
CS 31: Intro to Systems C Programming
L09-L10: Pointers and Functions

Vasanta Chaganti & Kevin Webb
Swarthmore College

October 5, 2023

Announcements

• Midterm is next week, in-class on Thursday.

• Please respond to accommodations scheduling emails

Reading Quiz

• Note the red border!

• 1 minute per question

• No talking, no laptops, phones during the quiz

Check your frequency:

• Iclicker2: frequency AA
• Iclicker+: green light next to selection

For new devices this should be okay,
For used you may need to reset frequency

Reset:
1. hold down power button until

blue light flashes (2secs)
2. Press the frequency code: AA

vote status light will indicate success

Today

• Assembly programming (x86_64)

• Pointers and memory

Abstraction

Applications
Specific functionality

Complex devices
Compute & I/O

Operating system
Manage resources

This week: Machine Interface

CPU Game Plan

• Fetch instruction from memory

• Decode what the instruction is telling us to do
– Tell the ALU what it should be doing
– Find the correct operands

• Execute the instruction (arithmetic, etc.)

• Store the result

Types of assembly instructions

• Data movement
– Move values between registers and memory
– Examples: mov, movl, movq

• Load: move data from memory to register

• Store: move data from register to memory

The suffix letters specify
how many bytes to move

(not always necessary,
depending on context).

l -> 32 bits
q -> 64 bits

Addressing Modes

• Instructions need to be told where to get operands or store results

• Variety of options for how to address those locations

• A location might be:
– A register
– A location in memory

• In x86_64, an instruction can access at most one memory location

Addressing Mode: Displacement

• Like memory mode, but with a constant offset
– Offset is often negative, relative to %rbp

movl -16(%rbp), %rax
– Take the address in %rbp, subtract 24 from it, index into memory and store

the result in %rax.

Addressing Mode: Displacement

movl -16(%rbp), %rax
– Take the address in %rbp, subtract 24 from it, index into memory and store

the result in %rax.

(Memory)

name value

%rax 0

%rcx 0x1A68

%rbp 0x1A70

…

CPU Registers

1. Access address:
0x1A70 – 16 => 0x1A60

0x0:

0x8:

0x10:

0x18:

…

0x1A60 11

0x1A68 42

0x1A70

0x1A78

…

0xFFFFFFFF:

0x0:

0x8:

0x10:

0x18:

…

0x1A60 11

0x1A68 42

0x1A70

0x1A78 Not this!

…

0xFFFFFFFF:

Addressing Mode: Displacement

movl -16(%rbp), %rax
– Take the address in %rbp, subtract 24 from it, index into memory and store

the result in %rax.

(Memory)

name value

%rax 11

%rcx 0x1A68

%rbp 0x1A70

…

CPU Registers

1. Access address:
0x1A70 – 16 => 0x1A60

2. Copy value at that
address to rax.

Next Up

• How to reference the location of a variable in memory

• Where variables are placed in memory

• How to make this information useful
– Allocating memory
– Calling functions with pointer arguments

C Pointers Introduction
What is a pointer?

C Pointers Introduction
What is a pointer?

A pointer is like a mailing address,
it tells you where something is located.

A pointer is an “address” telling you
where that variable is located in memory.

Every object (including simple data types)
reside in the memory of the machine.

Pointers

• Pointer: A variable that stores a reference (index) to a memory location.

• Pointer: sequence of bits that should be interpreted as an index into
memory.

• Where have we seen this before?

Recall: Arrays

int january_temps[31]; // Daily high temps

Array variable name means, to the compiler, the beginning of the memory
chunk. (address)

The variable name
“january_temps” refers to location

of january_temps[0] in memory.[0] [1] [2] [3] [4] [29][30]
…

Array bucket indices

Recall: Program Counter

Program Counter (PC): Memory address of next instr
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

X86_64 refers to
the PC as %rip.

