
CS 31: Intro to Systems
Storage and Memory

Vasanta Chaganti & Kevin Webb

Swarthmore College

November 2, 2023

Transition

• First half of course: hardware focus
– How the hardware is constructed

– How the hardware works

– How to interact with hardware / ISA

• Up next: performance and software systems
– Memory performance

– Operating systems

– Standard libraries (strings, threads, etc.)

Efficiency

• How to Efficiently Run Programs

• Good algorithm is critical…

• Many systems concerns to account for too!

– The memory hierarchy and its effect on program performance

– OS abstractions for running programs efficiently

– Support for parallel programming

Efficiency

• How to Efficiently Run Programs

• Good algorithm is critical…

• Many systems concerns to account for too!

– The memory hierarchy and its effect on program performance

– OS abstractions for running programs efficiently

– Support for parallel programming

Suppose you’re designing a new computer
architecture. Which type of memory would you use?
Why?

A. low-capacity (~1 MB), fast, expensive

B. medium-capacity (a few GB), medium-speed, moderate cost

C. high-capacity (100’s of GB), slow, cheap

D. something else (it must exist)

Classifying Memory

• Broadly, two types of memory:

1. Primary storage: CPU instructions can access any location at any
time (assuming OS permission)

2. Secondary storage: CPU can’t access this directly

Random Access Memory (RAM)

• Any location can be accessed directly by CPU
– Volatile Storage: lose power → lose contents

• Static RAM (SRAM)
– Latch-Based Memory (e.g. RS latch), 1 bit per latch

– Faster and more expensive than DRAM
• “On chip”: Registers, Caches

• Dynamic RAM (DRAM)
– Capacitor-Based Memory, 1 bit per capacitor

• “Main memory”: Not part of CPU

Memory Technologies

• Static RAM (SRAM)

– 0.5ns – 2.5ns, $2000 – $5000 per GB

• Dynamic RAM (DRAM)

– 50ns – 100ns, $20 – $75 per GB
(Main memory, “RAM”)

We’ve talked a lot about registers (SRAM) and we’ll cover
caches (SRAM) soon. Let’s look at main memory (DRAM) now.

Dynamic Random Access Memory (DRAM)

CPSC31 Fall 2013, newhall

DRAM

Memory

Chips

Capacitor based:
– cheaper and slower than SRAM
– capacitors are leaky (lose charge over time)
– Dynamic: value needs to be refreshed (every 10-100ms)

Example: DIMM (Dual In-line Memory Module):

Bus Interface

Connecting CPU and Memory

• Components are connected by a bus:

• A bus is a collection of parallel wires that carry
address, data, and control signals.

• Buses are typically shared by multiple devices.

Memory Module Slots

ALU

Register

Register

Register

Register

CPU

Memory Bus

CPU Cache

How A Memory Read Works

(1) CPU places address A on the memory bus.

Load operation: mov (Address A), %rax

Memory Module Slots

ALU

Register

Register

Register

Register

CPU

Memory Bus

CPU Cache

A

Read (cont.)
(2) Main Memory reads address A from

 memory, fetches value at that address
 and puts it on the bus

Memory Module Slots

ALU

Register

Register

Register

Register

CPU

Memory Bus

CPU Cache

Value

Read (cont.)
(3) CPU reads value from the bus, and copies it
 into register rax, a copy also goes
 into the on-chip cache memory

Memory Module Slots

ALU

Register

Register

Register

Register

CPU

Memory Bus

CPU Cache

Value

Write
1. CPU writes A to bus, memory reads it
2. CPU writes value to bus, memory reads it
3. Memory stores value at address A

Memory Module Slots

ALU

Register

Register

Register

Register

CPU

Memory Bus

CPU Cache

value, A

Secondary Storage

• Disk, Tape Drives, Flash Solid State Drives, …

• Non-volatile: retains data without a charge

• Instructions CANNOT directly access data on
secondary storage

– No way to specify a disk location in an instruction

– Operating System moves data to/from memory

Secondary Storage
Memory Module Slots

ALU

Register

Register

Register

Register

CPU

Memory Bus

I/O
Controller

USB
Controller

IDE
Controller

SATA
Controller …

I/O Bus (e.g., PCI)

Secondary Storage Devices

CPU Cache

What’s Inside A Disk Drive?

