
CS 31: Intro to Systems C Programming
L13-14: Arrays, Structs, Strings, and Pointers

Vasanta Chaganti & Kevin Webb
Swarthmore College

Oct 26 – 31, 2023

Announcements

• HW 3 is due today before class

Today

• Accessing things via an offset
• Arrays, Structs, Unions
• Connect accessing them in C with what we know about assembly

• How complex structures are stored in memory
• Multi-dimensional arrays & Structs

Reading Quiz

So far: Primitive Data Types

• We’ve been using ints, floats, chars, pointers

• Simple to place these in memory:
– They have an unambiguous size
– They fit inside a register*
– The hardware can operate on them directly

(*There are special registers for floats and doubles that use the IEEE
floating point format.)

Composite Data Types

• Combination of one or more existing types into a new type. (e.g., an
array of multiple ints, or a struct)

Composite Data Types

• Combination of one or more existing types into a new type. (e.g., an array of
multiple ints, or a struct)

• Example: a queue
– Might need a value (int) plus a link to the next item (pointer)

struct queue_node{
 int value;
 struct queue_node *next;
}

Recall: Arrays in Memory

Heap

iptr[0]

iptr[1]

iptr[2]

iptr[3]

int *iptr = NULL;

iptr = malloc(4 * sizeof(int));

Base + Offset

• We know that arrays act as a pointer to the first element. For bucket
[N], we just skip forward N.

0th bucket 1st bucket 2nd bucket 3rd bucket 4th bucket

val[0] val[1] val[2] val[3] val[4]

int val[5];

Base + Offset

• We know that arrays act as a pointer to the first element. For bucket
[N], we just skip forward N.

Base Offset (stuff in [])

This is why we start counting from zero!
Skipping forward with an offset of zero ([0]) gives us the first bucket…

0th bucket 1st bucket 2nd bucket 3rd bucket 4th bucket

val[0] val[1] val[2] val[3] val[4]

int val[5];

Which expression would compute the address
of iptr[3]?

A. 0x0824 + 3 * 4

B. 0x0824 + 4 * 4

C. 0x0824 + 0xC

D. More than one (which?)

E. None of these

Heap

0x0824: iptr[0]

0x0828: iptr[1]

0x082C: iptr[2]

0x0830: iptr[3]

Which expression would compute the address
of iptr[3]?

A. 0x0824 + 3 * 4

B. 0x0824 + 4 * 4

C. 0x0824 + 0xC

D. More than one (which?)

E. None of these

Heap

0x0824: iptr[0]

0x0828: iptr[1]

0x082C: iptr[2]

0x0830: iptr[3]

What if this isn’t known at
compile time?

Recall Addressing Mode: Memory

• Accessing memory requires you to specify which address you want.
– Put the address in a register.
– Access the register with () around the register’s name.

mov (%rcx), %rax
– Use the address in register %rcx to access memory, store result in

register %rax

Recall Addressing Mode: Displacement

• Like memory mode, but with a constant offset
– Offset is often negative, relative to %rbp

mov -24(%rbp), %rax
– Take the address in %rbp, subtract 24 from it, index into memory and store

the result in %rax.

Addressing Mode: Indexed

• Instead of only using one register to store the base address of a memory
address, we can use a base address register and an offset register value.

mov (%rax, %rcx), %rdx
– Take the base address in %rax, add the value in %rcx to produce a final

address, index into memory and store the result in %rdx.

Addressing Mode: Indexed
The offset (%rcx) can also be scaled by a constant.

mov (%rax, %rcx, 4), %rdx
– Take the base address: %rax
– Multiply the offset by the scale: %rcx * 4
– Add the scaled offset to the base: %rax + %rcx * 4
– Now, index into memory at (%rax + %rcx * 4) and store the result in %rdx.

One register to keep
track of base address.

One register to keep track
of offset from base address.

Scale Constant

Suppose:
 int iptr; is stored in register %rax.
 int i=2; is stored at %rbp-8
 iptr[i] = 9; //iptr[2] = 9;

In assembly:
mov -8(%rbp), %rcx

mov %rdx, (rax, rcx, 4)

Heap

0x0824: iptr[0]

0x0828: iptr[1]

0x082C: iptr[2]

0x0830: iptr[3]

Let’s try an example

rax 0x0824

rcx

rdx 9

Registers:

rax: Array base address

= add (rcx *4)
= add (2*4)
= add 8

Suppose:
 int iptr; is stored in register %rax.
 int i=2; is stored at %rbp-8
 iptr[i] = 9; //iptr[2] = 9;