Instruction
Pointer

A
L
U

64-bit Register #0WE
Data in

64-bit Register #1WE
Data in

64-bit Register #2WE
Data in

64-bit Register #3WE
Data in

…

MUX

MUX

Register File

0x0:

0x8:

0x10:

0x18:

…

0x1A60

0x1A68 42

0x1A70

0x1A78

…

0xFFFFFFFF:

Recall: Addressing Mode: Memory

movl (%rcx), %rax
– Use the address in register %rcx to access memory, store result in

register %rax

name value

%rax 42

%rcx 0x1A68

…

CPU Registers (Memory)

1. Index into memory using the
address in rcx.

2. Copy value at that
address to rax.

Pointers in C

• Like any other variable, must be declared:
– Using the format: type *name;

• Example:
– int *myptr;
– promise to the compiler:

• This variable holds a memory address. If you follow what it points to in
memory (dereference it), you’ll find an integer

• A note on syntax:
– int* myptr; int * myptr; int *myptr;
– These all do the same thing. (note the * position)

Dereferencing a Pointer

• To follow the pointer, we dereference it.

• Dereferencing re-uses the * symbol.

• If iptr is declared as an integer pointer,
*iptr will follow the address it stores to find an integer in memory.

Putting a * in front of a variable…

• When you declare the variable:
– Declares the variable to be a pointer
– It stores a memory address

• When you get the value at mem. location in the pointer (dereference):
– Like putting () around a register name
– We follows the pointer out to memory, get the value
– Data we access will be of the specified type

• e.g., pointer (mem. address) to an int, pointer (mem. address) to a float .., etc.

Suppose we set up a pointer like the one below. Which
expression gives us 5, and which gives us a memory address?

int *iptr = (the location of that memory);

A. Memory address: *iptr, Value 5: iptr

B. Memory address: iptr, Value 5: *iptr

5

10

2

…

…

* in front of a pointer,
gets the value at that
memory location

Suppose we set up a pointer like the one below. Which
expression gives us 5, and which gives us a memory address?

int *iptr = (the location of that memory);

A. Memory address: *iptr, Value 5: iptr

B. Memory address: iptr, Value 5: *iptr

5

10

2

…

…

* in front of a pointer,
gets the value at that
memory location

So, we declared a pointer…

• How do we make it point to something?
1. Assign it the address of an existing variable (&)
2. Copy some other pointer
3. Allocate some memory and point to it

• First, let’s look at how memory is organized.
(From the perspective of one executing program.)

Memory

• Behaves like a big array of bytes,
each with an address (bucket #).

• By convention, we divide it into
regions.

• The region at the lowest
addresses is usually reserved for
the OS.

0x0

0xFFFFFFFF

Operating system

Memory - Text

• After the OS, we store the
program’s code.

• Instructions generated by the
compiler.

0x0

0xFFFFFFFF

Operating system

Code (aka. Text)

Memory – (Static) Data

• Next, there’s a fixed-size region
for static data.

• This stores static variables that
are known at compile time.
– Global variables
– Static (hard-coded) strings

0x0

0xFFFFFFFF

Operating system

Code (aka. Text)

Data

Memory - Stack

• At high addresses, we keep the
stack.

• This stores local (automatic)
variables.
– The kind we’ve been using in C so

far.
– e.g., int x;

0x0

0xFFFFFFFF

Operating system

StackX:

Code (aka. Text)

Data

Memory - Stack

• The stack grows upwards towards
lower addresses
(negative direction).

• Example: Allocating array
– int array[4];

• (Note: this differs from Python.)

0x0

0xFFFFFFFF

Operating system

StackX:

array [0]

[4]

Code (aka. Text)

Data

Memory - Heap

• The heap stores dynamically
allocated variables.

• When programs explicitly ask the OS
for memory, it comes from the heap.
– malloc() function

0x0

0xFFFFFFFF

Operating system

StackX:

Code (aka. Text)

Data

Heap

If we can declare variables on the stack, why do we
need to dynamically allocate things on the heap?

A. There is more space available on the heap.

B. Heap memory is better. (Why?)

C. We may not know a variable’s size in advance.

D. The stack grows and shrinks automatically.

E. Some other reason.

If we can declare variables on the stack, why do we
need to dynamically allocate things on the heap?

A. There is more space available on the heap.

B. Heap memory is better. (Why?)

C. We may not know a variable’s size in advance. (Primary reason)

D. The stack grows and shrinks automatically. (Return from
function: can’t return large chunk of memory safely)

E. Some other reason.

"Static" vs. "Dynamic"

Static
• The compiler can know in advance.

• The size of a C variable (based on its
type).

• Hard-coded constants.

Dynamic
• The compiler cannot know -- must be

determined at run time.

• User input (or things that depend on
it).

• E.g., create an array where the size is
typed in by user (or file).

