
CS 31: Intro to Systems
Pointers and Memory

Vasanta Chaganti & Kevin Webb

Swarthmore College

October 3, 2023

Overview

• How to reference the location of a variable in memory

• Where variables are placed in memory

• How to make this information useful
• Allocating memory

• Calling functions with pointer arguments

Pointers

• Pointer: A variable that stores a
reference to (the address of) a
memory location.

• Pointer: sequence of bits that
should be interpreted as an
index into memory.

• Where have we seen this
before?

• A pointer is like a mailing
address, it tells you where a
variable is located in memory.

Recall: Arrays

int january_temps[31]; // Daily high temps

• Array variable name means, to the compiler, the
beginning of the memory chunk. (address)

“january_temps”
Location of [0] in
memory.

[0] [1] [2] [3] [4] [29][30]

…

Array bucket indices.

Recall: Program Counter

Program Counter (PC): Memory address of next instr
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

X86_64 refers to
the PC as %rip.

Instruction
Pointer

A
L
U

64-bit Register #0
WE

Data in

64-bit Register #1
WE

Data in

64-bit Register #2
WE

Data in

64-bit Register #3
WE

Data in

…

MUX

MUX

Register File

0x0:

0x8:

0x10:

0x18:

…

0x1A60

0x1A68 42

0x1A70

0x1A78

…

0xFFFFFFFF:

Recall: Addressing Mode: Memory

movl (%rcx), %rax
• Use the address in register %rcx to access memory, store result in register %rax

name value

%rax 42

%rcx 0x1A68

…

CPU Registers (Memory)

1. Index into memory using the
address in rcx.

2. Copy value at that
address to rax.

Pointers in C

• Like any other variable, must be declared:
• Using the format: type *name;

• Example:
• int *myptr;

• This is a promise to the compiler:
• This variable holds a memory address. If you follow what it points to in

memory (dereference it), you’ll find an integer.

• A note on syntax:
• int* myptr; int * myptr; int *myptr;

• These all do the same thing. (note the * position)

Dereferencing a Pointer

• To follow the pointer, we dereference it.

• Dereferencing re-uses the * symbol.

• If iptr is declared as an integer pointer,
*iptr will follow the address it stores to find an integer in memory.

Putting a * in front of a variable…

• When you declare the variable:
• Declares the variable to be a pointer

• It stores a memory address

• When you use the variable (dereference):
• Like putting () around a register name

• Follows the pointer out to memory

• Acts like the specified type (e.g., int, float, etc.)

Suppose we set up a pointer like the one below.
Which expression gives us 5, and which gives us
a memory address?

int *iptr = (the location of that memory);

A. Memory address: *iptr, Value 5: iptr

B. Memory address: iptr, Value 5: *iptr

5

10

2

…

…

So, we declared a pointer…

• How do we make it point to something?
1. Assign it the address of an existing variable (&)

2. Copy some other pointer

3. Allocate some memory and point to it

• First, let’s look at how memory is organized.
(From the perspective of one executing program.)

Memory

• Behaves like a big array of bytes,
each with an address (bucket #).

• By convention, we divide it into
regions.

• The region at the lowest
addresses is usually reserved for
the OS.

0x0

0xFFFFFFFF

Operating system

Memory - Text

• After the OS, we store the
program’s code.

• Instructions generated by the
compiler.

0x0

0xFFFFFFFF

Operating system

Code (aka. Text)

Memory – (Static) Data

• Next, there’s a fixed-size region
for static data.

• This stores static variables that
are known at compile time.
• Global variables

• Static (hard-coded) strings

0x0

0xFFFFFFFF

Operating system

Code (aka. Text)

Data

Memory - Stack

• At high addresses, we keep the
stack.

• This stores local (automatic)
variables.
• The kind we’ve been using in C so far.

• e.g., int x;

0x0

0xFFFFFFFF

Operating system

StackX:

Code (aka. Text)

Data

Memory - Stack

• The stack grows upwards
towards lower addresses
(negative direction).