In assembly:
mov -8(%rbp), %rcx

mov %rdx, (rax, rcx, 4)

Heap

0x0824: iptr[0]

0x0828: iptr[1]

0x082C: iptr[2]

0x0830: iptr[3]

Let’s try an example

rax 0x0824

rcx

rdx 9

Registers:

rax: Array base address

= add (rcx *4)
= add (2*4)
= add 8

Suppose:
 int iptr; is stored in register %rax.
 int i=3; is stored at %rbp-8
 iptr[i] = 10; //iptr[3] = 10;

In assembly:
mov -8(%rbp), %rcx

mov %rdx, (rax, rcx, 4)

Heap

0x0824: iptr[0]

0x0828: iptr[1]

0x082C: iptr[2]

0x0830: iptr[3]

What happens when we increment i?
What changes do we make in assembly?

rax 0x0824

rcx

rdx 9

Registers:

rax: Array base address

= add (rcx *4)
= add (2*4)
= add 8

Suppose:
 int iptr; is stored in register %rax.
 int i=3; is stored at %rbp-8
 iptr[i] = 10; //iptr[3] = 10;

In assembly:
mov -8(%rbp), %rcx

mov %rdx, (rax, rcx, 4)

Heap

0x0824: iptr[0]

0x0828: iptr[1]

0x082C: iptr[2]

0x0830: iptr[3]

What happens when we increment i?
What changes do we make in assembly?

rax 0x0824

rcx

rdx 9

Registers:

rax: Array base address

= add (rcx *4)
= add (2*4)
= add 8

Compiler can simply increment register
rcx and access the next element of the

array with the same assembly
commands!

Two-dimensional Arrays

• Why stop at an array of ints?
How about an array of arrays of ints?

int twodims[3][4];

• “Give me three sets of four integers.”

• How should these be organized in memory?

Two-dimensional Arrays

int twodims[3][4];
for(i=0; i<3; i++) {
 for(j=0; j<4; j++) {
 twodims[i][j] = i+j;
 }
}

0 1 2 3

1 2 3 4

2 3 4 5

twodims[0]

twodims[1]

twodims[2]

[0][0] [0][1] [0][2] [0][3]

[1][0] [1][1] [1][2] [1][3]

[2][0] [2][1] [2][2] [2][3]

Two-dimensional Arrays

int twodims[3][4];
for(i=0; i<3; i++) {
 for(j=0; j<4; j++) {
 twodims[i][j] = i+j;
 }
}

0 1 2 3

1 2 3 4

2 3 4 5

twodims[0]

twodims[1]

twodims[2]

Memory Layout

• Matrix: 3 rows, 4 columns

0 1 2 3
1 2 3 4
2 3 4 5

0xf260 0 twodim[0][0]

0xf264 1 twodim[0][1]

0xf268 2 twodim[0][2]

0xf26c 3 twodim[0][3]

0xf270 1 twodim[1][0]

0xf274 2 twodim[1][1]

0xf278 3 twodim[1][2]

0xf27c 4 twodim[1][3]

0xf280 2 twodim[2][0]

0xf284 3 twodim[2][1]

0xf288 4 twodim[2][2]

0xf28c 5 twodim[2][3]

Row Major Order:
all Row 0 buckets, followed by
all Row 1 buckets, followed by
all Row 2 buckets, …

Memory Layout

• Matrix: 3 rows, 4 columns

0 1 2 3
1 2 3 4
2 3 4 5

twodim[1][3]:

 base addr + row offset (# rows * rows * sizeof(int)) + col offset

 twodim + 1*ROWSIZE*4 + 3*4

 0xf260 + 16 + 12

= 0xf27c

0xf260 0 twodim[0][0]

0xf264 1 twodim[0][1]

0xf268 2 twodim[0][2]

0xf26c 3 twodim[0][3]

0xf270 1 twodim[1][0]

0xf274 2 twodim[1][1]

0xf278 3 twodim[1][2]

0xf27c 4 twodim[1][3]

0xf280 2 twodim[2][0]

0xf284 3 twodim[2][1]

0xf288 4 twodim[2][2]

0xf28c 5 twodim[2][3]

Memory Layout

• Matrix: 3 rows, 4 columns

0 1 2 3
1 2 3 4
2 3 4 5

twodim[1][3]:

 base addr + row offset (# rows * rows * sizeof(int)) + col offset

 twodim + 1*ROWSIZE*4 + 3*4

 0xf260 + 16 + 12

= 0xf27c

0xf260 0 twodim[0][0]

0xf264 1 twodim[0][1]

0xf268 2 twodim[0][2]

0xf26c 3 twodim[0][3]

0xf270 1 twodim[1][0]

0xf274 2 twodim[1][1]

0xf278 3 twodim[1][2]

0xf27c 4 twodim[1][3]

0xf280 2 twodim[2][0]

0xf284 3 twodim[2][1]

0xf288 4 twodim[2][2]

0xf28c 5 twodim[2][3]

You do not need to convert mem index into an
address for the lab!

