
CS 31: Intro to Systems C Programming
L16-17: Caching

Vasanta Chaganti & Kevin Webb
Swarthmore College

Nov 7 - 9, 2023



Announcements

• HW 5 is out!
• Sigma-Xi Speaker: Daricia Wilkinson – “AI, Ethics, Privacy”
• Scheuer Room: 4.30 – 5.30pm

• Research @ CS: Tomorrow
• Wednesday, Nov. 15: SCI 199: 12.30 – 1.30pm



Reading Quiz



Last class: The Memory Hierarchy

Local secondary storage (disk)

Larger  
Slower
Cheaper 
per byte

Remote secondary storage
(tapes, Web servers / Internet)

~100 M cycles to access

On 
Chip 

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM)

~100 cycles to access

CPU
instrs

can
directly 
access

slower
than local

disk to access

Registers
1 cycle to access

Cache(s)
(SRAM)

~10’s of cycles to access

Flash SSD / Local network
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The Video Store Hierarchy

Large Warehouse

On 
Shelf 

Storage

Front Office
Shelves

~10 minutes to find movie

~30 seconds to find movie

Goal: strategically put 
movies on office shelf 
to reduce trips to 
warehouse.
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The Memory Hierarchy

Larger  
Slower
Cheaper 
per byte

Local secondary storage (disk)
~100 M cycles to access

On 
Chip 

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM)

~100 cycles to access

CPU
instrs

can
directly 
access

Registers
1 cycle to access

Cache(s)
(SRAM)

~10’s of cycles to access



Where does accessing the network belong?

Larger  
Slower
Cheaper 
per byte

Local secondary storage (disk)
~100 M cycles to access

On 
Chip 

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM)

~100 cycles to access

CPU
instrs

can
directly 
access

Registers
1 cycle to access

Cache(s)
(SRAM)

~10’s of cycles to access

A: Here

B: Here C: Somewhere else



The Memory Hierarchy

Local secondary storage (disk)

Larger  
Slower
Cheaper 
per byte

Remote secondary storage
(tapes, Web servers / Internet)

~100 M cycles to access

On 
Chip 

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM)

~100 cycles to access

CPU
instrs

can
directly 
access

slower
than local

disk to access

Registers
1 cycle to access

Cache(s)
(SRAM)

~10’s of cycles to access

Flash SSD / Local network



Abstraction Goal

• Reality: There is no one type of memory to rule them all!

• Abstraction: hide the complex/undesirable details of reality.

• Illusion: We have the speed of SRAM, with the capacity of disk, at 
reasonable cost.



Motivating Story / Analogy

• You work at a video rental store (remember Blockbuster?)

• You have a huge warehouse of movies
– 10-15 minutes to find movie, bring to customer
– Customers don’t like waiting…

• You have a small office in the front with shelves, you choose what goes 
on shelves
– < 30 seconds to find movie on front shelf



The Video Store Hierarchy

Large Warehouse

On 
Shelf 

Storage

Front Office
Shelves

~10 minutes to find movie

~30 seconds to find movie
Goal: strategically put 
movies on office shelf to 
reduce trips to warehouse.



Quick vote: Which movie should we place on the shelf for 
tonight?

A. Eternal Sunshine of the Spotless Mind

B. The Godfather

C. Pulp Fiction

D. Rocky V

E. There’s no way for us to know.



Problem: Prediction

• We can’t know the future…

• So… are we out of luck?
What might we look at to help us decide?

• The past is often a pretty good predictor…



Repeat Customer: Bob

• Has rented “Eternal Sunshine of the Spotless Mind” ten times in the last 
two weeks.

• You talk to him:
– He just broke up with his girlfriend
– Swears it will be the last time he rents the movie (he’s said this the last six 

times)



Quick vote: Which movie should we place on the shelf for 
tonight?

A. Eternal Sunshine of the Spotless Mind

B. The Godfather

C. Pulp Fiction

D. Rocky V

E. There’s no way for us to know.



Repeat Customer: Alice

• Alice rented Rocky a month ago

• You talk to her:
– She’s really likes Sylvester Stalone

• Over the next few weeks she rented:
– Rocky II, Rocky III, Rocky IV



Quick vote: Which movie should we place on the shelf for 
tonight?

A. Eternal Sunshine of the Spotless Mind

B. The Godfather

C. Pulp Fiction

D. Rocky V

E. There’s no way for us to know.



Suppose the CPU asks for data, it’s not in cache.
We need to move in into cache from memory.  Where in the 
cache should it be allowed to go?