• Example: Allocating array
• int array[4];

• (Note: this differs from
Python.)

0x0

0xFFFFFFFF

Operating system

StackX:

array [0]

[4]

Code (aka. Text)

Data

Memory - Heap

• The heap stores
dynamically allocated
variables.

• When programs explicitly
ask the OS for memory, it
comes from the heap.
• malloc() function

0x0

0xFFFFFFFF

Operating system

StackX:

Code (aka. Text)

Data

Heap

If we can declare variables on the stack, why do we
need to dynamically allocate things on the heap?

A. There is more space available on the heap.

B. Heap memory is better. (Why?)

C. We may not know a variable’s size in advance.

D. The stack grows and shrinks automatically.

E. Some other reason.

"Static" vs. "Dynamic"

Static

• The compiler can know in
advance.

• The size of a C variable (based
on its type).

• Hard-coded constants.

Dynamic

• The compiler cannot know --
must be determined at run time.

• User input (or things that
depend on it).

• E.g., create an array where the
size is typed in by user (or file).

Memory - Heap

• The heap grows
downwards, towards
higher addresses.

• I know you want to ask a
question…

0x0

0xFFFFFFFF

Operating system

StackX:

Code (aka. Text)

Data

Heap

Memory - Heap

• “What happens if the
heap and stack collide?”

• This picture is not to
scale – the gap is huge.

• The OS works really hard
to prevent this.
• Would likely kill your

program before it could
happen.

0x0

0xFFFFFFFF

Operating system

StackX:

Code (aka. Text)

Data

Heap

Which region would we expect the PC register
(program counter) to point to? Why?

A. OS

B. Text

C. Data

D. Heap

E. Stack

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

What should happen if we try to access
an address that’s NOT in one of these
regions?

A. The address is allocated to
your program.

B. The OS warns your program.

C. The OS kills your program.

D. The access fails, try the next
instruction.

E. Something else

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

Segmentation Violation

Segmentation Violation

• Each region also known as
a memory segment.

• Accessing memory outside
a segment is not allowed.

• Can also happen if you try
to access a segment in an
invalid way.
• OS not accessible to users
• Text is usually read-only

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

So we declared a pointer…

• How do we make it point to something?
1. Assign it the address of an existing variable

2. Copy some other pointer

3. Allocate some memory and point to it

The Address Of (&)

• You can create a pointer to anything by taking its address with the
address of operator (&).

The Address Of (&)

int main(void) {

 int x = 7;

 int *iptr = &x;

 return 0;

}

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

7X:

iptr:

What would this print?
int main(void) {
 int x = 7;
 int *iptr = &x;
 int *iptr2 = &x;

 printf(“%d %d ”, x, *iptr);
 *iptr2 = 5;
 printf(“%d %d ”, x, *iptr);

 return 0;
}

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

7X:

iptr:

A. 7 7 7 7 B. 7 7 7 5 C. 7 7 5 5 D. Something else

So we declared a pointer…

• How do we make it point to something?
1. Assign it the address of an existing variable

2. Copy some other pointer

3. Allocate some memory and point to it

Copying a Pointer

• We can perform assignment on pointers to copy the stored address.

int x = 7;

int *iptr, *iptr2;

iptr = &x;

iptr2 = iptr;

Stack7X:

iptr: iptr2:

Pointer Types

• By default, we can only assign a pointer if the type matches what C
expects.

• “Warning: initialization from incompatible pointer type”
(Don’t ignore this message!)

int x = 7;

int *iptr = &x;

int x = 7;

float *fptr = &x;

Recall: Dereferencing a Pointer

• To follow the pointer, we dereference it.

• Dereferencing re-uses the * symbol.

• If iptr is declared as an integer pointer,
*iptr will follow the address it stores to find an integer in memory.

void *

• There exists a special type, void *, which represents a “generic pointer” type.
• Can be assigned to any pointer variable

• int *iptr = (void *) &x; // Doesn’t matter what x is

• This is useful for cases when:
1. You want to create a generic “safe value” that you can assign to any pointer variable.