Spindle
Arm

Actuator

Platters

Controller Electronics

(includes processor & memory)
bus

connector

Image from Seagate Technology

R/W head

Data Encoded as
points of
magnetism on
Platter surfaces

Device Driver (part of OS code)

interacts with Controller to R/W to disk

Reading and Writing to Disk

disk surface
spins at a fixed
rotational rate
~7200 rotations/min

disk arm sweeps across
surface to position
read/write head over a
specific track.

Data blocks located in some Sector of some Track on some Surface
1. Disk Arm moves to correct track (seek time)
2. Wait for sector spins under R/W head (rotational latency)
3. As sector spins under head, data are Read or Written

(transfer time)
sector

Memory Technology

• Static RAM (SRAM)

– 0.5ns – 2.5ns, $2000 – $5000 per GB

• Dynamic RAM (DRAM)

– 50ns – 100ns, $20 – $75 per GB

• Magnetic disk

– 5ms – 15ms, $0.20 – $2 per GB

Like walking:

Down the hall

Across campus

To Seattle

1 ms == 1,000,000 ns

Solid-state disks (flash): 100 us – 1 ms, $2 - $10 per GB (to Cleveland / Indianapolis)

The Memory Hierarchy

Larger
Slower
Cheaper
per byte

Local secondary storage (disk)
~100 M cycles to access

On
Chip

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM)

~100 cycles to access

CPU
instrs

can
directly
access

Registers
1 cycle to access

Cache(s)
(SRAM)

~10’s of cycles to access

Where does accessing the network belong?

Larger
Slower
Cheaper
per byte

Local secondary storage (disk)
~100 M cycles to access

On
Chip

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM)

~100 cycles to access

CPU
instrs

can
directly
access

Registers
1 cycle to access

Cache(s)
(SRAM)

~10’s of cycles to access

A: Here

B: Here C: Somewhere else

The Memory Hierarchy

Local secondary storage (disk)

Larger
Slower
Cheaper
per byte

Remote secondary storage
(tapes, Web servers / Internet)

~100 M cycles to access

On
Chip

Storage

Smaller
Faster
Costlier
per byte

Main memory
(DRAM)

~100 cycles to access

CPU
instrs

can
directly
access

slower
than local

disk to access

Registers
1 cycle to access

Cache(s)
(SRAM)

~10’s of cycles to access

Flash SSD / Local network

Abstraction Goal

• Reality: There is no one type of memory to rule them all!

• Abstraction: hide the complex/undesirable details of reality.

• Illusion: We have the speed of SRAM, with the capacity of disk,
at reasonable cost.

Motivating Story / Analogy

• You work at a video rental store (remember Blockbuster?)

• You have a huge warehouse of movies
– 10-15 minutes to find movie, bring to customer

– Customers don’t like waiting…

• You have a small office in the front with shelves, you choose
what goes on shelves
– < 30 seconds to find movie on front shelf

The Video Store Hierarchy

Large Warehouse

On
Shelf

Storage

Front Office
Shelves

~10 minutes to find movie

~30 seconds to find movie

Goal: strategically put
movies on office shelf to
reduce trips to warehouse.

Quick vote: Which movie should we place on the
shelf for tonight?

A. Eternal Sunshine of the Spotless Mind

B. The Godfather

C. Pulp Fiction

D. Rocky V

E. There’s no way for us to know.

Problem: Prediction

• We can’t know the future…

• So… are we out of luck?
What might we look at to help us decide?

• The past is often a pretty good predictor…

Repeat Customer: Bob

• Has rented “Eternal Sunshine of the Spotless Mind” ten times
in the last two weeks.

• You talk to him:

– He just broke up with his girlfriend

– Swears it will be the last time he rents the movie (he’s said this the
last six times)

Quick vote: Which movie should we place on the
shelf for tonight?

