
CS 31: Intro to Systems C Programming
L20-21: Virtual Memory

Vasanta Chaganti & Kevin Webb
Swarthmore College

Nov 21, 28, 2023

Announcements

• HW 6 is out!
• Pre-registration is Tuesday – Thursday 30th November
• Must pre-register to get into a CS course

• Senior Poster Sessions! Support your seniors!
• Tuesday – Thursday: 7 – 9 PM
• CS Hallway
• Food and Snacks!

Reading Quiz

OS Big Picture Goals

• OS is a layer of code between user programs and hardware.

• Goal: Make life easier for users and programmers.

• How can the OS do that?

Key OS Responsibilities

1. Simplifying abstractions for programs

2. Resource allocation and/or sharing

3. Hardware gatekeeping and protection

Anatomy of a Process

• Abstraction of a running program
– a dynamic “program in execution”

• OS keeps track of process state
– What each process is doing
– Which one gets to run next

• Basic operations
– Suspend/resume (context switch)
– Start (spawn), terminate (kill)

Common fork() usage: Shell

2. child: exec()user-requested program

Shell

fork()

Shell
(p)

Shell
new
prog

wait() exec()

Runs to completion

Common fork() usage: Shell

3. child program terminates, cycle repeats

Shell

fork()

Shell
(p)

Shell
new
prog

wait() exec()

Runs to completion

Child terminates

Common fork() usage: Shell

3. child program terminates, cycle repeats

Shell

fork()

Shell
(p)

Shell
new
prog

wait() exec()

Runs to completion

Child terminatesShell
(p)

Original parent
shell resumes

Process Management: Summary

• A process is the unit of execution.
• Processes are represented as Process Control Blocks in the OS

– PCBs contain process state, scheduling and memory management
information, etc

• A process is either New, Ready, Waiting, Running, or Terminated.
• On a uniprocessor, there is at most one running process at a time.

• The program currently executing on the CPU is changed by
performing a context switch

• Processes communicate either with message passing or shared
memory

Lecture 4 – Slide 14

Memory

• Abstraction goal: make every process
think it has the same memory layout.
– MUCH simpler for compiler if the stack

always starts at 0xFFFFFFFF, etc.

• Reality: there’s only so much memory to
go around, and no two processes should
use the same (physical) memory
addresses.

Process 1

Process 3

Process 3

Process 2

Process 1

OS (with help from hardware) will keep track of who’s
using each memory region.

0x0

0xFFFFFFFF

OS

Stack

Text
Data

Heap

Abstraction

OS

Reality

Memory Terminology

Process 1

Process 3

Process 3

OS

Process 2

Process 1

Physical Memory: The contents of
the hardware (RAM) memory.
Managed by OS. Only ONE of these
for the entire machine!

Virtual (logical) Memory: The
abstract view of memory given to
processes. Each process gets an
independent view of the memory.

Address Space:
Range of addresses for
a region of memory.

The set of available
storage locations.

0x0

0x…
(Determined by amount of installed RAM.)

0x0

0xFFFFFFFFVirtual address space
(VAS): fixed size.

OS

Stack

Text
Data

Heap

OS

Stack

Text
Data

Heap

OS

Stack

Text
Data

Heap

Problem: Placement

• Where should process memories be placed?
– Topic: “Classic” memory management

• How does the compiler model memory?
– Topic: Logical memory model

• How to deal with limited physical memory?
– Topics: Virtual memory, paging

Memory Management

• Physical memory starts as one big empty space.

Memory Management

• Physical memory starts as one big empty space.

• Processes need to be in memory to
execute.

Fragmentation

• Eventually, memory becomes fragmented
– After repeated allocations/de-allocations

• Internal fragmentation
– Unused space within process
– Cannot be allocated to others
– Can come in handy for growth

• External fragmentation
– Unused space outside any process (gaps)
– Can be allocated (too small/not useful?)

Placing Memory

• When searching for space, what if there are multiple options?
• Algorithms
– First (or next) fit
– Best fit
– Worst fit

Placing Memory

• When searching for space, what if there are multiple options?
• Algorithms
– First (or next) fit
– Best fit
– Worst fit

Placing Memory

• When searching for space, what if there are multiple options?
• Algorithms
– First (or next) fit
– Best fit
– Worst fit

Which memory allocation algorithm would
you choose? Why?

A. first-fit

B. worst-fit

C. best-fit

Is leaving small fragments a
good thing or a bad thing?