2. You want to pass a pointer to / return a pointer from a function, but you don’t know
its type.

3. You know better than the compiler that what you’re doing is safe, and you want to
eliminate the warning.

NULL: A special pointer value.

• You can assign NULL to any pointer, regardless of what type it points
to (it’s a void *).
• int *iptr = NULL;

• float *fptr = NULL;

• NULL is equivalent to pointing at memory address 0x0. This address
is NEVER in a valid segment of your program’s memory.
• This guarantees a segfault if you try to dereference it.

• Generally a good ideal to initialize pointers to NULL.

Given these two setup statements, how many of
the following dereference operations are invalid?

Setup:

int *ptr = &x; // ptr stores address of int x
char *chptr = &ch; // chptr stores address of char ch

Dereference operations:
1) *ptr = 6;

2) *chptr = ‘a’;

3) int y = *ptr + 4;

4) ptr = NULL, *ptr = 6;

 A: 1 B: 2 C: 3 D: 4

What will this do?

int main(void) {

 int *ptr;

 printf(“%d”, *ptr);

}

A. Print 0

B. Print a garbage value

C. Segmentation fault

D. Something else

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

Takeaway: If you’re not immediately assigning it something
when you declare it, initialize your pointers to NULL.

Why Pointers?

• Using pointers seems like a lot of work, and if used incorrectly, things
can go wrong.

• Pointers also add a level of “indirection” to retrieve / store a value

• Two main benefits:
1. “Pass by pointer” function parameters

• By passing a pointer into a function, the function can dereference it so that the changes
persist to the caller.

2. Dynamic memory allocation
• A program can allocate memory on demand, as it needs it during execution

Why Pointers?

• Using pointers seems like a lot of work, and if used incorrectly, things
can go wrong.

• Pointers also add a level of “indirection” to retrieve / store a value

• Two main benefits:
1. “Pass by pointer” function parameters

• By passing a pointer into a function, the function can dereference it so that the changes
persist to the caller.

2. Dynamic memory allocation
• A program can allocate memory on demand, as it needs it during execution

So we declared a pointer…

• How do we make it point to something?
1. Assign it the address of an existing variable

2. Copy some other pointer

3. Allocate some memory and point to it

Allocating (Heap) Memory

• The standard C library (#include <stdlib.h>) includes functions
for allocating memory:

void *malloc(size_t size)

• Allocate size bytes on the heap and return a pointer to the beginning of the
memory block.

void free(void *ptr)

• Release the malloc()ed block of memory starting at ptr back to the
system.

Recall: void *

• void * is a special type that represents “generic pointer”.
• Can be assigned to any pointer variable

• This is useful for cases when:
1. You want to create a generic “safe value” that you can assign to any pointer variable.

2. You want to pass a pointer to / return a pointer from a function, but you don’t know its
type.

3. You know better than the compiler that what you’re doing is safe, and you want to
eliminate the warning.

• When malloc() gives you bytes, it doesn’t know or care what you use them
for…

Allocation Size

void *malloc(size_t size)
• Allocate size bytes on the heap and return a pointer to the beginning of the

memory block.

• How much memory should we ask for?

• Use C’s sizeof() operator:
 int *iptr = NULL;

 iptr = malloc(sizeof(int));

sizeof()

• Despite the ()’s, it’s an operator, not a function
• Other operators:

• addition / subtraction (+ / -)

• address of (&)

• indirection (*) (dereference a pointer)

• Works on any type to tell you how much memory it needs.

• Size value is determined at compile time (static).

Example

int *iptr = NULL;

iptr = malloc(sizeof(int));

*iptr = 5;

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

Example

int *iptr = NULL;

iptr = malloc(sizeof(int));

*iptr = 5;

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

Create an integer pointer,
named iptr, on the stack.