A. Eternal Sunshine of the Spotless Mind

B. The Godfather

C. Pulp Fiction

D. Rocky V

E. There’s no way for us to know.

Repeat Customer: Alice

• Alice rented Rocky a month ago

• You talk to her:

– She’s really likes Sylvester Stalone

• Over the next few weeks she rented:

– Rocky II, Rocky III, Rocky IV

Quick vote: Which movie should we place on the
shelf for tonight?

A. Eternal Sunshine of the Spotless Mind

B. The Godfather

C. Pulp Fiction

D. Rocky V

E. There’s no way for us to know.

Critical Concept: Locality

• Locality: we tend to repeatedly access recently accessed items,
or those that are nearby.

• Temporal locality: An item that has been accessed recently is
likely to be accessed again soon. (Bob)

• Spatial locality: We’re likely to access an item that’s nearby
others we just accessed. (Alice)

In the following code, how many examples are
there of temporal / spatial locality?
Where are they?

int i;
int num = read_int_from_user();
int *array = create_random_array(num);
for (i = 0; i < num; i++) {
 printf(“At index %d, value: %d”, i, array[i]);
}

A. 1 temporal, 1 spatial
B. 1 temporal, 2 spatial
C. 2 temporal, 1 spatial
D. 2 temporal, 2 spatial
E. Some other number

Big Picture

Local secondary storage (disk)

Remote secondary storage
(tapes, Web servers / Internet)

Main memory
(DRAM)

Cache(s)
(SRAM)

Flash SSD / Local network

Registers

For memory exhibiting locality
(stuff we’re using / likely to use):

Work hard to keep them up here!

Bulk storage down here.

Move this up on demand.

Big Picture

Local secondary storage (disk)

Remote secondary storage
(tapes, Web servers / Internet)

Main memory
(DRAM)

Cache(s)
(SRAM)

Flash SSD / Local network

Registers

Faster than memory. (On-chip hardware)

Holds a subset of memory.

Faster than disk.

Holds a subset of disk.

Faster than cache.

Holds a VERY small amount (subset of cache).

Cache

• In general: a storage location that holds a subset of a larger
memory, faster to access

• CPU cache: an SRAM on-chip storage location that holds a
subset of DRAM main memory (10-50x faster to access)

• Goal: choose the right subset, based on past locality, to achieve
our abstraction

When we say “cache”, assume we’re referring to CPU
cache from now on, unless we say otherwise.

Cache Basics

• CPU real estate dedicated to cache

• Usually two (or more) levels:

– L1: smallest, fastest

– L2: larger, slower

• Same rules apply:

– L1 subset of L2

ALURegs

L2 Cache

L1

Main Memory

Memory Bus

CPU

Cache Basics

• CPU real estate dedicated to cache

• Usually two levels:

– L1: smallest, fastest

– L2: larger, slower

• We’ll assume one cache
(same principles)

ALURegs

Cache

Main Memory

Memory Bus

CPU

Cache is a subset of main memory.
(Not to scale, memory much bigger!)

Cache Basics: Read from memory

• In parallel:

– Issue read to memory

– Check cache

ALURegs

Cache

Main Memory

Memory Bus

CPU

In cache?

Request data

Cache Basics: Read from memory

• In parallel:

– Issue read to memory

– Check cache

• Data in cache (hit):

– Good, send to register

– Cancel/ignore memory

ALURegs

Cache

Main Memory

Memory Bus

CPU

In cache?

Cache Basics: Read from memory

• In parallel:

– Issue read to memory

– Check cache

• Data in cache (hit):

– Good, send to register

– Cancel/ignore memory

• Data not in cache (miss):

1. Load cache from memory
(might need to evict data)

2. Send to register

ALURegs

Cache

Main Memory

Memory Bus

CPU

In cache?

1.
(~100-200 cycles)

2.

Cache Basics: Write to memory

• Assume data already cached

– Otherwise, bring it in like read

1. Update cached copy.

2. Update memory?

ALURegs

Cache

Main Memory

Memory Bus

CPU

Data

When should we copy the written data from cache
to memory? Why?