If we declared int matrix[5][3];, and the base of
matrix is 0x3420, what is the address of matrix[3][2]?

A. 0x3438
B. 0x3440
C. 0x3444
D. 0x344C
E. None of these

0x3420 0 matrix[0][0]

0x3424 1 …

0x3480 2 matrix[5][3]

base addr
+ row offset (# rows * row_size * sizeof(data_type))
+ col offset

If we declared int matrix[5][3];, and the base of
matrix is 0x3420, what is the address of matrix[3][2]?

A. 0x3438
B. 0x3440
C. 0x3444
D. 0x344C
E. None of these

0x3420 0 matrix[0][0]

0x3424 1 …

0x3480 2 matrix[5][3]

Mem_index = 3*3+2 = 11 (you need this for the lab)
Mem. address = 0x3420 + 11*4 (2c) = 0x344c

Dynamic Two-dimensional Array

• Given the row-major order layout, a "two-dimensional array" is still just
a contiguous block of memory:

• The malloc function returns… a pointer
to a contiguous block of memory!

0xf260 0 twodim[0][0]

0xf264 1 twodim[0][1]

0xf268 2 twodim[0][2]

0xf26c 3 twodim[0][3]

0xf270 1 twodim[1][0]

0xf274 2 twodim[1][1]

0xf278 3 twodim[1][2]

0xf27c 4 twodim[1][3]

0xf280 2 twodim[2][0]

0xf284 3 twodim[2][1]

0xf288 4 twodim[2][2]

0xf28c 5 twodim[2][3]

Dynamic Two-dimensional Array

• For this example, with three rows and four columns:

int *matrix = malloc(3 * 4 * sizeof(int));

0xf260 0 matrix[?]

0xf264 1 matrix[?]

0xf268 2 matrix[?]

0xf26c 3 matrix[?]

0xf270 1 matrix[?]

0xf274 2 matrix[?]

0xf278 3 matrix[?]

0xf27c 4 matrix[?]

0xf280 2 matrix[?]

0xf284 3 matrix[?]

0xf288 4 matrix[?]

0xf28c 5 matrix[?]

0 1 2 3
1 2 3 4
2 3 4 5

Caveat: the C compiler doesn't know that you're
planning to use this block of memory with more

one index (i.e., row and column).

Can't access: matrix[i][j]

Dynamic Two-dimensional Array

• For this example, with three rows and four columns:

int *matrix = malloc(3 * 4 * sizeof(int));

// Compute the offset manually
index = i * ROWSIZE + j;
matrix[index] = …

0xf260 0 matrix[0 + 0]

0xf264 1 matrix[0 + 1]

0xf268 2 matrix[0 + 2]

0xf26c 3 matrix[0 + 3]

0xf270 1 matrix[4 + 0]

0xf274 2 matrix[4 + 1]

0xf278 3 matrix[4 + 2]

0xf27c 4 matrix[4 + 3]

0xf280 2 matrix[8 + 0]

0xf284 3 matrix[8 + 1]

0xf288 4 matrix[8 + 2]

0xf28c 5 matrix[8 + 3]

0 1 2 3
1 2 3 4
2 3 4 5

Two-dimensional array alternative

• (Dynamically) Allocate an array of pointers.
For each pointer, (dynamically) allocate an array.

• How do we get an array of pointers?

Two-dimensional array alternative

• If we want a dynamic array of ints:
– declare int *array = malloc(N * sizeof(int))

• So… if we want an array of int pointers:
– declare int **array = malloc(…)

Two-dimensional array alternative

• If we want a dynamic array of ints:
– declare int *array = malloc(N * sizeof(int))

• So… if we want an array of int pointers:
– declare int **array = malloc(N * sizeof(int *))
– The type of array[0], array[1], etc. is: int *
– For each one of those, we can malloc an array of ints:

• array[0] = malloc(M * sizeof(int))

Two-dimensional array alternative

Two-dimensional arrays

• We'll use BOTH methods in future labs.

Structs

• Multiple values (fields) stored together
– Defines a new type in C's type system

• Laid out contiguously by field (with a caveat we'll see later)
– In order of field declaration.