Assign it NULL.

iptr:

Example

int *iptr = NULL;

iptr = malloc(sizeof(int));

*iptr = 5;

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

Allocate space for an integer on
the heap (4 bytes), and return a
pointer to that space.

Assign that pointer to iptr.

iptr:

What value is stored in
that area right now?

Who knows… Garbage.

?

Example

int *iptr = NULL;

iptr = malloc(sizeof(int));

*iptr = 5;

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

Use the allocated heap space by
dereferencing the pointer.

iptr:

5

Example

int *iptr = NULL;

iptr = malloc(sizeof(int));

*iptr = 5;

free(iptr);

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

Free up the heap memory we used.

iptr:

Example

int *iptr = NULL;

iptr = malloc(sizeof(int));

*iptr = 5;

free(iptr);

iptr = NULL;

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data

Heap

Clean up this pointer, since it’s
no longer valid.

iptr:

Why sizeof() is important

struct student {

 char name[40];

 int age;

 double gpa;

}

struct student *bob = NULL;

bob = malloc(sizeof(struct student));

I don’t ever want to see a number hard-coded in here!

How many bytes is this?
Who cares…
Let the compiler figure that out.

You’re designing a system. What should
happen if a program requests memory and
the system doesn’t have enough available?

A. The OS kills the requesting program.

B. The OS kills another program to make room.

C. malloc gives it as much memory as is available.

D. malloc returns NULL.

E. Something else.

Running out of Memory

• If you’re ever unsure of malloc / free’s behavior:
$ man malloc

• According to the C standard:

“The malloc function returns a pointer to the allocated memory that is suitably aligned
for any kind of variable. On error, this function returns NULL.”

• Further down in the “Notes” section of the manual:

“[On Linux], when malloc returns non-NULL there is no guarantee that memory is really
available. If the system is out of memory, one or more processes will be killed by the
OOM killer.”

Running out of Memory

• If you’re ever unsure of malloc / free’s behavior:
$ man malloc

• According to the C standard:

“The malloc function returns a pointer to the allocated memory that is suitably aligned
for any kind of variable. On error, this function returns NULL.”

• You should check for NULL after every malloc:

struct student *bob = NULL;

bob = malloc(sizeof(struct student));

if (bob == NULL) {

 /* Handle this. Often, print and exit. */

}

What do you expect to happen to the
100-byte chunk if we do this?
// What happens to these 100 bytes?

int *ptr = malloc(100);

ptr = malloc(2000);

A. The 100-byte chunk will be lost.

B. The 100-byte chunk will be automatically freed (garbage collected) by the OS.

C. The 100-byte chunk will be automatically freed (garbage collected) by C.

D. The 100-byte chunk will be the first 100 bytes of the 2000-byte chunk.

E. The 100-byte chunk will be added to the 2000-byte chunk (2100 bytes total).

“Memory Leak”

• Memory that is allocated, and not freed, for which there is no longer
a pointer.

• In many languages (Java, Python, …), this memory will be cleaned up
for you.
• “Garbage collector” finds unreachable memory blocks, frees them.

• (This can be a time consuming feature)

• C doesn’t does NOT do this for you!

Why doesn’t C do garbage collection?

A. It’s impossible in C.

B. It requires a lot of resources.

C. It might not be safe to do so. (break programs)

D. It hadn’t been invented at the time C was developed.

E. Some other reason.

Memory Bookkeeping

• To free a chunk, you MUST call free with the same
pointer that malloc gave you. (or a copy)

• The standard C library keeps track of the chunks that
have been allocated to your program.
• This is called “metadata” – data about your data.