A. Immediately update the data in memory when we
update the cache.

B. Update the data in memory when we remove
("evict") the data from the cache.

C. Update the data in memory if the data is needed
elsewhere (e.g., another core).

D. Update the data in memory at some other time.
(When?)

When should we copy the written data from cache
to memory? Why?

A. Immediately update the data in memory when we
update the cache. (“Write-through”)

B. Update the data in memory when we remove
("evict") the data from the cache. (“Write-back”)

C. Update the data in memory if the data is needed
elsewhere (e.g., another core).

D. Update the data in memory at some other time.
(When?)

Cache Basics: Write to memory

• Both options (write-through, write-back) viable

• write-though: write to memory immediately

– simpler, accesses memory more often (slower)

• write-back: only write to memory on eviction

– complex (cache inconsistent with memory)

– potentially reduces memory accesses (faster)

Cache Basics: Write to memory

• Both options (write-through, write-back) viable

• write-though: write to memory immediately

– simpler, accesses memory more often (slower)

• write-back: only write to memory on eviction

– complex (cache inconsistent with memory)

– potentially reduces memory accesses (faster)
Sells better.
Servers/Desktops/Laptops

Cache Coherence

• Keeping multiple cores’
memory consistent

ALURegs

Cache

Main Memory

Memory Bus

CPU

ALURegs

Cache

CPU

Cache Coherence

• Keeping multiple cores’ memory
consistent

• If one core updates data
– Copy data directly from one cache to

the other.

– Avoid (slower) memory

• Lots of HW complexity here. We
might discuss towards end of
semester.

ALURegs

Cache

Main Memory

Memory Bus

CPU

ALURegs

Cache

CPU

Up next:

• Cache details

• How cache is organized

– finding data

– storing data

• How cached subset is chosen (eviction)

	Slide 1: CS 31: Intro to Systems Storage and Memory
	Slide 6: Transition
	Slide 7: Efficiency
	Slide 8: Efficiency
	Slide 9: Suppose you’re designing a new computer architecture. Which type of memory would you use? Why?
	Slide 10: Classifying Memory
	Slide 11: Random Access Memory (RAM)
	Slide 12: Memory Technologies
	Slide 13: Dynamic Random Access Memory (DRAM)
	Slide 14: Connecting CPU and Memory
	Slide 15: How A Memory Read Works
	Slide 16: Read (cont.)
	Slide 17: Read (cont.)
	Slide 18: Write
	Slide 19: Secondary Storage
	Slide 20: Secondary Storage
	Slide 21
	Slide 22: Reading and Writing to Disk
	Slide 23: Memory Technology
	Slide 24: The Memory Hierarchy
	Slide 25: Where does accessing the network belong?
	Slide 26: The Memory Hierarchy
	Slide 27: Abstraction Goal
	Slide 28: Motivating Story / Analogy
	Slide 29: The Video Store Hierarchy
	Slide 30: Quick vote: Which movie should we place on the shelf for tonight?
	Slide 31: Problem: Prediction
	Slide 32: Repeat Customer: Bob
	Slide 33: Quick vote: Which movie should we place on the shelf for tonight?
	Slide 34: Repeat Customer: Alice
	Slide 35: Quick vote: Which movie should we place on the shelf for tonight?
	Slide 36: Critical Concept: Locality
	Slide 37: In the following code, how many examples are there of temporal / spatial locality? Where are they?
	Slide 38: Big Picture
	Slide 39: Big Picture
	Slide 40: Cache
	Slide 41: Cache Basics
	Slide 42: Cache Basics
	Slide 43: Cache Basics: Read from memory
	Slide 44: Cache Basics: Read from memory
	Slide 45: Cache Basics: Read from memory
	Slide 46: Cache Basics: Write to memory
	Slide 47: When should we copy the written data from cache to memory? Why?
	Slide 48: When should we copy the written data from cache to memory? Why?
	Slide 49: Cache Basics: Write to memory
	Slide 50: Cache Basics: Write to memory
	Slide 51: Cache Coherence
	Slide 52: Cache Coherence
	Slide 53: Up next:

