting
for space Z

• “Gridlock”

W X

Y Z

C

A

B

D

Cars deadlocked
in an intersection

Traffic Jam as Example of Deadlock

A

Z

B

D

W

C

Y X

Resource Allocation
Graph

W X

Y Z

C

A

B

D

Cars deadlocked
in an intersection

Four Conditions for Deadlock

1. Mutual Exclusion
– Only one thread may use a resource at a time.

2. Hold-and-Wait
– Thread holds resource while waiting for another.

3. No Preemption
– Can’t take a resource away from a thread.

4. Circular Wait
– The waiting threads form a cycle.

Four Conditions for Deadlock

1. Mutual Exclusion
– Only one thread may use a resource at a time.

2. Hold-and-Wait
– Thread holds resource while waiting for another.

3. No Preemption
– Can’t take a resource away from a thread.

4. Circular Wait
– The waiting threads form a cycle.

Examples of Deadlock

• Memory (a reusable resource)
– total memory = 200KB
– T1 requests 80KB
– T2 requests 70KB
– T1 requests 60KB (wait)
– T2 requests 80KB (wait)

• Messages (a consumable resource)
– T1: receive M2 from P2

– T2: receive M1 from P1

T1

T2

T1

M1

M2

T2

Banking, Revisited
struct account {
 mutex lock;
 int balance;
}

Transfer(from_acct, to_acct, amt) {
 lock(from_acct.lock);
 lock(to_acct.lock);

 from_acct.balance -= amt;
 to_acct.balance += amt;

 unlock(to_acct.lock);
 unlock(from_acct.lock);
}

If multiple threads are executing this code, is there a
race? Could a deadlock occur?

Clicker
Choice

Potential
Race?

Potential
Deadlock?

A No No

B Yes No

C No Yes

D Yes Yes

If there’s potential for a race/deadlock,
what execution ordering will trigger it?

struct account {
 mutex lock;
 int balance;
}

Transfer(from_acct, to_acct, amt) {
 lock(from_acct.lock);
 lock(to_acct.lock);

 from_acct.balance -= amt;
 to_acct.balance += amt;

 unlock(to_acct.lock);
 unlock(from_acct.lock);
}

Common Deadlock

Thread 0
Transfer(acctA, acctB, 20);

Transfer(…) {
 lock(acctA.lock);
 lock(acctB.lock);

Thread 1
Transfer(acctB, acctA, 40);

Transfer(…) {
 lock(acctB.lock);
 lock(acctA.lock);

Common Deadlock

Thread 0
Transfer(acctA, acctB, 20);

Transfer(…) {

 lock(acctA.lock);

 T0 gets to here
 lock(acctB.lock);

Thread 1
Transfer(acctA, acctB, 40);

Transfer(…) {

 lock(acctB.lock);

 T1 gets to here
 lock(acctA.lock);

T0 holds A’s lock, will make no progress until it can get B’s.
T1 holds B’s lock, will make no progress until it can get A’s.

How to solve the Deadlock Problem

What should your OS do to help you?

• Deadlock Prevention
– Make deadlock impossible by removing a condition

• Deadlock Avoidance (“Banker’s Algorithm”)
– Avoid getting into situations that lead to deadlock

• Deadlock Detection
– Don’t try to stop deadlocks
– Rather, if they happen, detect and resolve

Which type of deadlock-handling scheme
would you expect to see in a modern OS
(Linux/Windows/OS X) ?

A. Deadlock prevention

B. Deadlock avoidance

C. Deadlock detection/recovery

D. Something else

“Ostrich Algorithm”

How to Attack the Deadlock Problem

• Deadlock Prevention
– Make deadlock impossible by removing a condition

• Deadlock Avoidance
– Avoid getting into situations that lead to deadlock

• Deadlock Detection
– Don’t try to stop deadlocks
– Rather, if they happen, detect and resolve

• These all have major drawbacks…

Other Thread Complications

• Deadlock is not the only problem

• Performance: too much locking?

• Priority inversion

• …

Priority Inversion

• Problem: Low priority thread holds lock, high priority thread waiting for
lock.
– What needs to happen: boost low priority thread so that it can finish,

release the lock
– What sometimes happens in practice: low priority thread not scheduled,

can’t release lock

• Example: Mars Pathfinder (1997)

Sojourner Rover on Mars

Mars Rover

• Three periodic tasks:
1. Low priority: collect meteorological data
2. Medium priority: communicate with NASA
3. High priority: data storage/movement

• Tasks 1 and 3 require exclusive access to a hardware bus to move data.
– Bus protected by a mutex.

Mars Rover

• Failsafe timer (watchdog): if high priority task doesn’t complete in time,
reboot system

• Observation: uh-oh, this thing seems to be rebooting a lot, we’re losing
data…

JPL engineers later confessed that one or two system resets had
occurred in their months of pre-flight testing. They had never
been reproducible or explainable, and so the engineers, in a
very human-nature response of denial, decided that they
probably weren't important, using the rationale "it was probably
caused by a hardware glitch".

What Happened: Priority Inversion

Time

H

M

L Low priority task, running happily.

What Happened: Priority Inversion

Time

H

M

L

Low priority task acquires mutex lock.

What Happened: Priority Inversion

Time

H

M

L Blocked

Medium task starts up, takes CPU.

What Happened: Priority Inversion

Time

H

M

L Blocked

High priority task tries to acquire
mutex, can’t because it’s already held.

Blocked

What Happened: Priority Inversion

Time

H

M

L Blocked

High priority task tries to acquire
mutex, can’t because it’s already held.

Low priority task can’t give up the
lock because it can’t run -
medium task takes priority over it.

Blocked

What Happened: Priority Inversion

Time

H

M

L Blocked

Blocked

High priority is
taking too long.

Reboot!

Solution: Priority Inheritance

Time

H

M

L -> H Blocked

High priority task tries to acquire
mutex, can’t because it’s already held.

Blocked

Give to blue red’s (higher) priority!

Solution: Priority Inheritance

Time

H

M

Blocked

Blocked

Blocked

…

L

Release lock, revert to low priority.

High priority finishes in time.

Deadlock Summary

• Deadlock occurs when threads are waiting on each other and cannot
make progress.

• Deadlock requires four conditions:
– Mutual exclusion, hold and wait, no resource preemption, circular wait

• Approaches to dealing with deadlock:
– Ignore it – Living life on the edge (most common!)
– Prevention – Make one of the four conditions impossible
– Avoidance – Banker’s Algorithm (control allocation)
– Detection and Recovery – Look for a cycle, preempt/abort

