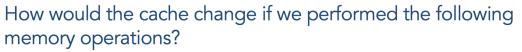
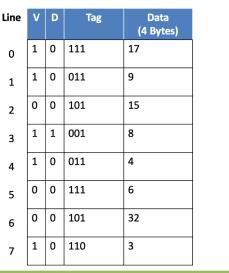

CS31 Worksheet: Week 9: Caching

Address division: Direct-Mapped



Direct-Mapped Example

VD Tag Data Line • Let's say we access memory at (16 Bytes) address: 0 - 01101011 0011 0100 1 2 • Step 2: 3 - Use index to find line (row) 4 - 0011 -> 3 5 15


Suppose we had 8-bit addresses, a cache with 8 lines, and a block size of 4 bytes.

- How many bits would we use for:
 - Tag?
 - Index?
 - Offset?

Memory address

Read 01000100 (Value: 5) Read 11100010 (Value: 17) Write 01110000 (Value: 7) Read 10101010 (Value: 12) Write 01101100 (Value: 2)

How would the cache change if we performed the following memory operations? (2-way set)

Read 01000100 (Value: 5) Read 11100010 (Value: 17) Write 01100100 (Value: 7) Read 01000110 (Value: 5) Write 01100000 (Value: 2)

LRU = 0 means: the left line in the set was least recently used. LRU = 1 means: the right line in the set was least recently used.

	Set #	LRU	v	D	Tag	Data (4 Bytes)	V	D	Tag	Data (4 Bytes)
	0	1	0	0	111	4	1	0	001	17
	1	0	1	1	111	9	1	0	010	5
	2									
	3									
	4									
	5									
	6									
	7									