Where would worst-fit place this memory chunk?

5 MB

7 MB

5 MB

9 MB

A.

B.

C.

Placing Memory

• When searching for space, what if there are multiple options?
• Algorithms
– First (or next) fit: fast
– Best fit
– Worst fit

Placing Memory

• When searching for space, what if there are multiple options?
• Algorithms
– First (or next) fit
– Best fit: leaves small fragments
– Worst fit

Placing Memory

• When searching for space, what if there are multiple options?
• Algorithms
– First (or next) fit
– Best fit
– Worst fit: leaves large fragments

What if it doesn’t fit?

• There may still be significant unused space
– External fragments
– Internal fragments

• Approaches

What if it doesn’t fit?

• There may still be significant unused space
– External fragments
– Internal fragments

• Approaches
– Compaction

What if it doesn’t fit?

• There may still be significant unused space
– External fragments
– Internal fragments

• Approaches
– Compaction
– Break process memory into pieces

• Easier to fit.
• More state to keep track of.

Problem Summary: Placement

• difficult to find a large free region in physical memory for a process.
• fragmentation makes this harder over time
– free pieces get smaller, spread out

• General solution: don’t require all of a process’s memory to be in one
piece!

Problem Summary: Placement

• General solution: don’t require all of a process’s memory to be in one
piece!

Process 1

OS

Process 2

Process 1

Process 3

Process 2

Physical Memory

Problem Summary: Placement

• General solution: don’t require all of a process’s memory to be in one
piece!

Process 1

OS

Process 2

Process 1

Process 3

Process 2

Physical Memory

OS:
Place

Process 3

Problem Summary: Placement

• General solution: don’t require all of a process’s memory to be in one
piece!

Process 1

OS

Process 2

Process 1

Process 3

Process 2

Physical Memory

OS:
Place

Process 3

Process 3

Process 3

Problem Summary: Placement

• General solution: don’t require all of a process’s memory to be in one
piece!

Process 1

OS

Process 2

Process 1

Process 3

Process 2

Physical Memory

OS:
Place

Process 3

Process 3

Process 3Process 3

OS may choose not to place parts
in memory at all.

Problem: Addressing

• Where should process memories be placed?
– Topic: “Classic” memory management

• How does the compiler model memory?
– Topic: Logical memory model

• How to deal with limited physical memory?
– Topics: Virtual memory, paging

(More) Problems with Memory Cohabitation

• Addressing:
– Compiler generates memory references
– Unknown where process will be located

• Protection:
– Modifying another process’s memory

• Sharing Space:
– The more processes there are, the less memory each

individually can have

P2

P1

P3

Compiler’s View of Memory

• Compiler generates memory addresses
– Needs empty region for text, data, stack
– Ideally, very large to allow data and stack to grow

• Without abstractions compiler would need to know…
– Physical memory size
– Where to place data (e.g., stack at high end)

• Must avoid allocated regions in memory

Address Spaces

• Address space
– Set of addresses for memory

• Usually linear: 0 to N-1 (size N)
• Physical Address Space (PAS)
– 0 to N-1, N = size
– Kernel occupies lowest addresses

0

N-1

PAS

kernel

PM

Virtual vs. Physical Addressing

• Virtual/logical addresses
– Assumes separate memory starting

at 0
– Compiler generated
– Independent of location in physical

memory

• OS: Map virtual to physical

P1

0

N1-1

P2

0

N2-1

P3

0

N3-1

VM’sVAS’s

P2

P1

P3

0

N-1

PMPAS

Hardware for Virtual Addressing

• Base register filled with start address
• To translate address, add base
• Achieves “relocation”: process’s

physical memory location could be
moved.

• To move process: change base

P2

0

N2-1

P2

P1

P3

0

N-1

Base +

Note: This is a simpler model than what we do in real
systems today. We’re still working toward the real thing.

Hardware for Virtual Addressing

• Base register filled with start address
• To translate address, add base
• Achieves “relocation”: process’s

physical memory location could be
moved.

• To move process: change base
• Protection?

P2

0

N2-1

P2

P1

P3

0

N-1

Base +

Protection

• Bound register works with base
register

• Is address < bound
– Yes: add to base
– No: invalid address, invoke OS

• Achieves protection

P2

0

N2-1

P2

P1

P3

0

N-1

Base +

<

Bound

y/n?

When would we need to update
these base & bound registers?

Given what we currently know about memory, what must
we do during a context switch?

• A. Allocate memory to the switching process

• B. Load the base and bound registers

• C. Convert logical to physical memory addresses

Memory Registers Part of Context

• On Every Context Switch
– Load base/bound registers for selected process
– Only kernel does loading of these registers
– Kernel must be protected from all processes

• Benefit
– Allows each process to be separately located
– Protects each process from all others

Problem Summary: Addressing

• Compiler has no idea where in physical memory, the process’s data will
be.

• Compiler generates instructions to access VAS.

• General solution: OS must translate process’s VAS accesses to the
corresponding physical memory location.

Problem Summary: Addressing

General Solution: OS must translate process’s VAS accesses to the
corresponding physical memory location.

Process 1

OS

Process 2

Process 1

Process 2

Physical Memory

Process 3

Process 3

Process 3
OS:

Translate

Process 3

Process 3
movl (address 0x74), %rax

Problem Summary: Addressing

General Solution: OS must translate process’s VAS accesses to the
corresponding physical memory location.

Process 1

OS

Process 2

Process 1

Process 2

Physical Memory

Process 3

Process 3

0x42F80

Process 3
OS:

Translate

Process 3

Process 3

When the process tries to access a
virtual address, the OS translates it to
the corresponding physical address.

movl (address 0x74), %rax

Let’s combine these ideas:

1. Allow process memory to be divided up into multiple pieces.

2. Keep state in OS (+ hardware/registers) to map from virtual addresses
to physical addresses.

Result: Keep a table to store the mapping of each region.

Two (Real) Approaches

• Segmented address space/memory
• Partition address space and memory into

segments
• Segments are generally different sizes

• Paged address space/memory
• Partition address space and memory into

pages
• All pages are the same size

Paging

• Segmented address space/memory
• Partition address space and memory into

segments
• Segments are generally different sizes

• Paged address space/memory
• Partition address space and memory into

pages
• All pages are the same size

In this class, we’re only going to look
at paging, the most common method

today.

Paging Vocabulary

• For each process, the virtual address space is divided into fixed-size
pages.

• For the system, the physical memory is divided into fixed-size frames.

• The size of a page is equal to that of a frame.
– Often 4 KB in practice.

Main Idea
• ANY virtual page can be stored in any available frame.
– find an appropriately-sized memory gap?
– very easy!– they’re all the same size.

• For each process, OS keeps a table mapping:
– each virtual page maps to a physical frame.

Main Idea
• ANY virtual page can be stored in any available frame.
– find an appropriately-sized memory gap?
– very easy!– they’re all the same size.

Physical
Memory

Virtual
Memory

(OS Mapping)
Implications for fragmentation?

External Fragmentation: goes
away. No more awkwardly-sized,
unusable gaps.

Internal Fragmentation: About
the same. Process can always
request memory and not use it.

Addressing

• Like we did with caching, we’re going to chop up memory addresses into
partitions.

• Virtual addresses:
– High-order bits: page #
– Low-order bits: offset within the page

• Physical addresses:
– High-order bits: frame #
– Low-order bits: offset within the frame

Example: 32-bit virtual addresses

• Suppose we have 8-KB (8192-byte) pages.
• We need enough bits to individually address each byte in the page.
– How many bits do we need to address 8192 items?

210 211 212 213 214 215

1024 2048 4096 8192 16384 32768

Example: 32-bit virtual addresses

• Suppose we have 8-KB (8192-byte) pages.
• We need enough bits to individually address each

byte in the page.
– How many bits do we need to address 8192 items?
– 213 = 8192, so we need 13 bits.
– Lowest 13 bits: offset within page.

Example: 32-bit virtual addresses

• Suppose we have 8-KB (8192-byte) pages.
• We need enough bits to individually address each

byte in the page.
– How many bits do we need to address 8192 items?
– 213 = 8192, so we need 13 bits.
– Lowest 13 bits: offset within page.

• Remaining 19 bits: page number.

Example: 32-bit virtual addresses

• Suppose we have 8-KB (8192-byte) pages.
• We need enough bits to individually address each

byte in the page.
– How many bits do we need to address 8192 items?
– 213 = 8192, so we need 13 bits.
– Lowest 13 bits: offset within page.

• Remaining 19 bits: page number.

We’ll call these bits p. We’ll call these bits i.

Address Partitioning
We’ll call these bits p. We’ll call these bits i.