Memory - Heap

• The heap grows downwards,
towards higher addresses.

• I know you want to ask a
question…

0x0

0xFFFFFFFF

Operating system

StackX:

Code (aka. Text)

Data

Heap

Memory - Heap

• “What happens if the heap and
stack collide?”

• This picture is not to scale – the
gap is huge.

• The OS works really hard to
prevent this.
– Would likely kill your program

before it could happen.

0x0

0xFFFFFFFF

Operating system

StackX:

Code (aka. Text)

Data

Heap

Which region would we expect the PC register
(program counter) to point to?

A. OS

B. Text

C. Data

D. Heap

E. Stack

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

Which region would we expect the PC register
(program counter) to point to?

A. OS

B. Text

C. Data

D. Heap

E. Stack

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

A. The address is allocated to
your program.

B. The OS warns your program.

C. The OS kills your program.

D. The access fails, try the next
instruction.

E. Something else

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

What should happen if we try to access an address that’s NOT
in one of these regions?

What should happen if we try to access an address that’s NOT
in one of these regions?

A. The address is allocated to
your program.

B. The OS warns your program.

C. The OS kills your program.

D. The access fails, try the next
instruction.

E. Something else

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

Segmentation Violation

Segmentation Violation

• Each region also known as
a memory segment.

• Accessing memory outside
a segment is not allowed.

• Can also happen if you try
to access a segment in an
invalid way.
– OS not accessible to users
– Text is usually read-only

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

So we declared a pointer…

• How do we make it point to something?
1. Assign it the address of an existing variable
2. Copy some other pointer
3. Allocate some memory and point to it

The Address Of (&)

• You can create a pointer to anything by taking its address with the
address of operator (&).

The Address Of (&)

int main(void) {
 int x = 7;
 int *iptr = &x;

 return 0;
}

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

7X:

iptr:

What would this print?
0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

7X:

iptr:

A. 7 7 7 7 B. 7 7 7 5 C. 7 7 5 5 D. Something else

int main(void) {
 int x = 7;
 int *iptr = &x;
 int *iptr2 = &x;

 printf(“%d %d ”, x, *iptr);
 *iptr2 = 5;

 printf(“%d %d ”, x, *iptr);

 return 0;
}

What would this print?
0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

7X:

iptr:

A. 7 7 7 7 B. 7 7 7 5 C. 7 7 5 5 D. Something else

int main(void) {
 int x = 7;
 int *iptr = &x;
 int *iptr2 = &x;

 printf(“%d %d ”, x, *iptr);
 *iptr2 = 5;

 printf(“%d %d ”, x, *iptr);

 return 0;
}

So we declared a pointer…

• How do we make it point to something?
1. Assign it the address of an existing variable
2. Copy some other pointer
3. Allocate some memory and point to it

Copying a Pointer

• We can perform assignment on pointers to copy the stored address.

int x = 7;
int *iptr, *iptr2;
iptr = &x;
iptr2 = iptr;

Stack7X:

iptr: iptr2:

Pointer Types

• By default, we can only assign a pointer if the type matches what C
expects.

int x = 7;
int *iptr = &x;

int x = 7;
float *fptr = &x;

“Warning: initialization from incompatible pointer type”
(Don’t ignore this message!)

Recall: Dereferencing a Pointer

• To follow the pointer, we dereference it.

• Dereferencing re-uses the * symbol.

• If iptr is declared as an integer pointer,
*iptr will follow the address it stores to find an integer in memory.

void *

• There exists a special type, void *, which represents a “generic pointer” type.
– Can be assigned to any pointer variable
– int *iptr = (void *) &x; // Doesn’t matter what x is

• This is useful for cases when:
1. You want to create a generic “safe value” that you can assign to any pointer variable.
2. You want to pass a pointer to / return a pointer from a function, but you don’t know

its type.
3. You know better than the compiler that what you’re doing is safe, and you want to

eliminate the warning (usually not the case for cs31 J)

NULL: A special pointer value.

• You can assign NULL to any pointer, regardless of what type it points to
(it’s a void *).
– int *iptr = NULL;
– float *fptr = NULL;

• NULL is equivalent to pointing at memory address 0x0. This address is
NEVER in a valid segment of your program’s memory.
– This guarantees a segfault if you try to dereference it.

Generally a good ideal to initialize pointers to NULL.