• Wait, where does it store that information?
• It’s not like it can use malloc to get memory…

Metadata
Heap

int *iptr = malloc(8);

Metadata
Heap

First
Byte

… … …

… … … Last
Byte

int *iptr = malloc(8);

Metadata
Heap

Meta Data Meta Data

First
Byte

… … …

… … … Last
Byte

int *iptr = malloc(8);

• C Library: “Let me record this
allocation’s info here.”
• Size of allocation

• Maybe other info

Metadata
Heap

Meta Data Meta Data

First
Byte

… … …

… … … Last
Byte

Meta Data Meta Data

Other

Data

int *iptr = malloc(8);

• For all you know, there could be
another chunk after yours.

Metadata
Heap

Meta Data Meta Data

First
Byte

… … …

… … … Last
Byte

Meta Data Meta Data

Other

Data

int *iptr = malloc(8);

• Takeaway: very important that you
stay within the memory chunks
you allocate.

• If you corrupt the metadata, you
will get weird behavior.

Valgrind is your new best friend.

Resume here

Pointers as Arrays

• “Why did you allocate 8 bytes for an int pointer? Isn’t an int only 4
bytes?”
• int *iptr = malloc(8);

• Recall: an array variable acts like a pointer to a block of memory. The
number in [] is an offset from bucket 0, the first bucket.

• We can treat pointers in the same way!

Heap

int *iptr = NULL;

iptr = malloc(4 * sizeof(int));

Pointers as Arrays

Pointers as Arrays

Heap

1st integer

2nd integer

3rd integer

4th integer

int *iptr = NULL;

iptr = malloc(4 * sizeof(int));

Pointers as Arrays

Heap

1st integer

2nd integer

3rd integer

4th integer

int *iptr = NULL;

iptr = malloc(4 * sizeof(int));

The C compiler knows how big an integer is.

As an alternative way of dereferencing, you
can use []’s like an array.

The C compiler will jump ahead the right
number of bytes, based on the type.

Pointers as Arrays

Heap

iptr[0]

iptr[1]

iptr[2]

iptr[3]

int *iptr = NULL;

iptr = malloc(4 * sizeof(int));

Pointers as Arrays

Heap

iptr[0]

iptr[1]

iptr[2]

iptr[3]

int *iptr = NULL;

iptr = malloc(4 * sizeof(int));

iptr[2] = 7;

1. Start from the base of iptr.

Pointers as Arrays

Heap

iptr[0]

iptr[1]

iptr[2]

iptr[3]

int *iptr = NULL;

iptr = malloc(4 * sizeof(int));

iptr[2] = 7;

1. Start from the base of iptr.

2. Skip forward by
the size of two ints.

Pointers as Arrays

Heap

iptr[0]

iptr[1]

7

iptr[3]

int *iptr = NULL;

iptr = malloc(4 * sizeof(int));

iptr[2] = 7;

1. Start from the base of iptr.

2. Skip forward by
the size of two ints.

3. Treat the result as an int.
(Access the memory location
like a typical dereference.)

Pointers as Arrays

• This is one of the most common ways you’ll use pointers:
• You need to dynamically allocate space for a collection of things (ints, structs,

whatever).

• You don’t know how many at compile time.

float *student_gpas = NULL;

student_gpas = malloc(n_students * sizeof(int));

…

student_gpas[0] = …;

student_gpas[1] = …;

Pointer Arithmetic

• Addition and subtraction work on pointers.

• C automatically increments by the size of the type that’s pointed to.

Pointer Arithmetic

Heap

1st integer

2nd integer

3rd integer

4th integer

int *iptr = NULL;

iptr = malloc(4 * sizeof(int));

Pointer Arithmetic

Heap

1st integer

2nd integer

3rd integer

4th integer

int *iptr = NULL;

iptr = malloc(4 * sizeof(int));

int *iptr2 = iptr + 3;

Skip ahead by 3 times the size of iptr’s
type (integer, size: 4 bytes).

Why Pointers?

• Using pointers seems like a lot of work, and if used incorrectly, things
can go wrong.

• Pointers also add a level of “indirection” to retrieve / store a value

• Two main benefits:
1. “Pass by pointer” function parameters

• By passing a pointer into a function, the function can dereference it so that the changes
persist to the caller.