Virtual
address:

Physical
address:

We’ll (still) call these bits i.

Once we’ve
found the frame,
which byte(s) do
we want to
access?

Address Partitioning
We’ll call these bits p. We’ll call these bits i.

OS Page Table
For Process

Virtual address:

Physical
address:

We’ll (still) call these bits i.We’ll call these bits f.

Where is this page in
physical memory?
(In which frame?)

Once we’ve
found the frame,
which byte(s) do
we want to
access?

The bits p (page) in the
virtual address and bits f
(frame) in physical address
do not have to match.

Physical

Address Translation

Logical Address
Page p Offset i

FrameV Perm …R D

Physical Memory

Page Table

Address Translation

Logical Address
Page p Offset i

FrameV Perm …R D

Physical Memory

Page Table

determining the
frame f that maps
to page p.

Address Translation

Logical Address
Page p Offset i

Physical Address

FrameV Perm …R D

Physical Memory

Page Table

determining the
byte offset within
the page.

Page Table

• One table per process
• Table entry elements
– V: valid bit
– R: referenced bit

• (how recently have we used this page?)

– D: dirty bit
– Frame: location in physical memory
– Perm: access permissions

• Table parameters in memory
– Page table base register (start for current process)
– Page table size register (bound for current process)

FrameV Perm …PTBR
PTSR

R D

Address Translation

• Physical address =
frame of p + offset i

• First, do a series of
checks

Logical Address
Page p Offset i

Physical Address

FrameV Perm …R D

Check if Page p is Within Range

Logical Address
Page p

PTBR
PTSR

p < PTSR

Offset i

Physical Address

FrameV Perm …R D

Check if Page Table Entry p is Valid

Logical Address
Page p

PTBR
PTSR

V == 1

Offset i

Physical Address

FrameV Perm …R D

Check if Operation is Permitted

Logical Address
Page p

PTBR
PTSR

Perm (op)

Offset i

Physical Address

FrameV Perm …R D

Translate Address

Logical Address
Page p

PTBR
PTSR

Offset i

Physical Address

FrameV Perm …R D

concat

Physical Address by Concatenation

Logical Address
Page p

PTBR
PTSR

Offset i

FrameV Perm …R D

Physical Address
Frame f Offset i

Sizing the Page Table

Logical Address
Page p Offset i

Number of bits n
specifies max size
of table, where
number of entries
= 2n

Number of bits needed to address
physical memory in units of frames

Number of bits
specifies page/frame size

FrameV Perm …R D

Example of Sizing the Page Table

Given: 32 bit virtual addresses, 1 GB physical memory
– Address partition: 20 bit page number, 12 bit offset

Page p: 20 bits Offset i: 12 bits

…

FrameV Perm …R D

210 220 230 240

1KB 1MB 1GB 1TB

Example of Sizing the Page Table

Page p: 20 bits Offset i: 12 bits

?

…

FrameV Perm …R D

Given: 32 bit virtual addresses, 1 GB physical memory
– Address partition: 20 bit page number, 12 bit offset

210 220 230 240

1KB 1MB 1GB 1TB

How many entries (rows) will there be in this page table?

A. 212

B. 220

C. 230

D. 232

p bits for a page = 20 i bits for the offset = 12

OS Page Table
For Process

Virtual address:

Physical address: f bits for a frame

Where is this page in
physical memory?
(In which frame?)

Once we’ve
found the frame,
which byte(s) do
we want to
access?

i bits for the offset

Address Partitioning
We’ll call these bits p. We’ll call these bits i.

OS Page Table
For Process

Virtual address:

Physical
address:

We’ll (still) call these bits i.We’ll call these bits f.

Where is this page in
physical memory?
(In which frame?)

Once we’ve
found the frame,
which byte(s) do
we want to
access?

The bits p (page) in the
virtual address and bits f
(frame) in physical address
do not have to match.

Physical

Example of Sizing the Page Table

Page p: 20 bits Offset i: 12 bits

20 bits to address 220
= 1 M entries

…

FrameV Perm …R D

Given: 32 bit virtual addresses, 1 GB physical memory
– Address partition: 20 bit page number, 12 bit offset

210 220 230 240

1KB 1MB 1GB 1TB

Example of Sizing the Page Table

Page p: 20 bits Offset i: 12 bits

20 bits to address 220
= 1 M entries

How big is a
frame?