A. In exactly one place.

B. In a few places.

C. In most places, but not all.

D. Anywhere in the cache.

ALURegs

Cache

Main Memory

Memory       Bus

CPU

? ?

?



A. Direct-Mapped: In exactly one place
• Every location in memory is directly mapped to one place 

in the cache.  
• Easy to find data.

B. Set-Associative: In a few places. 
• A memory location can be mapped to (2, 4, 8) locations in 

the cache.  
• Middle ground.

C. In most places, but not all.

D. “Fully associative”: Anywhere in the cache. 
• No restrictions on where memory can be placed in the cache.  
• Fewer conflict misses, more searching.



A larger block size (caching memory in larger chunks) is likely 
to exhibit…

A. Better temporal locality

B. Better spatial locality

C. Fewer misses (better hit rate)

D. More misses (worse hit rate)

E. More than one of the above. (Which?)



A larger block size (caching memory in larger chunks) is likely 
to exhibit…

A. Better temporal locality (does not change how freq. we 
use a block)

B. Better spatial locality

C. Fewer misses (better hit rate)

D. More misses (worse hit rate)

E. More than one of the above. (Which?)
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hard to make a 
determination  
- don’t know what the 

prog, is doing
- harmful if prog. does 

not exhibit good spatial 
locality



Block Size Implications

• Small blocks
– Room for more blocks
– Fewer conflict misses

• Large blocks
– Fewer trips to memory
– Longer transfer time
– Fewer cold-start misses

Main Memory Main Memory

Cache Cache



Trade-offs

• There is no single best design for all purposes!

• Common systems question: which point in the design space should we 
choose?

• Given a particular scenario:
– Analyze needs
– Choose design that fits the bill



Real CPUs

• Goals: general purpose processing
– balance needs of many use cases
– middle of the road: jack of all trades, master of none

• Some associativity, medium size blocks:
– 8-way associative (memory in one of eight places)
– 16 or 32 or 64-byte blocks



What should we use to determine whether or not data is in 
the cache?

A. The memory address of the data.

B. The value of the data.

C. The size of the data.

D. Some other aspect of the data.



What should we use to determine whether or not data is in 
the cache?

A. The memory address of the data.
– Memory address is how we identify the data.

B. The value of the data.
– If we knew this, we wouldn’t be looking for it!

C. The size of the data.

D. Some other aspect of the data.



Recall: Memory Reads

CPU places address A on the memory bus.
Load operation:  movl (A), %eax

Memory Module Slots

ALU

Register
Register
Register
Register

CPU

Memory Bus

CPU Cache

A
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Hey memory, please 
locate the value at 
address A: same 
address gets sent to 
the cache!



Recall: Memory Reads
Memory retrieves value and sends it across bus.

CPU reads value from the bus, and copies it  into register 
%eax, a copy also goes into the on-chip cache memory.

Memory Module Slots

ALU

Register
Register
Register
Register

CPU

Memory Bus

CPU Cache

Value

Value
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Sending the 
value back to 
the CPU



Memory Address Tells Us…

• Is the block containing the byte(s) you want already in the cache?

• If not, where should we put that block?
– Do we need to kick out (“evict”) another block?

• Which byte(s) within the block do you want?



Memory Addresses

• Like everything else: series of bits (32 or 64)

• Keep in mind:
– N bits gives us 2N unique values.

• 64-bit address:
10110001 01110010 11010100 01010110 10110001 01110010 11010100 
01010110

Divide into regions, each with distinct meaning.



Address Division
• First section: Tag
– Of all the addresses that map to this location, which one is here?
– Number of bits for this section is any bits left over after index and offset.

• Second section: Index
– Which location(s) in the cache should we check for the data with this address?
– Number of bits for this section depends on the number of cache locations.

• Third section: Offset
– If we find a block of bytes in the cache (on a hit) which byte offset within the 

block do we actually want?
– Number of bits for this section depends on the block size – must be able to 

uniquely identify every byte in the block.



A. In exactly one place.  (“Direct-mapped”)
– Every location in memory is directly mapped to one 

place in the cache.  Easy to find data.

B. In a few places.  (“Set associative”)
– A memory location can be mapped to (2, 4, 8) 

locations in the cache.  Middle ground.

A. Anywhere in the cache. (“Fully associative”)
– No restrictions on where memory can be placed in the 

cache.  Fewer conflict misses, more searching.