2. Dynamic memory allocation
• A program can allocate memory on demand, as it needs it during execution

Function Arguments

• Arguments are passed by value
• The function gets a separate copy of the passed variable

int func(int a, int b) {

 a = a + 5;

 return a - b;

}

int main(void) {

 int x, y; // declare two integers

 x = 4;

 y = 7;

 y = func(x, y);

 printf(“%d, %d”, x, y);

}

Stack

main:
x:

y:

func:
a:

b:

4

7

4

7

4

7

Function Arguments

• Arguments are passed by value
• The function gets a separate copy of the passed variable

int func(int a, int b) {

 a = a + 5;

 return a - b;

}

int main(void) {

 int x, y; // declare two integers

 x = 4;

 y = 7;

 y = func(x, y);

 printf(“%d, %d”, x, y);

}

Stack

main:
x:

y:

4

7

4

7

It doesn’t matter what func
does with a and b. The value
of x in main doesn’t change.

Pass by Pointer

• Want a function to modify a value on the caller’s stack? Pass a pointer!

• The called function can modify the memory location it points to.
• passing the address of an argument to function:

• pointer parameter holds the address of its argument

• dereference parameter to modify argument’s value

• You’ve already used functions like this:
• readfile library functions and scanf

• pass address of (&) argument to these functions

Function Arguments

• Arguments can be pointers!
• The function gets the address of the passed variable!

void func(int *a) {

 *a = *a + 5;

}

int main(void) {

 int x = 4;

 func(&x);

 printf(“%d”, x);

}

Stack

main:

Pointer Arguments

• Arguments can be pointers!
• The function gets the address of the passed variable!

void func(int *a) {

 *a = *a + 5;

}

int main(void) {

 int x = 4;

 func(&x);

 printf(“%d”, x);

}

Stack

main:

x: 4

Pointer Arguments

• Arguments can be pointers!
• The function gets the address of the passed variable!

void func(int *a) {

 *a = *a + 5;

}

int main(void) {

 int x = 4;

 func(&x);

 printf(“%d”, x);

}

Stack

main:

func:
a:

x: 4

Pointer Arguments

• Arguments can be pointers!
• The function gets the address of the passed variable!

void func(int *a) {

 *a = *a + 5;

}

int main(void) {

 int x = 4;

 func(&x);

 printf(“%d”, x);

}

Stack

main:

func:
a:

x: 9

Dereference
pointer, set value
that a points to.

Pointer Arguments

• Arguments can be pointers!
• The function gets the address of the passed variable!

void func(int *a) {

 *a = *a + 5;

}

int main(void) {

 int x = 4;

 func(&x);

 printf(“%d”, x);

}

Stack

main:

x: 9

Prints: 9

Haven’t we seen this
somewhere before?

Readfile Library

• We saw this in lab 1 with read_int, read_float.
• This is why you needed an &.

• e.g.,
int value;

status_code = read_int(&value);

• You’re asking read_int to modify a parameter, so you give it a pointer
to that parameter.
• read_int will dereference it and set it.

Pass by Pointer - Example

int main(void){

 int x, y;

 x = 10; y = 20;

 foo(&x, y);

 …

}

void foo(int *b, int c){

 c = 99

 *b = 8; // Stack drawn here
}

main:

foo:

10

20

x

y

99

b

c

address of x

8

Stack

pass the value of &x

dereference parameter b to set argument x’s value

Passing Arrays

• An array argument’s value is its base address

• Array parameter “points to” its array argument

Passing Arrays

• An array argument’s value is its base address

• Array parameter “points to” its array argument

int main(void){

 int array[10];

 foo(array, 10);

}

void foo(int arr[], int n){

 arr[2] = 6;

} Stack

main:

foo:

10

arr

n

addr of array

0 1 2 … 9

array 6

array base address

Passing Arrays

• An array argument’s value is its base address

• Array parameter “points to” its array argument

int main(void){

 int array[10];

 foo(array, 10);

}

void foo(_______ , int n){

 arr[2] = 6;

} Stack

main:

foo:

10

arr

n

addr of array

0 1 2 … 9

array 6

alternative declaration?