…

FrameV Perm …R D

Given: 32 bit virtual addresses, 1 GB physical memory
– Address partition: 20 bit page number, 12 bit offset

210 220 230 240

1KB 1MB 1GB 1TB

What will be the frame size, in bytes?

A. 212

B. 220

C. 230

D. 232

Example of Sizing the Page Table

Page p: 20 bits Offset i: 12 bits

20 bits to address 220
= 1 M entries

Page size =
frame size =
212 = 4096 bytes

…

FrameV Perm …R D

Given: 32 bit virtual addresses, 1 GB physical memory
– Address partition: 20 bit page number, 12 bit offset

210 220 230 240

1KB 1MB 1GB 1TB

How many bits do we need to store the
frame number?

Page p: 20 bits Offset i: 12 bits

20 bits to address 220
= 1 M entries

?

Page size =
frame size =
212 = 4096 bytes

…

FrameV Perm …R D

Given: 32 bit virtual addresses, 1 GB physical memory
– Address partition: 20 bit page number, 12 bit offset

210 220 230 240

1KB 1MB 1GB 1TB

Example of Sizing the Page Table

Page p: 20 bits Offset i: 12 bits

20 bits to address 220
= 1 M entries

18 bits (30-12 bits) to
address frames

Page size =
frame size =
212 = 4096 bytes

…

Size of an entry?

FrameV Perm …R D

Given: 32 bit virtual addresses, 1 GB physical memory
– Address partition: 20 bit page number, 12 bit offset

210 220 230 240

1KB 1MB 1GB 1TB

How big is an entry (one row), in bytes?
(Round up to a power of two bytes.)

• Given: 32 bit virtual addresses, 1 GB physical memory
– Address partition: 20 bit page number, 12 bit offset

• A: 1 B: 2 C: 4 D: 8

Page p: 20 bits Offset i: 12 bits

20 bits to address 220
= 1 M entries

18 bits to address
230/212 frames

Page size =
frame size =
212 = 4096 bytes

…

Size of an entry?

FrameV Perm …R D

Example of Sizing the Page Table

• Given: 32 bit virtual addresses, 1 GB physical memory
– Address partition: 20 bit page number, 12 bit offset

Page p: 20 bits Offset i: 12 bits

20 bits to address 220
= 1 M entries

18 bits to address
230/212 frames

Page size =
frame size =
212 = 4096 bytes

…

4 bytes needed to contain
24 (1+1+1+18+3+…) bits

FrameV Perm …R D

Total table size?

Example of Sizing the Page Table

• 4 MB of bookkeeping for every process?
– 200 processes -> 800 MB just to store page tables…

Page p: 20 bits Offset i: 12 bits

20 bits to address 220
= 1 M entries

18 bits to address
230/212 frames

Page size =
frame size =
212 = 4096 bytes

…

4 bytes needed to contain
24 (1+1+1+18+3+…) bits

Table size =
1 M x 4 = 4 MB

FrameV Perm …R D

Concerns

• Great, this page table idea solves a lot of those big problems we
identified earlier, but…

1. We’re going to need a ton of memory just for page tables…

2. Wait, if we need to do a lookup in our page table, which is in memory,
every time a process accesses memory…
– Isn’t that slowing down memory by a factor of 2?

Multi-Level Page Tables
(You’re not responsible for this. Take an OS class for the details.)

Logical Address
1st-level Page d Offset i

FrameV …R D

2nd-level Page p

FrameV …R DPoints to (base) frame
containing 2nd-level
page table

concat

Physical Address
Reduces memory usage SIGNIFICANTLY:
only allocate page table space when we
need it. More memory accesses though…

Cost of Translation

• Each lookup costs another memory reference
– For each reference, additional references required
– Slows machine down by factor of 2 or more

• Take advantage of locality
– Most references are to a small number of pages
– Keep translations of these in high-speed memory (a special fully-

associative cache for page translation) called the translation look-aside
buffer (TLB)

TLB: Translation Look-aside Buffer

• Fast memory keeps most recent translations
– Fully associative hardware lookup

• If page matches, get frame number
else wait for normal translation (in parallel)

page

Page p Offset i

Match
page

frame

Frame f Offset i

Problem Summary: Addressing

• General solution: OS must translate process’s VAS
accesses to the corresponding physical memory
location.

Process 1

OS

Process 2

Process 1

Process 2

Physical Memory

Process 3

Process 3

0x42F80

Process 3
OS:

Translate

Process 3

Process 3

When the process tries to access a
virtual address, the OS translates it to
the corresponding physical address.

movl (address 0x74), %eax
OS must keep a table, for each
process, to map VAS to PAS.
One entry per divided region.

Problem: Storage

• Where should process memories be placed?
– Topic: “Classic” memory management

• How does the compiler model memory?
– Topic: Logical memory model

• How to deal with limited physical memory?
– Topics: Virtual memory, paging

Recall “Storage Problem”

• We must keep multiple processes in memory, but how many?
– Lots of processes: they must be small
– Big processes: can only fit a few

• How do we balance this tradeoff?

Locality to the rescue!

Virtual Memory Implications

• Not all pieces need to be in memory
– Need only piece being referenced
– Other pieces can be on disk
– Bring pieces in only when needed

• Illusion: there is much more memory
• What’s needed to support this idea?
– A way to identify whether a piece is in memory
– A way to bring in pieces (from where, to where?)
– Relocation (which we have)

Virtual Memory based on Paging

• Before
– All virtual pages were in physical memory

VM PM

Page
Table

Virtual Memory based on Paging

• Now
– All virtual pages reside on disk
– Some also reside in physical memory (which ones?)

• Ever been asked about a swap partition on Linux?

VM PM

Page
Table

Memory
Hierarchy

Sample Contents of Page Table Entry

• Valid: is entry valid (page in physical memory)?
• Ref: has this page been referenced recently?
• Dirty: has this page been modified?
• Frame: what frame is this page in?
• Protection: what are the allowable operations?
– read/write/execute

Frame numberValid Ref Dirty Prot: rwx

Page Fault

• A page fault occurs when a process tries to access a page, but the page
table entry is invalid. That is, the page is not currently mapped to a
physical frame.

A page fault occurs. What must we do in response?

A. Find the faulting page on disk.

B. Evict a page from memory and write it to disk.

C. Bring in the faulting page and retry the operation.

D. Two of the above

E. All of the above

Address Translation and Page Faults

• Get entry: index page table with page number
• If valid bit is off, page fault
– Trap into operating system
– Find page on disk (kept in kernel data structure)
– Read it into a free frame

• may need to make room: page replacement

– Record frame number in page table entry, set valid
– Retry instruction (return from page-fault trap)

Adv: The process does not know that this is happening
Disadv: Execution slows down

Page Faults are Expensive

• Disk: 5-6 orders magnitude slower than RAM
– Very expensive; but if very rare, tolerable

• Example
– RAM access time: 100 nsec
– Disk access time: 10 msec
– p = page fault probability
– Effective access time: 100 + p × 10,000,000 nsec
– If p = 0.1%, effective access time = 10,100 nsec !

Handing faults from disk seems very expensive. How
can we get away with this in practice?

A. We have lots of memory, and it isn’t usually full.

B. We use special hardware to speed things up.

C. We tend to use the same pages over and over.

D. This is too expensive to do in practice!

Handing faults from disk seems very expensive. How
can we get away with this in practice?

A. We have lots of memory, and it isn’t usually full.

B. We use special hardware to speed things up.

C. We tend to use the same pages over and over.

D. This is too expensive to do in practice!

Principle of Locality

• Not all pieces referenced uniformly over time
– Make sure most referenced pieces in memory
– If not, thrashing: constant fetching of pieces

• References cluster in time/space
– Will be to same or neighboring areas
– Allows prediction based on past

Page Replacement

• Goal: remove page(s) not exhibiting locality

• Page replacement policy is about
– which page(s) to remove
– when to remove them

• How to do it in the cheapest way possible
– Least amount of additional hardware
– Least amount of software overhead

Basic Page Replacement Algorithms

• FIFO: select page that is oldest
– Simple: use frame ordering
– Doesn’t perform very well (oldest may be popular)

• OPT: select page to be used furthest in future
– Optimal, but requires future knowledge
– Establishes best case, good for comparisons

• LRU: select page that was least recently used
– Predict future based on past; works given locality
– Costly: time-stamp pages each access, find least

• Goal: minimize replacements (maximize locality)

Summary

• We give each process a virtual address space to
simplify process execution.

• OS maintains mapping of virtual address to physical
memory location (e.g., in page table).
– One page table for every process
– TLB hardware helps to speed up translation

• Provides the abstraction of very large memory: not
all pages need be resident in memory
– Bring pages in from disk on demand