Direct-Mapped

• One place data can be.

• Example: let’s assume some parameters:
– 1024 cache locations (every block mapped to one)
– Block size of 8 bytes



Direct-Mapped

Line V D Tag Data (8 Bytes)

0

1

2

3

4

… …

1020

1021

1022

1023

Metadata

1024 cache locations (every block mapped to one)
Block size of 8 bytes



Cache meta-data

Line V D Tag Data (8 Bytes)

0

1

2

3

4

… …

1020

1021

1022

1023

Metadata

Valid bit: is the entry valid?
If set: data is correct, use it if we 
‘hit’ in cache
If not set: ignore ‘hits’, the data is 
garbage

Dirty bit: has the data been written?
Used by write-back caches
If set, need to update memory 
before eviction



Address division: Direct-Mapped

• Identify byte in block
– How many bits do we need to 

represent each byte uniquely?
• Identify which row (line)
– How many bits do we need to 

represent each line uniquely?

Line V D Tag Data (8 Bytes)

0

1

2

3

4

… …

1020

1021

1022

1023

A. Block 8 bits Row 1024 bits    B. Block 3 bits Row 10 bits  
C. Block 10 bits Row 10 bits      D. Block 32 bits Row 32 bits



Address division: Direct-Mapped

• Identify byte in block
– How many bits?  3

• Identify which row (line)
– How many bits?  10

• Tag:
– 64 - 13: 51 bits

Line V D Tag Data (8 Bytes)

0

1

2

3

4

… …

1020

1021

1022

1023



Direct-Mapped

Address division: Line V D Tag Data (8 Bytes)

0

1

2

3

4

… …

1020

1021

1022

1023

Index:
Which line (row) should we check?
Where could data be?

Tag (51 bits) Index (10 bits) Byte offset (3 bits)



Direct-Mapped

Line V D Tag Data (8 Bytes)

0

1

2

3

4

… …

1020

1021

1022

1023

Address division:

Index:
Which line (row) should we check?
Where could data be?

Tag (51 bits) Index (10 bits) Byte offset (3 bits)



Direct-Mapped
Address division:

Line V D Tag Data (8 Bytes)

0

1

2

3

4 1 4217

… …

1020

1021

1022

1023

In parallel, check:
Tag:
Does the cache hold the data we’re 
looking for, or some other block?

Valid bit:
If entry is not valid, don’t trust garbage in 
that line (row).

Tag (51 bits) Index (10 bits) Byte offset (3 bits)

4217 4

If tag doesn’t match,
or line is invalid, it’s a miss!



Direct-Mapped

Address division: Line V D Tag Data (8 Bytes)

0

1

2

3

4 1 4217

… …

1020

1021

1022

1023

Byte offset tells us which subset 
of block to retrieve.

Tag (51 bits) Index (10 bits) Byte offset (3 bits)

4217 4

0 1 2 3 4 5 6 7



Direct-Mapped

Address division: Line V D Tag Data (8 Bytes)

0

1

2

3

4 1 4217

… …

1020

1021

1022

1023

Byte offset tells us which subset 
of block to retrieve.

Tag (51 bits) Index (10 bits) Byte offset (3 bits)

4217 4 4

0 1 2 3 4 5 6 7



V D Tag Data

…

=

Tag Index Byte offset

0: miss
1: hit

Select Byte(s)

Data
Input: Memory Address



Direct-Mapped Example

• Suppose our addresses are 16 bits long.

• Our cache has 16 entries, block size of 16 bytes
– 4 bits in address for the index
– 4 bits in address for byte offset
– Remaining bits (8): tag



Direct-Mapped Example

• Let’s say we access memory at 
address:
– 0110101100110100

• Step 1:
– Partition address into tag, index, 

offset

Line V D Tag Data   
(16 Bytes)

0

1

2

3

4

5

…

15



Direct-Mapped Example

• Let’s say we access memory at 
address:
– 01101011  0011  0100

• Step 1:
– Partition address into tag, index, 

offset

Line V D Tag Data   
(16 Bytes)

0

1

2

3

4

5

…

15



Direct-Mapped Example

• Let’s say we access memory at 
address:
– 01101011  0011  0100

• Step 2:
– Use index to find line (row)
– 0011 -> 3

Line V D Tag Data   
(16 Bytes)

0

1

2

3

4

5

…

15



Line V D Tag Data 
(16 Bytes)

0

1

2

3

4

5

…

15

Direct-Mapped Example

• Let’s say we access memory at 
address:
– 01101011  0011  0100

• Step 2:
– Use index to find line (row)
– 0011 -> 3



Line V D Tag Data (16 Bytes)

0

1

2

3

4

5

…

15

Direct-Mapped Example

• Let’s say we access memory at 
address:
– 01101011  0011  0100

• Note:
– ANY address with 0011 (3) as the 

middle four index bits will map to 
this cache line.

