CS31 Worksheet: Week 11: Virtual Memory

Which memory allocation algorithm would you choose? Why?

A.	first-fit		
В.	worst-fit	Is leaving small fragments a good thing or a bad thing?	
C.	best-fit		

Where would worst-fit place this memory chunk?

A. 5 MB

5 MB

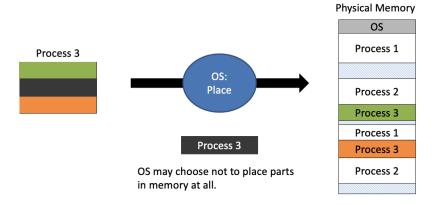
C. 9 MB

Problem Summary: Placement

• What if a process's memory can't fit into a contiguous memory slot?

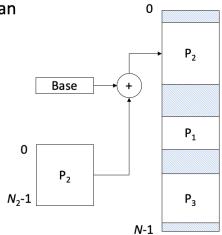
Process 3

Process 2


Process 1

Process 2

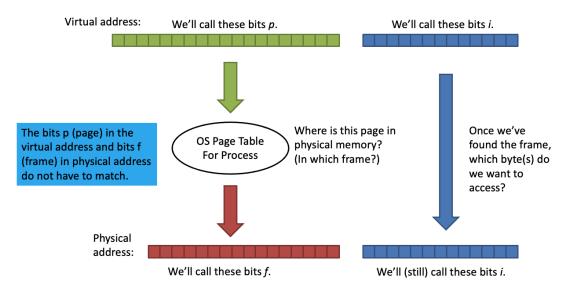
Physical Memory


Problem Summary: Placement

- General solution: don't require all of a process's memory to be in one piece!
- What problems does this generate for a compiler?

Hardware for Virtual Addressing

- With help from the hardware, we can translate a process from a virtual address to a physical address by changing the base.
- Are we done?
- Is our model safe?

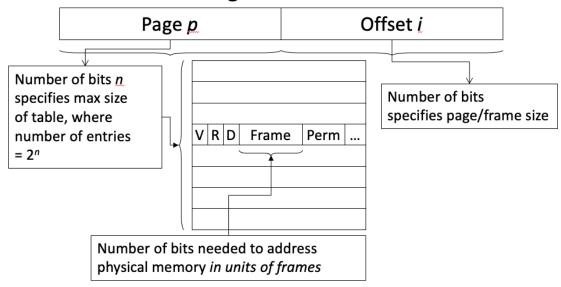


Example: 32-bit virtual addresses

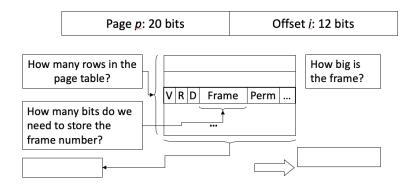
- Suppose we have 8-KB (8192-byte) pages.
- We need enough bits to individually address each byte in the page.
 - How many bits do we need to address 8192 items?

2 ¹⁰	211	2 ¹²	2 ¹³	214	2 ¹⁵
1024	2048	4096	8192	16384	32768

Address Partitioning



Address Translation


Fage p Offset i Given the meta data we have: • table base register, table top register • valid bit, reference bit, dirty bit • frame number and, • permissions what checks do we have to do for a page hit? Page p Offset i VRD Frame Perm ... Perm ... Physical Address

Sizing the Page Table

Logical Address

Example of Sizing the Page Table

Given: 32 bit virtual addresses, 1 GB physical memory

Address partition: 20 bit page number, 12 bit offset

210	2 ²⁰	2 ³⁰	2 ⁴⁰
1KB	1MB	1GB	1TB