
CS 31: Intro to Systems C Programming
L16-17: Caching

Vasanta Chaganti & Kevin Webb
Swarthmore College

Nov 7 - 9, 2023

Announcements

• HW 5 is out!
• Sigma-Xi Speaker: Daricia Wilkinson – “AI, Ethics, Privacy”
• Scheuer Room: 4.30 – 5.30pm

• Research @ CS: Tomorrow
• Wednesday, Nov. 15: SCI 199: 12.30 – 1.30pm

Reading Quiz

Last class: The Memory Hierarchy

Local secondary storage (disk)

Larger
Slower
Cheaper
per byte

Remote secondary storage
(tapes, Web servers / Internet)

~100 M cycles to access

On
Chip

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM)

~100 cycles to access

CPU
instrs

can
directly
access

slower
than local

disk to access

Registers
1 cycle to access

Cache(s)
(SRAM)

~10’s of cycles to access

Flash SSD / Local network

Slide 10

The Video Store Hierarchy

Large Warehouse

On
Shelf

Storage

Front Office
Shelves

~10 minutes to find movie

~30 seconds to find movie

Goal: strategically put
movies on office shelf
to reduce trips to
warehouse.

Slide 11

The Memory Hierarchy

Larger
Slower
Cheaper
per byte

Local secondary storage (disk)
~100 M cycles to access

On
Chip

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM)

~100 cycles to access

CPU
instrs

can
directly
access

Registers
1 cycle to access

Cache(s)
(SRAM)

~10’s of cycles to access

Where does accessing the network belong?

Larger
Slower
Cheaper
per byte

Local secondary storage (disk)
~100 M cycles to access

On
Chip

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM)

~100 cycles to access

CPU
instrs

can
directly
access

Registers
1 cycle to access

Cache(s)
(SRAM)

~10’s of cycles to access

A: Here

B: Here C: Somewhere else

The Memory Hierarchy

Local secondary storage (disk)

Larger
Slower
Cheaper
per byte

Remote secondary storage
(tapes, Web servers / Internet)

~100 M cycles to access

On
Chip

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM)

~100 cycles to access

CPU
instrs

can
directly
access

slower
than local

disk to access

Registers
1 cycle to access

Cache(s)
(SRAM)

~10’s of cycles to access

Flash SSD / Local network

Abstraction Goal

• Reality: There is no one type of memory to rule them all!

• Abstraction: hide the complex/undesirable details of reality.

• Illusion: We have the speed of SRAM, with the capacity of disk, at
reasonable cost.

Motivating Story / Analogy

• You work at a video rental store (remember Blockbuster?)

• You have a huge warehouse of movies
– 10-15 minutes to find movie, bring to customer
– Customers don’t like waiting…

• You have a small office in the front with shelves, you choose what goes
on shelves
– < 30 seconds to find movie on front shelf

The Video Store Hierarchy

Large Warehouse

On
Shelf

Storage

Front Office
Shelves

~10 minutes to find movie

~30 seconds to find movie
Goal: strategically put
movies on office shelf to
reduce trips to warehouse.

Quick vote: Which movie should we place on the shelf for
tonight?

A. Eternal Sunshine of the Spotless Mind

B. The Godfather

C. Pulp Fiction

D. Rocky V

E. There’s no way for us to know.

Problem: Prediction

• We can’t know the future…

• So… are we out of luck?
What might we look at to help us decide?

• The past is often a pretty good predictor…

Repeat Customer: Bob

• Has rented “Eternal Sunshine of the Spotless Mind” ten times in the last
two weeks.

• You talk to him:
– He just broke up with his girlfriend
– Swears it will be the last time he rents the movie (he’s said this the last six

times)

Quick vote: Which movie should we place on the shelf for
tonight?

A. Eternal Sunshine of the Spotless Mind

B. The Godfather

C. Pulp Fiction

D. Rocky V

E. There’s no way for us to know.

Repeat Customer: Alice

• Alice rented Rocky a month ago

• You talk to her:
– She’s really likes Sylvester Stalone

• Over the next few weeks she rented:
– Rocky II, Rocky III, Rocky IV

Quick vote: Which movie should we place on the shelf for
tonight?

A. Eternal Sunshine of the Spotless Mind

B. The Godfather

C. Pulp Fiction

D. Rocky V

E. There’s no way for us to know.

Suppose the CPU asks for data, it’s not in cache.
We need to move in into cache from memory. Where in the
cache should it be allowed to go?