– e.g. 11111111 0011 0000

So, which data is here?

Data from address
0000000000110000
to
1111111100111111 can map to 
the same cache line!

Use tag to store high-order bits.  
Let’s us determine which data is 
here!  (many addresses map here)



Line V D Tag Data (16 Bytes)

0

1

2

3 01101011

4

5

…

15

Direct-Mapped Example

• Let’s say we access memory at 
address:
– 01101011  0011  0100

• Step 3:
– Check the tag
– Is it 01101011 (hit)?
– Something else (miss)?
– (Must also ensure valid)



Eviction

• If we don’t find what we’re looking for (miss), we need to bring in the data 
from memory.

• Make room by kicking something out.
– If line to be evicted is dirty, write it to memory first.

• Another important systems distinction:
– Mechanism: An ability or feature of the system.

What you can do.
– Policy: Governs the decisions making for using the mechanism.  What you should 

do.



Eviction

• For direct-mapped cache:
– Mechanism: overwrite bits in cache line, updating
• Valid bit
• Tag
• Data

– Policy: not many options for direct-mapped
• Overwrite at the only location it could be!



Eviction: Direct-Mapped

• Address division: Line V D Tag Data (8 Bytes)

0

1

2

3

4

… …

1020 1 0 1323 57883

1021

1022

1023

Find line:

Tag doesn’t match, bring in from memory.

If dirty, write back first!

Tag (51 bits) Index (10 bits) Byte offset (3 bits)

3941 1020



Eviction: Direct-Mapped

• Address division: Line V D Tag Data (8 Bytes)

0

1

2

3

4

… …

1020 1 0 1323 57883

1021

1022

1023

Tag (51 bits) Index (10 bits) Byte offset (3 bits)

3941 1020

Main Memory

1. Send address to 
read main memory.



Eviction: Direct-Mapped

• Address division: Line V D Tag Data (8 Bytes)

0

1

2

3

4

… …

1020 1 0 3941 92

1021

1022

1023

Tag (51 bits) Index (10 bits) Byte offset (3 bits)

3941 1020

Main Memory

1. Send address to 
read main memory.

2. Copy data from memory.
Update tag.



Direct-Mapped

• Address division: Line V D Tag Data (8 Bytes)

0

1

2

3

4 1 4217

… …

1020

1021

1022

1023

Byte offset tells us which subset 
of block to retrieve.

Tag (51 bits) Index (10 bits) Byte offset (3 bits)

4217 4 2

Can one read of a variable 
straddle multiple cache blocks?

0 1 2 3 4 5 6 7



Direct-Mapped

• Address division: Line V D Tag Data (8 Bytes)

0

1

2

3

4 1 4217

… …

1020

1021

1022

1023

Byte offset tells us which subset 
of block to retrieve.

Tag (51 bits) Index (10 bits) Byte offset (3 bits)

4217 4 2

Can one read of a variable 
straddle multiple cache blocks?

No, recall mem. alignment!
0 1 2 3 4 5 6 7



Suppose we had 8-bit addresses, a cache with 8 lines, and a 
block size of 4 bytes.

• How many bits would we use for:
– Tag?
– Index?
– Offset?



Direct-Mapped Example

• Suppose our addresses are 16 bits long.

• Our cache has 16 entries, block size of 16 bytes
– 4 bits in address for the index
– 4 bits in address for byte offset
– Remaining bits (8): tag



Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01110000 (Value: 7)
Read 10101010 (Value: 12)
Write 01101100 (Value: 2)

Line V D Tag Data 
(4 Bytes)

0 1 0 111 17

1 1 0 011 9

2 0 0 101 15

3 1 1 001 8

4 1 0 011 4

5 0 0 111 6

6 0 0 101 32

7 1 0 110 3

Memory address

How would the cache change if we performed the following 
memory operations?



Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01110000 (Value: 7)
Read 10101010 (Value: 12)
Write 01101100 (Value: 2)

Line V D Tag Data 
(4 Bytes)

0 1 0 111 17

1 1 0 011   010 9   5

2 0 0 101 15

3 1 1 001 8

4 1 0 011 4

5 0 0 111 6

6 0 0 101 32

7 1 0 110 3

Memory address

How would the cache change if we performed the following 
memory operations?



Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01110000 (Value: 7)
Read 10101010 (Value: 12)
Write 01101100 (Value: 2)

Line V D Tag Data 
(4 Bytes)

0 1 0 111 17

1 1 0 011   010 9   5

2 0 0 101 15

3 1 1 001 8

4 1 0 011 4

5 0 0 111 6

6 0 0 101 32

7 1 0 110 3

Memory address

No change necessary.

How would the cache change if we performed the following 
memory operations?



Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01110000 (Value: 7)
Read 10101010 (Value: 12)
Write 01101100 (Value: 2)

Line V D Tag Data (4 
Bytes)

0 1 0 111 17

1 1 0 011   010 9   5

2 0 0 101 15

3 1 1 001 8

4 1 0 
1

011 4   7

5 0 0 111 6

6 0 0 101 32

7 1 0 110 3

Memory address

How would the cache change if we performed the following 
memory operations?



Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01110000 (Value: 7)
Read 10101010 (Value: 12)
Write 01101100 (Value: 2)

Line V D Tag Data (4 
Bytes)

0 1 0 111 17

1 1 0 011   010 9   5

2 0 
1

0 101   101 15   12

3 1 1 001 8

4 1 0 
1

011 4   7

5 0 0 111 6

6 0 0 101 32

7 1 0 110 3

Memory address

Note: tag happened to 
match, but line was invalid.

How would the cache change if we performed the following 
memory operations?



How would the cache change if we performed the following 
memory operations?

Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01110000 (Value: 7)
Read 10101010 (Value: 12)
Write 01101100 (Value: 2)

Line V D Tag Data (4 
Bytes)

0 1 0 111 17

1 1 0 011   010 9   5

2 0 
1

0 101   101 15   12

3 1 1 
1

001   011 8   2

4 1 0 
1

011 4   7

5 0 0 111 6

6 0 0 101 32

7 1 0 110 3

Memory address

1. Write dirty line to memory.
2. Load new value, set it to 2, 

mark it dirty (write).



Direct-Mapped Example

• Suppose our addresses are 16 bits long.

• Our cache has 16 entries, block size of 16 bytes
– 4 bits in address for the index
– 4 bits in address for byte offset
– Remaining bits (8): tag



Associativity

• Problem: suppose we’re only using a small amount of 
data (e.g., 8 bytes, 4-byte block size)

• Bad luck: (both) blocks map to same cache line
– Constantly evicting one another
– Rest of cache is going unused!

• Associativity: allow a set blocks to be stored at the 
same index. Goal: reduce conflict misses.
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Direct-mapped vs N-way set associative Cache

Direct-mapped
• Tag tells you if you found the correct 

data.
• Offset specifies which byte within 

block.
• Middle bits (index) tell you which 1 line 

to check.

• (+) Low complexity, fast.
• (-) Conflict misses.

N-way set associative
• Tag tells you if you found the correct 

data.
• Offset specifies which byte within 

block.
• Middle bits (set) tell you which N lines 

to check.

• (+) Fewer conflict misses.
• (-) More complex, slower, consumes 

more power.



Comparison: 1024 Lines
(For the same cache size, in bytes.)

Direct-mapped
• 1024 indices (10 bits)

2-way set associative
• 512 sets (9 bits)

– Tag larger by 1 bit

V D Tag Data (8 Bytes)

…

Set # V D Tag Data (8 Bytes)

0

1

2

3

4

… …

508

509

510

511



2-Way Set Associative

V D Tag Data (8 Bytes)

1 0 3941

…

Set # V D Tag Data (8 Bytes)

0

1

2

3

4 1 1 4063

… …

508

509

510

511

Tag (52 bits) Set (9 bits) Byte offset (3 bits)

3941 4

Same capacity as previous example:
1024 rows with 1 entry vs.  
512 rows with 2 entries



2-Way Set Associative

V D Tag Data (8 Bytes)

1 0 3941

…

Set # V D Tag Data (8 Bytes)

0

1

2

3

4 1 1 4063

… …

508

509

510

511

Tag (52 bits) Set (9 bits) Byte offset (3 bits)

3941 4

Check all locations in the set, in parallel.