Structs
Laid out contiguously by field (with a caveat we'll see later)
– In order of field declaration.

struct student{
int age;
float gpa;
int id;

};

struct student s;

… Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

Structs
Struct fields accessible as a base + displacement
– Compiler knows (constant) displacement of each field

struct student{
int age;
float gpa;
int id;

};

struct student s;

… Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

Structs
Struct fields accessible as a base + displacement
– Compiler knows (constant) displacement of each field

struct student{
int age;
float gpa;
int id;

};

struct student s;

… Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

Given the starting
address of a struct…

The id field is always at
an offset of 8 forward
from the start.

Structs
Struct fields accessible as a base + displacement
In assembly: mov reg_value, 16(reg_base)

Where:
• reg_value is a register holding the value to store (say, 12)
• reg_base is a register holding the base address of the struct

struct student{
int age;
float gpa;
int id;

};

struct student s;
s.id = 12;

… Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

Given the starting
address of a struct…

The id field is always at
an offset of 8 forward
from the start.

Structs

• Laid out contiguously by field
– In order of field declaration.
– May require some padding, for data alignment.

… Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

Data Alignment:

• Where (which address) can a field be located?

• char (1 byte): can be allocated at any address:
0x1230, 0x1231, 0x1232, 0x1233, 0x1234, …

• short (2 bytes):
– must be aligned on 2-byte addresses:
– 0x1230, 0x1232, 0x1234, 0x1236, 0x1238, …

• int (4 bytes):
– must be aligned on 4-byte addresses:
– 0x1230, 0x1234, 0x1238, 0x123c, 0x1240, …

Why do we want to align data on multiples of the data size?

A. It makes the hardware faster.

B. It makes the hardware simpler.

C. It makes more efficient use of memory space.

D. It makes implementing the OS easier.

E. Some other reason.

Why do we want to align data on multiples of the data size?

A. It makes the hardware faster.

B. It makes the hardware simpler.

C. It makes more efficient use of memory space.

D. It makes implementing the OS easier.

E. Some other reason.

Data Alignment: Why?

• Simplify hardware
– e.g., only read ints from multiples of 4
– Don’t need to build wiring to access 4-byte chunks at any arbitrary

location in hardware

• Inefficient to load/store single value across alignment boundary (1
vs. 2 loads)

• Simplify OS:
– Prevents data from spanning virtual pages
– Atomicity issues with load/store across boundary

Structs

… Memory

0x1234 s.age

0x1238 s.gpa

0x123c s.id

…

• Laid out contiguously by field
– In order of field declaration.
– May require some padding, for alignment.

struct student{
int age;
float gpa;
int id;

};

struct student s;

Structs

struct student{
char name[11];
short age;
int id;

};

How much space do we need to store one of these
structures? Why?

A.17 bytes
B.18 bytes
C.20 bytes
D.22 bytes
E.24 bytes

struct student{
char name[11];
short age;
int id;

};

Structs
Memory …

0x1234 s.name[0]

0x1235 s.name[1]

… … …

0x123d s.name[9]

0x123e s.name[10]

0x123f padding

0x1240 s.age

0x1231 s.age

0x1232 padding

0x1233 padding

0x1234 s.id

0x1235 s.id

0x1236 s.id

0x1237 s.id

0x1238 …

padding

padding

Use sizeof() when allocating structs with
malloc()!

struct student{
char name[11];
short age;
int id;

};

size of data: 17 bytes
size of struct: 20 bytes!

Alternative Layout

Same fields, declared in
a different order.

struct student{
char name[11];
short age;
int id;

};

Alternative Layout
Memory …

0x1234 s.id

0x1235 s.id

0x1236 s.id

0x1237 s.id

0x1238 s.age

0x1239 s.age

0x1240 s.name[0]

0x1231 s.name[1]

0x1232 s.name[2]

… … …

0x1234 s.name[9]

0x1235 s.name[10]

0x1236 …

In general, this isn’t a big deal on a
day-to-day basis. Don’t go out and
rearrange all your struct declarations.

struct student{
char name[11];
short age;
int id;

};

size of data: 17 bytes
size of struct: 17 bytes

Aside: Network Headers

• In networks, we attach metadata to packets
– Things like destination address, port #, etc.

• Common for these to be a specific size/format
– e.g., the first 20 bytes must be laid out like …

• Naïvely declaring a struct might introduce padding, violate format.

Cool, so we can get rid of this struct padding by being smart
about declarations?

A. Yes (why?)

B. No (why not?)

Cool, so we can get rid of this padding by being smart about
declarations?

• Answer: Maybe.