Given these two setup statements, how many of the following
dereference operations are invalid?

Setup:
int *ptr = &x; // ptr stores address of int x
char *chptr = &ch; // chptr stores address of char ch

Dereference operations:
1) *ptr = 6;
2) *chptr = ‘a’;
3) int y = *ptr + 4;
4) ptr = NULL, *ptr = 6;

 A: 1 B: 2 C: 3 D: 4

What will this do?

int main(void) {
 int *ptr;
 printf(“%d”, *ptr);
}

A. Print 0
B. Print a garbage value
C. Segmentation fault
D. Something else

0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

Takeaway: If you’re not immediately assigning it something
when you declare it, initialize your pointers to NULL.

Why Pointers?

• Using pointers seems like a lot of work, and if used incorrectly, things
can go wrong.

• Pointers also add a level of “indirection” to retrieve / store a value

• Two main benefits:
1. “Pass by pointer” function parameters

• By passing a pointer into a function, the function can dereference it so that the changes
persist to the caller.

2. Dynamic memory allocation
• A program can allocate memory on demand, as it needs it during execution

Why Pointers?

• Using pointers seems like a lot of work, and if used incorrectly, things
can go wrong.

• Pointers also add a level of “indirection” to retrieve / store a value

• Two main benefits:
1. “Pass by pointer” function parameters

• By passing a pointer into a function, the function can dereference it so that the changes
persist to the caller.

2. Dynamic memory allocation
• A program can allocate memory on demand, as it needs it during execution

So we declared a pointer…

• How do we make it point to something?
1. Assign it the address of an existing variable
2. Copy some other pointer
3. Allocate some memory and point to it

Allocating (Heap) Memory

• The standard C library (#include <stdlib.h>) includes functions for
allocating memory:

void* malloc(size_t size)
– Allocate size bytes on the heap and return a pointer to the beginning of

the memory block. (size_t is an unsigned int of 8 bytes on x86_64)

void free(void *ptr)
– Release the malloc() ed block of memory starting at ptr back to the

system.

Recall: void *

• void* is a special type that represents “generic pointer”.

• This is useful for cases when:
1. You want to create a generic “safe value” that you can assign to any pointer

variable.

2. You want to pass a pointer to / return a pointer from a function, but you don’t
know its type.

3. You know better than the compiler that what you’re doing is safe, and you
want to eliminate the warning.

• When malloc() gives you bytes, it doesn’t know or care what you use
them for…

Allocation Size

void* malloc(size_t size)
– Allocate size bytes on the heap and return a pointer to the beginning of

the memory block.

• How much memory should we ask for?

• Use C’s sizeof() operator:
 int *iptr = NULL;
 iptr = malloc(sizeof(int));

sizeof()

• Despite the ()’s, it’s an operator, not a function
– Other operators:

• addition / subtraction (+ / -)
• address of (&)
• indirection (*) (dereference a pointer)

• Works on any type to tell you how much memory it needs.

• Size value is determined at compile time (static).

Example

int *iptr = NULL;

iptr = malloc(sizeof(int));

*iptr = 5;

0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

Example
0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

Create an integer pointer,
named iptr, on the stack.

Assign it NULL.

iptr:

int *iptr = NULL;

iptr = malloc(sizeof(int));

*iptr = 5;

Example
0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

Allocate space for an integer on
the heap (4 bytes), and return a
pointer to that space.

Assign that pointer to iptr.

iptr:

What value is stored in
that area right now?

Who knows… Garbage.

?

int *iptr = NULL;

iptr = malloc(sizeof(int));

*iptr = 5;

Example
0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

Use the allocated heap space by
dereferencing the pointer.

iptr:

5

int *iptr = NULL;

iptr = malloc(sizeof(int));

*iptr = 5;

Example
0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

Free up the heap memory we used.

iptr:

int *iptr = NULL;

iptr = malloc(sizeof(int));

*iptr = 5;

free(iptr);

Example
0x0

0xFFFFFFFF

Operating system

Stack

Text
Data

Heap

Clean up this pointer, since it’s
no longer valid.

iptr:

int *iptr = NULL;

iptr = malloc(sizeof(int));

*iptr = 5;

free(iptr);
iptr = NULL;

Why is sizeof() important?

struct student {
 char name[40];
 int age;
 double gpa;
}

struct student *bob = NULL;
bob = malloc(sizeof(struct student));

I don’t ever want to see a number hard-coded in here!

How many bytes is this?
Who cares…
Let the compiler figure that out.

You’re designing a system. What should happen if a
program requests memory and the system doesn’t have
enough available?

A. The OS kills the requesting program.
B. The OS kills another program to make room.
C. malloc gives it as much memory as is available.
D. malloc returns NULL.
E. Something else.

Running out of Memory

• If you’re ever unsure of malloc / free’s behavior:
$ man malloc

• According to the C standard:
“The malloc function returns a pointer to the allocated memory that is suitably aligned for
any kind of variable. On error, this function returns NULL.”

• Further down in the “Notes” section of the manual:
“[On Linux], when malloc returns non-NULL there is no guarantee that memory is really
available. If the system is out of memory, one or more processes will be killed by the
OOM killer.”

Running out of Memory

You should check for NULL after every malloc:

struct student *bob = NULL;
bob = malloc(sizeof(struct student));

if (bob == NULL) {
 /* Handle this. Often, print and exit. */
}

What do you expect to happen to the 100-byte chunk if we
do this?

// What happens to these 100 bytes?

int *ptr = malloc(100);

ptr = malloc(2000);

A. The 100-byte chunk will be lost.

B. The 100-byte chunk will be automatically freed (garbage collected) by the OS.

C. The 100-byte chunk will be automatically freed (garbage collected) by C.

D. The 100-byte chunk will be the first 100 bytes of the 2000-byte chunk.

E. The 100-byte chunk will be added to the 2000-byte chunk (2100 bytes total).

“Memory Leak”

• Memory that is allocated, and not freed, for which there is no longer a
pointer.

• In many languages (Java, Python, …), this memory will be cleaned up for
you.
– “Garbage collector” finds unreachable memory blocks, frees them.
– (This can be a time consuming feature)
– C doesn’t does NOT do this for you!

Why doesn’t C do garbage collection?

A. It’s impossible in C.

B. It requires a lot of resources.

C. It might not be safe to do so. (break programs)

D. It hadn’t been invented at the time C was developed.

E. Some other reason.

Memory Bookkeeping

• To free a chunk, you MUST call free with the same pointer that
malloc gave you. (or a copy)

• The standard C library keeps track of the chunks that have been
allocated to your program.
– This is called “metadata” – data about your data.

• Wait, where does it store that information?
– It’s not like it can use malloc to get memory…

Metadata
Heap

int *iptr = malloc(8);

Metadata
Heap

First
Byte

… … …

… … … Last
Byte

int *iptr = malloc(8);

Metadata
Heap

Meta Data Meta Data

First
Byte

… … …

… … … Last
Byte

int *iptr = malloc(8);

C Library:
“Let me record this allocation’s info here.”

Size of allocation
Maybe other info

Metadata
Heap

Meta Data Meta Data

First
Byte

… … …

… … … Last
Byte

Meta Data Meta Data

Other

Data

there could be another chunk
after yours.

int *iptr = malloc(8);

Metadata
Heap

Meta Data Meta Data

First
Byte

… … …

… … … Last
Byte

Meta Data Meta Data

Other

Data

stay within the memory chunks
you allocate.

If you corrupt the metadata, you
will get weird behavior.

int *iptr = malloc(8);

Metadata
Heap

Meta Data Meta Data

First
Byte

… … …

… … … Last
Byte

Meta Data Meta Data

Other

Data

stay within the memory chunks
you allocate.

If you corrupt the metadata, you
will get weird behavior.

Valgrind is your new best
friend! J

int *iptr = malloc(8);

Pointers as Arrays

“Why did you allocate 8 bytes for an int pointer?
– int *iptr = malloc(8);

• Recall: an array variable acts like a pointer to a block of memory. The
number in [] is an offset from bucket 0, the first bucket.

• We can treat pointers in the same way!

Heap

Pointers as Arrays

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));

Pointers as Arrays

Heap

1st integer

2nd integer

3rd integer

4th integer

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));

Pointers as Arrays

Heap

1st integer

2nd integer

3rd integer

4th integer

The C compiler knows how big an integer is.

As an alternative way of dereferencing, you can
use []’s like an array.

The C compiler will jump ahead the right
number of bytes, based on the type.

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));

Pointers as Arrays

Heap

iptr[0]

iptr[1]

iptr[2]

iptr[3]

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));

Pointers as Arrays

Heap

iptr[0]

iptr[1]

iptr[2]

iptr[3]

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));

iptr[2] = 7;

1. Start from the base of iptr.

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));

iptr[2] = 7;

Pointers as Arrays

Heap

iptr[0]

iptr[1]

iptr[2]

iptr[3]

1. Start from the base of iptr.

2. Skip forward by
the size of two ints.

Pointers as Arrays

Heap

iptr[0]

iptr[1]

7

iptr[3]

1. Start from the base of iptr.

2. Skip forward by
the size of two ints.

3. Treat the result as an int.
(Access the memory location
like a typical dereference.)

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));

iptr[2] = 7;

Pointers as Arrays

• This is one of the most common ways you’ll use pointers:
– You need to dynamically allocate space for a collection of things (ints,

structs, whatever).
– You don’t know how many at compile time.

float *student_gpas = NULL;
student_gpas = malloc(n_students * sizeof(int));
…
student_gpas[0] = …;
student_gpas[1] = …;

Pointer Arithmetic

• Addition and subtraction work on pointers.

• C automatically increments by the size of the type that’s pointed to.

Pointer Arithmetic

Heap

1st integer

2nd integer

3rd integer

4th integer

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));

int *iptr2 = iptr + 3;

Pointer Arithmetic

Heap

1st integer

2nd integer

3rd integer

4th integer

int *iptr = NULL;
iptr = malloc(4 * sizeof(int));

int *iptr2 = iptr + 3;

Pointer Arithmetic

Heap

1st integer

2nd integer

3rd integer

4th integer

Skip ahead by 3 times the size of iptr’s
type (integer, size: 4 bytes).

Why Pointers?

• Using pointers seems like a lot of work, and if used incorrectly, things
can go wrong.

• Pointers also add a level of “indirection” to retrieve / store a value

• Two main benefits:
1. “Pass by pointer” function parameters

• By passing a pointer into a function, the function can dereference it so that the changes
persist to the caller.

2. Dynamic memory allocation
• A program can allocate memory on demand, as it needs it during execution

Function Arguments

• Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {
 a = a + 5;
 return a - b;
}

int main(void) {
 int x, y; // declare two integers
 x = 4;
 y = 7;
 y = func(x, y);
 printf(“%d, %d”, x, y);
}

Stack

main:
x:

y:

func:
a:

b:

4

7

4

7

4

7

• Arguments are passed by value
– The function gets a separate copy of the passed variable

int func(int a, int b) {
 a = a + 5;
 return a - b;
}

int main(void) {
 int x, y; // declare two integers
 x = 4;
 y = 7;
 y = func(x, y);
 printf(“%d, %d”, x, y);
}

Function Arguments

Stack

main:
x:

y:

4

7

4

7

It doesn’t matter what func
does with a and b. The value
of x in main doesn’t change.

Pass by Pointer

• Want a function to modify a value on the caller’s stack? Pass a pointer!

• The called function can modify the memory location it points to.
– passing the address of an argument to function:
– pointer parameter holds the address of its argument
– dereference parameter to modify argument’s value

• You’ve already used functions like this:
– readfile library functions and scanf
– pass address of (&) argument to these functions

Function Arguments

• Arguments can be pointers!
– The function gets the address of the passed variable!

void func(int *a) {
 *a = *a + 5;
}

int main(void) {
 int x = 4;

 func(&x);
 printf(“%d”, x);
}

Stack

main:

Pointer Arguments

• Arguments can be pointers!
– The function gets the address of the passed variable!

Stack

main:

x: 4

void func(int *a) {
 *a = *a + 5;
}

int main(void) {
 int x = 4;

 func(&x);
 printf(“%d”, x);
}

void func(int *a) {
 *a = *a + 5;
}

int main(void) {
 int x = 4;

 func(&x);
 printf(“%d”, x);
}

Pointer Arguments

• Arguments can be pointers!
– The function gets the address of the passed variable!

Stack

main:

func:
a:

x: 4

void func(int *a) {
 *a = *a + 5;
}

int main(void) {
 int x = 4;

 func(&x);
 printf(“%d”, x);
}

Pointer Arguments

• Arguments can be pointers!
– The function gets the address of the passed variable!

Stack

main:

func:
a:

x: 9

Dereference
pointer, set value
that a points to.

void func(int *a) {
 *a = *a + 5;
}

int main(void) {
 int x = 4;

 func(&x);
 printf(“%d”, x);
}

Pointer Arguments

• Arguments can be pointers!
– The function gets the address of the passed variable!

Stack

main:

x: 9

Prints: 9

Haven’t we seen this
somewhere before?

Readfile Library

• We saw this in lab 1 with read_int, read_float.
– This is why you needed an &.
– e.g.,

int value;
status_code = read_int(&value);

• You’re asking read_int to modify a parameter, so you give it a pointer to
that parameter.
– read_int will dereference it and set it.

Pass by Pointer - Example

int main(void){
 int x, y;
 x = 10; y = 20;
 foo(&x, y);
 …
}

void foo(int *b, int c){
 c = 99
 *b = 8; // Stack drawn here
}

main:

foo:

10

20

x

y

Stack

Pass by Pointer - Example

int main(void){
 int x, y;
 x = 10; y = 20;
 foo(&x, y);
 …
}

void foo(int *b, int c){
 c = 99
 *b = 8; // Stack drawn here
}

main:

foo:

10

20

x

y

99

b

c

address of x

8

Stack

pass the value of &x

dereference parameter b to set argument x’s value

Passing Arrays

• An array argument’s value is its base address
• Array parameter “points to” its array argument

Passing Arrays

• An array argument’s value is its base address
• Array parameter “points to” its array argument

int main(void){
 int array[10];
 foo(array, 10);
}
void foo(int arr[], int n){
 arr[2] = 6;
}

array base address

Passing Arrays

• An array argument’s value is its base address
• Array parameter “points to” its array argument

int main(void){
 int array[10];
 foo(array, 10);
}
void foo(int arr[], int n){
 arr[2] = 6;
}

Stack

main:

foo:

10

arr

n

addr of array

0 1 2 … 9
array 6

array base address

Passing Arrays

• An array argument’s value is its base address
• Array parameter “points to” its array argument

int main(void){
 int array[10];
 foo(array, 10);
}
void foo(_______ , int n){
 arr[2] = 6;
}

Stack

main:

foo:

10

arr

n

addr of array

0 1 2 … 9
array 6

alternative declaration?

Passing Arrays

• An array argument’s value is its base address
• Array parameter “points to” its array argument

int main(void){
 int array[10];
 foo(array, 10);
}
void foo(int *arr, int n){
 arr[2] = 6;
}

Stack

main:

foo:

10

arr

n

addr of array

0 1 2 … 9
array 6

pass a pointer instead!

Can you return an array?

• Suppose you wanted to write a function that copies an array (of 5 integers).
– Given: array to copy

copy_array(int array[]) {
 int result[5];
 result[0] = array[0];
 …
 result[4] = array[4];
 return result;
}

As written above, this would be a terrible way of implementing this.
(Don’t worry, compiler won’t let you do this anyway.)

Consider the memory…

copy_array(int array[]) {
 int result[5];
 result[0] = array[0];
 …
 result[4] = array[4];
 return result;
}

(In main):
copy = copy_array(…)

copy_array:

main:

copy:

result

copy_array(int array[]) {
 int result[5];
 result[0] = array[0];
 …
 result[4] = array[4];
 return result;
}

(In main):
copy = copy_array(…)

Consider the memory…

copy_array:

main:

copy:

resultresult

Consider the memory…

main:

copy:

When we return from copy_array,
its stack frame is gone!

Left with a pointer to nowhere.

copy_array(int array[]) {
 int result[5];
 result[0] = array[0];
 …
 result[4] = array[4];
 return result;
}

(In main):
copy = copy_array(…)

Using the Heap

int *copy_array(int num, int array[]) {
 int *result = malloc(num * sizeof(int));

 result[0] = array[0];
 …

 return result;
}

0x0

0xFFFFFFFF

Operating system

Stack

Text
Data
Heap

result:
malloc memory is on the heap.

Doesn’t matter what happens on the
stack (function calls, returns, etc.)

Pointers to Pointers

• Why stop at just one pointer?

int **double_iptr;

• “A pointer to a pointer to an int.”
– Dereference once: pointer to an int
– Dereference twice: int

• Commonly used to:
– Allow a function to modify a pointer (data structures)
– Dynamically create an array of pointers.
– (Program command line arguments use this.)