2-Way Set Associative

V D Tag Data (8 Bytes)

1 0 3941

…

Set # V D Tag Data (8 Bytes)

0

1

2

3

4 1 1 4063

… …

508

509

510

511

Tag (52 bits) Set (9 bits) Byte offset (3 bits)

3941 4

0 1 2 3 4 5 6 70 1 2 3 4 5 6 7

Multiplexer Select correct value.
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4-Way Set Associative Cache

Clearly, more complexity here!



Eviction

• Mechanism is the same…
– Overwrite bits in cache line: update tag, valid, data

• Policy: choose which line in the set to evict
– Pick a random line in set
– Choose an invalid line first
– Choose the least recently used block

• Has exhibited the least locality, kick it out!

Common 
combo in 
practice.



Least Recently Used (LRU)

• Intuition: if it hasn’t been used in a while, we have no reason to believe 
it will be used soon.

• Need extra state to keep track of LRU info.

V D Tag Data (8 Bytes)

1 0 3941

…

Set # LRU V D Tag Data (8 Bytes)

0 0

1 1

2 1

3 0

4 1 1 1 4063

… …



Least Recently Used (LRU)

• Intuition: if it hasn’t been used in a while, we have no reason to believe it 
will be used soon.

• Need extra state to keep track of LRU info.

• For perfect LRU info:
– 2-way: 1 bit
– 4-way: 8 bits
– N-way: N * log2 N bits

Another reason why associativity 
often maxes out at 8 or 16.

These are metadata bits, not
“useful” program data storage.

(Approximations make it not quite 
as bad.)



How would the cache change if we performed the following memory 
operations? (2-way set)

Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01100100 (Value: 7)
Read 01000110 (Value: 5)
Write 01100000 (Value: 2)

V D Tag Data (4 Bytes)

1 0 001 17

1 0 010 5

… …

Set # LRU V D Tag Data (4 Bytes)

0 1 0 0 111 4

1 0 1 1 111 9

2 … …

3

4

5

6

7

LRU = 0 means: the left line in the set was least recently used.  
LRU = 1 means: the right line in the set was least recently used.  



Cache Conscious Programming

Knowing about caching and designing code around it can significantly effect 
performance
   (ex) 2D array accesses

Algorithmically, both O(N * M).

Is one faster than the other?

for(i=0; i < N; i++) {
  for(j=0; j< M; j++) {
      sum += arr[i][j];
}}

for(j=0; j < M; j++) {
  for(i=0; i< N; i++) {
     sum += arr[i][j];
}}



Cache Conscious Programming

Knowing about caching and designing code around it can significantly effect 
performance
   (ex) 2D array accesses

Algorithmically, both O(N * M).

Is one faster than the other?

for(i=0; i < N; i++) {
  for(j=0; j< M; j++) {
      sum += arr[i][j];
}}

for(j=0; j < M; j++) {
  for(i=0; i< N; i++) {
     sum += arr[i][j];
}}

A. is faster. B. is faster.

C. Both would exhibit 
roughly equal performance.



Cache Conscious Programming

The first nested loop is more efficient if the cache block size is larger than a 
single array bucket  (for arrays of basic C types, it will be).

(ex)            1 miss every 4 buckets      vs.          1 miss every bucket

for(i=0; i < N; i++) {
  for(j=0; j< M; j++) {
      sum += arr[i][j];
}}

for(j=0; j < M; j++) {
  for(i=0; i< N; i++) {
     sum += arr[i][j];
}}
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Program Efficiency and Memory
• Be aware of how your program accesses data 
– Sequentially, in strides of size X, randomly, …
– How data is laid out in memory

• Will allow you to structure your code to run much more efficiently based on 
how it accesses its data

• Don’t go nuts…
– Optimize the most important parts, ignore the rest
– “Premature optimization is the root of all evil.” -Knuth



Amdahl’s Law

Idea: an optimization can improve total runtime at most by the fraction it 
contributes to total runtime

If program takes 100 secs to run, and you optimize a portion of the code that 
accounts for 2% of the runtime, the best your optimization can do is improve 
the runtime by 2 secs.

Amdahl’s Law tells us to focus our optimization efforts on the code that 
matters:  

Speed-up what is accounting for the largest portion of runtime to get the 
largest benefit.  And, don’t waste time on the small stuff.



Up Next:

• Operating systems, Processes
• Virtual Memory
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