• Rearranging helps, but often padding after the struct can’t be
eliminated.
struct T1 { struct T2 {
 char c1; int x;
 char c2; char c1;
 int x; char c2;
}; };

T2: x c1 c2 2bytesT1: c1 c2 2bytes x

“External” Padding

Array of Structs: Field values in each bucket must be properly
aligned:

 struct T2 arr[3];

Buckets must be on a 8-byte aligned address

0

x c1 c2 2bytes

1

x c1 c2 2bytes

2

x c1 c2 2bytesarr:

x x + 8 x + 16

Struct field syntax…

struct student {
 int id;
 short age;
 char name[11];
};
struct student s;

s.id = 406432;
s.age = 20;
strcpy(s.name, “Alice”);

Struct is declared on
the stack.
(NOT a pointer)

Struct field syntax…

struct student {
 int id;
 short age;
 char name[11];
};
struct student *s = malloc(sizeof(struct student));

What about this?

How do we get to the id and age?

Struct field syntax…

struct student {
 int id;
 short age;
 char name[11];
};
struct student *s = malloc(sizeof(struct student));

What about this?

How do we get to the id and age?

(*s).id = 406432;
(*s).age = 20;
strcpy((*s).name, “Alice”);

Option 1: Works but ugly

s->id = 406432;
s->age = 20;
strcpy(s->name, “Alice”);

Option 2: Use struct pointer dereference!

Memory alignment applies elsewhere too!

int x; vs. double y;
char ch[5]; int x;
short s; short s;
double y; char ch[5];

In nearly all cases, you shouldn't stress about this. The compiler will figure
out where to put things.
Exceptions: networking, OS

Unions

• Declared like a struct, but only contains one field, rather than all of
them.

• Struct: field 1 and field 2 and field 3 …
• Union: field 1 or field 2 or field 3 …

Intuition: you know you only need to store one of N things, don’t waste
space.

Unions
struct my_struct {
 char ch[2];
 int i;
 short s;
}

union my_union {
 char ch[2];
 int i;
 short s;
}

ch

padding

i

s

my_struct in memory

Same
memory
used for all
fields!

my_union in memory

Unions
my_union u;

u.i = 7;

7
7
7
7

Same
memory
used for all
fields!

my_union in memory

union my_union {
 char ch[2];
 int i;
 short s;
}

Unions
my_union u;

u.i = 7;
u.s = 2;

union my_union {
 char ch[2];
 int i;
 short s;
}

2
2
7
7

Same
memory
used for all
fields!

my_union in memory

Unions
my_union u;

u.i = 7;
u.s = 2;
u.ch[0] = ‘a’;

u.i = 5;

a
2
7
7

Same
memory
used for all
fields!

my_union in memory

union my_union {
 char ch[2];
 int i;
 short s;
}

Reading i or s here would be bad!

Unions
my_union u;

u.i = 7;
u.s = 2;
u.ch[0] = ‘a’;

u.i = 5;

5
5
5
5

Same
memory
used for all
fields!

my_union in memory

union my_union {
 char ch[2];
 int i;
 short s;
}

Reading i or s here would be bad!

Unions

5
5
5
5

Same
memory
used for all
fields!

my_union in memory

• You probably won’t use
these often.

• Use when you need
mutually exclusive types.

• Can save memory.

union my_union {
 char ch[2];
 int i;
 short s;
}

Strings

• Strings are character arrays

• Layout is the same as:
– char name[10];

• Often accessed as (char *)

name[0]

name[1]

name[2]

name[3]

name[4]

name[5]

name[6]

name[7]

name[8]

name[9]

String Functions

• C library has many built-in functions that operate on char *’s:
– strcpy, strdup, strlen, strcat, strcmp, strstr

char name[10];
strcpy(name, “CS 31”);

name[0]

name[1]

name[2]

name[3]

name[4]

name[5]

name[6]

name[7]

name[8]

name[9]

String Functions

• C library has many built-in functions that operate on char *’s:
– strcpy, strdup, strlen, strcat, strcmp, strstr

char name[10];
strcpy(name, “CS 31”);

• Null terminator (\0) ends string.
– We don’t know/care what comes after

C name[0]

S name[1]

name[2]

3 name[3]

1 name[4]

\0 name[5]

? name[6]

? name[7]

? name[8]

? name[9]

String Functions

• C library has many built-in functions that operate on char *’s:
– strcpy, strdup, strlen, strcat, strcmp, strstr

• Seems simple on the surface.
– That null terminator is tricky, strings error-prone.
– Strings used everywhere!

• You will implement use these functions in a future lab.

Up next…

• New topic: Storage and the Memory Hierarchy