A. In exactly one place.

B. In a few places.

C. In most places, but not all.

D. Anywhere in the cache.

ALURegs

Cache

Main Memory

Memory Bus

CPU

? ?

?

A. Direct-Mapped: In exactly one place
• Every location in memory is directly mapped to one place

in the cache.
• Easy to find data.

B. Set-Associative: In a few places.
• A memory location can be mapped to (2, 4, 8) locations in

the cache.
• Middle ground.

C. In most places, but not all.

D. “Fully associative”: Anywhere in the cache.
• No restrictions on where memory can be placed in the cache.
• Fewer conflict misses, more searching.

A larger block size (caching memory in larger chunks) is likely
to exhibit…

A. Better temporal locality

B. Better spatial locality

C. Fewer misses (better hit rate)

D. More misses (worse hit rate)

E. More than one of the above. (Which?)

A larger block size (caching memory in larger chunks) is likely
to exhibit…

A. Better temporal locality (does not change how freq. we
use a block)

B. Better spatial locality

C. Fewer misses (better hit rate)

D. More misses (worse hit rate)

E. More than one of the above. (Which?)

Slide 27

hard to make a
determination
- don’t know what the

prog, is doing
- harmful if prog. does

not exhibit good spatial
locality

Block Size Implications

• Small blocks
– Room for more blocks
– Fewer conflict misses

• Large blocks
– Fewer trips to memory
– Longer transfer time
– Fewer cold-start misses

Main Memory Main Memory

Cache Cache

Trade-offs

• There is no single best design for all purposes!

• Common systems question: which point in the design space should we
choose?

• Given a particular scenario:
– Analyze needs
– Choose design that fits the bill

Real CPUs

• Goals: general purpose processing
– balance needs of many use cases
– middle of the road: jack of all trades, master of none

• Some associativity, medium size blocks:
– 8-way associative (memory in one of eight places)
– 16 or 32 or 64-byte blocks

What should we use to determine whether or not data is in
the cache?

A. The memory address of the data.

B. The value of the data.

C. The size of the data.

D. Some other aspect of the data.

What should we use to determine whether or not data is in
the cache?

A. The memory address of the data.
– Memory address is how we identify the data.

B. The value of the data.
– If we knew this, we wouldn’t be looking for it!

C. The size of the data.

D. Some other aspect of the data.

Recall: Memory Reads

CPU places address A on the memory bus.
Load operation: movl (A), %eax

Memory Module Slots

ALU

Register
Register
Register
Register

CPU

Memory Bus

CPU Cache

A

Slide 33

Hey memory, please
locate the value at
address A: same
address gets sent to
the cache!

Recall: Memory Reads
Memory retrieves value and sends it across bus.

CPU reads value from the bus, and copies it into register
%eax, a copy also goes into the on-chip cache memory.

Memory Module Slots

ALU

Register
Register
Register
Register

CPU

Memory Bus

CPU Cache

Value

Value

Slide 34

Sending the
value back to
the CPU

Memory Address Tells Us…

• Is the block containing the byte(s) you want already in the cache?

• If not, where should we put that block?
– Do we need to kick out (“evict”) another block?

• Which byte(s) within the block do you want?

Memory Addresses

• Like everything else: series of bits (32 or 64)

• Keep in mind:
– N bits gives us 2N unique values.

• 64-bit address:
10110001 01110010 11010100 01010110 10110001 01110010 11010100
01010110

Divide into regions, each with distinct meaning.

Address Division
• First section: Tag
– Of all the addresses that map to this location, which one is here?
– Number of bits for this section is any bits left over after index and offset.

• Second section: Index
– Which location(s) in the cache should we check for the data with this address?
– Number of bits for this section depends on the number of cache locations.

• Third section: Offset
– If we find a block of bytes in the cache (on a hit) which byte offset within the

block do we actually want?
– Number of bits for this section depends on the block size – must be able to

uniquely identify every byte in the block.

A. In exactly one place. (“Direct-mapped”)
– Every location in memory is directly mapped to one

place in the cache. Easy to find data.

B. In a few places. (“Set associative”)
– A memory location can be mapped to (2, 4, 8)

locations in the cache. Middle ground.

A. Anywhere in the cache. (“Fully associative”)
– No restrictions on where memory can be placed in the

cache. Fewer conflict misses, more searching.

Direct-Mapped

• One place data can be.

• Example: let’s assume some parameters:
– 1024 cache locations (every block mapped to one)
– Block size of 8 bytes

Direct-Mapped

Line V D Tag Data (8 Bytes)

0

1

2

3

4

… …

1020

1021

1022

1023

Metadata

1024 cache locations (every block mapped to one)
Block size of 8 bytes

Cache meta-data

Line V D Tag Data (8 Bytes)

0

1

2

3

4

… …

1020

1021

1022

1023

Metadata

Valid bit: is the entry valid?
If set: data is correct, use it if we
‘hit’ in cache
If not set: ignore ‘hits’, the data is
garbage

Dirty bit: has the data been written?
Used by write-back caches
If set, need to update memory
before eviction

Address division: Direct-Mapped

• Identify byte in block
– How many bits do we need to

represent each byte uniquely?
• Identify which row (line)
– How many bits do we need to

represent each line uniquely?

Line V D Tag Data (8 Bytes)

0

1

2

3

4

… …

1020

1021

1022

1023

A. Block 8 bits Row 1024 bits B. Block 3 bits Row 10 bits
C. Block 10 bits Row 10 bits D. Block 32 bits Row 32 bits

Address division: Direct-Mapped

• Identify byte in block
– How many bits? 3

• Identify which row (line)
– How many bits? 10

• Tag:
– 64 - 13: 51 bits

Line V D Tag Data (8 Bytes)

0

1

2

3

4

… …

1020

1021

1022

1023

Direct-Mapped

Address division: Line V D Tag Data (8 Bytes)

0

1

2

3

4

… …

1020

1021

1022

1023

Index:
Which line (row) should we check?
Where could data be?

Tag (51 bits) Index (10 bits) Byte offset (3 bits)

Direct-Mapped

Line V D Tag Data (8 Bytes)

0

1

2

3

4

… …

1020

1021

1022

1023

Address division:

Index:
Which line (row) should we check?
Where could data be?

Tag (51 bits) Index (10 bits) Byte offset (3 bits)

Direct-Mapped
Address division:

Line V D Tag Data (8 Bytes)

0

1

2

3

4 1 4217

… …

1020

1021

1022

1023

In parallel, check:
Tag:
Does the cache hold the data we’re
looking for, or some other block?

Valid bit:
If entry is not valid, don’t trust garbage in
that line (row).

Tag (51 bits) Index (10 bits) Byte offset (3 bits)

4217 4

If tag doesn’t match,
or line is invalid, it’s a miss!

Direct-Mapped

Address division: Line V D Tag Data (8 Bytes)

0

1

2

3

4 1 4217

… …

1020

1021

1022

1023

Byte offset tells us which subset
of block to retrieve.

Tag (51 bits) Index (10 bits) Byte offset (3 bits)

4217 4

0 1 2 3 4 5 6 7

Direct-Mapped

Address division: Line V D Tag Data (8 Bytes)

0

1

2

3

4 1 4217

… …

1020

1021

1022

1023

Byte offset tells us which subset
of block to retrieve.

Tag (51 bits) Index (10 bits) Byte offset (3 bits)

4217 4 4

0 1 2 3 4 5 6 7

V D Tag Data

…

=

Tag Index Byte offset

0: miss
1: hit

Select Byte(s)

Data
Input: Memory Address

Direct-Mapped Example

• Suppose our addresses are 16 bits long.

• Our cache has 16 entries, block size of 16 bytes
– 4 bits in address for the index
– 4 bits in address for byte offset
– Remaining bits (8): tag

Direct-Mapped Example

• Let’s say we access memory at
address:
– 0110101100110100

• Step 1:
– Partition address into tag, index,

offset

Line V D Tag Data
(16 Bytes)

0

1

2

3

4

5

…

15

Direct-Mapped Example

• Let’s say we access memory at
address:
– 01101011 0011 0100

• Step 1:
– Partition address into tag, index,

offset

Line V D Tag Data
(16 Bytes)

0

1

2

3

4

5

…

15

Direct-Mapped Example

• Let’s say we access memory at
address:
– 01101011 0011 0100

• Step 2:
– Use index to find line (row)
– 0011 -> 3

Line V D Tag Data
(16 Bytes)

0

1

2

3

4

5

…

15

Line V D Tag Data
(16 Bytes)

0

1

2

3

4

5

…

15

Direct-Mapped Example

• Let’s say we access memory at
address:
– 01101011 0011 0100

• Step 2:
– Use index to find line (row)
– 0011 -> 3

Line V D Tag Data (16 Bytes)

0

1

2

3

4

5

…

15

Direct-Mapped Example

• Let’s say we access memory at
address:
– 01101011 0011 0100

• Note:
– ANY address with 0011 (3) as the

middle four index bits will map to
this cache line.

– e.g. 11111111 0011 0000

So, which data is here?

Data from address
0000000000110000
to
1111111100111111 can map to
the same cache line!

Use tag to store high-order bits.
Let’s us determine which data is
here! (many addresses map here)

Line V D Tag Data (16 Bytes)

0

1

2

3 01101011

4

5

…

15

Direct-Mapped Example

• Let’s say we access memory at
address:
– 01101011 0011 0100

• Step 3:
– Check the tag
– Is it 01101011 (hit)?
– Something else (miss)?
– (Must also ensure valid)

Eviction

• If we don’t find what we’re looking for (miss), we need to bring in the data
from memory.

• Make room by kicking something out.
– If line to be evicted is dirty, write it to memory first.

• Another important systems distinction:
– Mechanism: An ability or feature of the system.

What you can do.
– Policy: Governs the decisions making for using the mechanism. What you should

do.

Eviction

• For direct-mapped cache:
– Mechanism: overwrite bits in cache line, updating
• Valid bit
• Tag
• Data

– Policy: not many options for direct-mapped
• Overwrite at the only location it could be!

Eviction: Direct-Mapped

• Address division: Line V D Tag Data (8 Bytes)

0

1

2

3

4

… …

1020 1 0 1323 57883

1021

1022

1023

Find line:

Tag doesn’t match, bring in from memory.

If dirty, write back first!

Tag (51 bits) Index (10 bits) Byte offset (3 bits)

3941 1020

Eviction: Direct-Mapped

• Address division: Line V D Tag Data (8 Bytes)

0

1

2

3

4

… …

1020 1 0 1323 57883

1021

1022

1023

Tag (51 bits) Index (10 bits) Byte offset (3 bits)

3941 1020

Main Memory

1. Send address to
read main memory.

Eviction: Direct-Mapped

• Address division: Line V D Tag Data (8 Bytes)

0

1

2

3

4

… …

1020 1 0 3941 92

1021

1022

1023

Tag (51 bits) Index (10 bits) Byte offset (3 bits)

3941 1020

Main Memory

1. Send address to
read main memory.

2. Copy data from memory.
Update tag.

Direct-Mapped

• Address division: Line V D Tag Data (8 Bytes)

0

1

2

3

4 1 4217

… …

1020

1021

1022

1023

Byte offset tells us which subset
of block to retrieve.

Tag (51 bits) Index (10 bits) Byte offset (3 bits)

4217 4 2

Can one read of a variable
straddle multiple cache blocks?

0 1 2 3 4 5 6 7

Direct-Mapped

• Address division: Line V D Tag Data (8 Bytes)

0

1

2

3

4 1 4217

… …

1020

1021

1022

1023

Byte offset tells us which subset
of block to retrieve.

Tag (51 bits) Index (10 bits) Byte offset (3 bits)

4217 4 2

Can one read of a variable
straddle multiple cache blocks?

No, recall mem. alignment!
0 1 2 3 4 5 6 7

Suppose we had 8-bit addresses, a cache with 8 lines, and a
block size of 4 bytes.

• How many bits would we use for:
– Tag?
– Index?
– Offset?

Direct-Mapped Example

• Suppose our addresses are 16 bits long.

• Our cache has 16 entries, block size of 16 bytes
– 4 bits in address for the index
– 4 bits in address for byte offset
– Remaining bits (8): tag

Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01110000 (Value: 7)
Read 10101010 (Value: 12)
Write 01101100 (Value: 2)

Line V D Tag Data
(4 Bytes)

0 1 0 111 17

1 1 0 011 9

2 0 0 101 15

3 1 1 001 8

4 1 0 011 4

5 0 0 111 6

6 0 0 101 32

7 1 0 110 3

Memory address

How would the cache change if we performed the following
memory operations?

Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01110000 (Value: 7)
Read 10101010 (Value: 12)
Write 01101100 (Value: 2)

Line V D Tag Data
(4 Bytes)

0 1 0 111 17

1 1 0 011 010 9 5

2 0 0 101 15

3 1 1 001 8

4 1 0 011 4

5 0 0 111 6

6 0 0 101 32

7 1 0 110 3

Memory address

How would the cache change if we performed the following
memory operations?

Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01110000 (Value: 7)
Read 10101010 (Value: 12)
Write 01101100 (Value: 2)

Line V D Tag Data
(4 Bytes)

0 1 0 111 17

1 1 0 011 010 9 5

2 0 0 101 15

3 1 1 001 8

4 1 0 011 4

5 0 0 111 6

6 0 0 101 32

7 1 0 110 3

Memory address

No change necessary.

How would the cache change if we performed the following
memory operations?

Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01110000 (Value: 7)
Read 10101010 (Value: 12)
Write 01101100 (Value: 2)

Line V D Tag Data (4
Bytes)

0 1 0 111 17

1 1 0 011 010 9 5

2 0 0 101 15

3 1 1 001 8

4 1 0
1

011 4 7

5 0 0 111 6

6 0 0 101 32

7 1 0 110 3

Memory address

How would the cache change if we performed the following
memory operations?

Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01110000 (Value: 7)
Read 10101010 (Value: 12)
Write 01101100 (Value: 2)

Line V D Tag Data (4
Bytes)

0 1 0 111 17

1 1 0 011 010 9 5

2 0
1

0 101 101 15 12

3 1 1 001 8

4 1 0
1

011 4 7

5 0 0 111 6

6 0 0 101 32

7 1 0 110 3

Memory address

Note: tag happened to
match, but line was invalid.

How would the cache change if we performed the following
memory operations?

How would the cache change if we performed the following
memory operations?

Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01110000 (Value: 7)
Read 10101010 (Value: 12)
Write 01101100 (Value: 2)

Line V D Tag Data (4
Bytes)

0 1 0 111 17

1 1 0 011 010 9 5

2 0
1

0 101 101 15 12

3 1 1
1

001 011 8 2

4 1 0
1

011 4 7

5 0 0 111 6

6 0 0 101 32

7 1 0 110 3

Memory address

1. Write dirty line to memory.
2. Load new value, set it to 2,

mark it dirty (write).

Direct-Mapped Example

• Suppose our addresses are 16 bits long.

• Our cache has 16 entries, block size of 16 bytes
– 4 bits in address for the index
– 4 bits in address for byte offset
– Remaining bits (8): tag

Associativity

• Problem: suppose we’re only using a small amount of
data (e.g., 8 bytes, 4-byte block size)

• Bad luck: (both) blocks map to same cache line
– Constantly evicting one another
– Rest of cache is going unused!

• Associativity: allow a set blocks to be stored at the
same index. Goal: reduce conflict misses.

Slide 73

Direct-mapped vs N-way set associative Cache

Direct-mapped
• Tag tells you if you found the correct

data.
• Offset specifies which byte within

block.
• Middle bits (index) tell you which 1 line

to check.

• (+) Low complexity, fast.
• (-) Conflict misses.

N-way set associative
• Tag tells you if you found the correct

data.
• Offset specifies which byte within

block.
• Middle bits (set) tell you which N lines

to check.

• (+) Fewer conflict misses.
• (-) More complex, slower, consumes

more power.

Comparison: 1024 Lines
(For the same cache size, in bytes.)

Direct-mapped
• 1024 indices (10 bits)

2-way set associative
• 512 sets (9 bits)

– Tag larger by 1 bit

V D Tag Data (8 Bytes)

…

Set # V D Tag Data (8 Bytes)

0

1

2

3

4

… …

508

509

510

511

2-Way Set Associative

V D Tag Data (8 Bytes)

1 0 3941

…

Set # V D Tag Data (8 Bytes)

0

1

2

3

4 1 1 4063

… …

508

509

510

511

Tag (52 bits) Set (9 bits) Byte offset (3 bits)

3941 4

Same capacity as previous example:
1024 rows with 1 entry vs.
512 rows with 2 entries

2-Way Set Associative

V D Tag Data (8 Bytes)

1 0 3941

…

Set # V D Tag Data (8 Bytes)

0

1

2

3

4 1 1 4063

… …

508

509

510

511

Tag (52 bits) Set (9 bits) Byte offset (3 bits)

3941 4

Check all locations in the set, in parallel.

2-Way Set Associative

V D Tag Data (8 Bytes)

1 0 3941

…

Set # V D Tag Data (8 Bytes)

0

1

2

3

4 1 1 4063

… …

508

509

510

511

Tag (52 bits) Set (9 bits) Byte offset (3 bits)

3941 4

0 1 2 3 4 5 6 70 1 2 3 4 5 6 7

Multiplexer Select correct value.

Slide 78

4-Way Set Associative Cache

Clearly, more complexity here!

Eviction

• Mechanism is the same…
– Overwrite bits in cache line: update tag, valid, data

• Policy: choose which line in the set to evict
– Pick a random line in set
– Choose an invalid line first
– Choose the least recently used block

• Has exhibited the least locality, kick it out!

Common
combo in
practice.

Least Recently Used (LRU)

• Intuition: if it hasn’t been used in a while, we have no reason to believe
it will be used soon.

• Need extra state to keep track of LRU info.

V D Tag Data (8 Bytes)

1 0 3941

…

Set # LRU V D Tag Data (8 Bytes)

0 0

1 1

2 1

3 0

4 1 1 1 4063

… …

Least Recently Used (LRU)

• Intuition: if it hasn’t been used in a while, we have no reason to believe it
will be used soon.

• Need extra state to keep track of LRU info.

• For perfect LRU info:
– 2-way: 1 bit
– 4-way: 8 bits
– N-way: N * log2 N bits

Another reason why associativity
often maxes out at 8 or 16.

These are metadata bits, not
“useful” program data storage.

(Approximations make it not quite
as bad.)

How would the cache change if we performed the following memory
operations? (2-way set)

Read 01000100 (Value: 5)
Read 11100010 (Value: 17)
Write 01100100 (Value: 7)
Read 01000110 (Value: 5)
Write 01100000 (Value: 2)

V D Tag Data (4 Bytes)

1 0 001 17

1 0 010 5

… …

Set # LRU V D Tag Data (4 Bytes)

0 1 0 0 111 4

1 0 1 1 111 9

2 … …

3

4

5

6

7

LRU = 0 means: the left line in the set was least recently used.
LRU = 1 means: the right line in the set was least recently used.

Cache Conscious Programming

Knowing about caching and designing code around it can significantly effect
performance
 (ex) 2D array accesses

Algorithmically, both O(N * M).

Is one faster than the other?

for(i=0; i < N; i++) {
 for(j=0; j< M; j++) {
 sum += arr[i][j];
}}

for(j=0; j < M; j++) {
 for(i=0; i< N; i++) {
 sum += arr[i][j];
}}

Cache Conscious Programming

Knowing about caching and designing code around it can significantly effect
performance
 (ex) 2D array accesses

Algorithmically, both O(N * M).

Is one faster than the other?

for(i=0; i < N; i++) {
 for(j=0; j< M; j++) {
 sum += arr[i][j];
}}

for(j=0; j < M; j++) {
 for(i=0; i< N; i++) {
 sum += arr[i][j];
}}

A. is faster. B. is faster.

C. Both would exhibit
roughly equal performance.

Cache Conscious Programming

The first nested loop is more efficient if the cache block size is larger than a
single array bucket (for arrays of basic C types, it will be).

(ex) 1 miss every 4 buckets vs. 1 miss every bucket

for(i=0; i < N; i++) {
 for(j=0; j< M; j++) {
 sum += arr[i][j];
}}

for(j=0; j < M; j++) {
 for(i=0; i< N; i++) {
 sum += arr[i][j];
}}

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

. . .

.

.

.

1 . . .

2

3

4

.

.

.

Program Efficiency and Memory
• Be aware of how your program accesses data
– Sequentially, in strides of size X, randomly, …
– How data is laid out in memory

• Will allow you to structure your code to run much more efficiently based on
how it accesses its data

• Don’t go nuts…
– Optimize the most important parts, ignore the rest
– “Premature optimization is the root of all evil.” -Knuth

Amdahl’s Law

Idea: an optimization can improve total runtime at most by the fraction it
contributes to total runtime

If program takes 100 secs to run, and you optimize a portion of the code that
accounts for 2% of the runtime, the best your optimization can do is improve
the runtime by 2 secs.

Amdahl’s Law tells us to focus our optimization efforts on the code that
matters:

Speed-up what is accounting for the largest portion of runtime to get the
largest benefit. And, don’t waste time on the small stuff.

Up Next:

• Operating systems, Processes
• Virtual Memory

Slide 89