Passing Arrays

• An array argument’s value is its base address

• Array parameter “points to” its array argument

int main(void){

 int array[10];

 foo(array, 10);

}

void foo(int *arr, int n){

 arr[2] = 6;

} Stack

main:

foo:

10

arr

n

addr of array

0 1 2 … 9

array 6

pass a pointer instead

Can you return an array?

• Suppose you wanted to write a function that copies an array (of 5 integers).
• Given: array to copy

copy_array(int array[]) {

 int result[5];

 result[0] = array[0];

 …

 result[4] = array[4];

 return result;

}

As written above, this would be a terrible way of implementing this.
(Don’t worry, compiler won’t let you do this anyway.)

Consider the memory…

copy_array(int array[]) {

 int result[5];

 result[0] = array[0];

 …

 result[4] = array[4];

 return result;

}

(In main):

copy = copy_array(…)

copy_array:

main:

copy:

result

Consider the memory…

copy_array(int array[]) {

 int result[5];

 result[0] = array[0];

 …

 result[4] = array[4];

 return result;

}

(In main):

copy = copy_array(…)

copy_array:

main:

copy:

resultresult

Consider the memory…

copy_array(int array[]) {

 int result[5];

 result[0] = array[0];

 …

 result[4] = array[4];

 return result;

}

(In main):

copy = copy_array(…)

main:

copy:

When we return from copy_array,
its stack frame is gone!

Left with a pointer to nowhere.

Using the Heap

int *copy_array(int num, int array[]) {

 int *result = malloc(num * sizeof(int));

 result[0] = array[0];

 …

 return result;

}

0x0

0xFFFFFFFF

Operating system

Stack

Text

Data
Heap

result:
malloc memory is on the heap.

Doesn’t matter what happens on the
stack (function calls, returns, etc.)

Pointers to Pointers

• Why stop at just one pointer?

int **double_iptr;

• “A pointer to a pointer to an int.”
• Dereference once: pointer to an int
• Dereference twice: int

• Commonly used to:
• Allow a function to modify a pointer (data structures)
• Dynamically create an array of pointers.
• (Program command line arguments use this.)

Up Next:

• Function calls and stack management

	Slide 1: CS 31: Intro to Systems Pointers and Memory
	Slide 14: Overview
	Slide 15: Pointers
	Slide 16: Recall: Arrays
	Slide 17: Recall: Program Counter
	Slide 18: Recall: Addressing Mode: Memory
	Slide 19: Pointers in C
	Slide 20: Dereferencing a Pointer
	Slide 21: Putting a * in front of a variable…
	Slide 22: Suppose we set up a pointer like the one below. Which expression gives us 5, and which gives us a memory address?
	Slide 24: So, we declared a pointer…
	Slide 25: Memory
	Slide 26: Memory - Text
	Slide 27: Memory – (Static) Data
	Slide 28: Memory - Stack
	Slide 29: Memory - Stack
	Slide 30: Memory - Heap
	Slide 31: If we can declare variables on the stack, why do we need to dynamically allocate things on the heap?
	Slide 33: "Static" vs. "Dynamic"
	Slide 34: Memory - Heap
	Slide 35: Memory - Heap
	Slide 36: Which region would we expect the PC register (program counter) to point to? Why?
	Slide 38: What should happen if we try to access an address that’s NOT in one of these regions?
	Slide 40: Segmentation Violation
	Slide 41: Segmentation Violation
	Slide 42: So we declared a pointer…
	Slide 43: The Address Of (&)
	Slide 44: The Address Of (&)
	Slide 45: What would this print?
	Slide 47: So we declared a pointer…
	Slide 48: Copying a Pointer
	Slide 49: Pointer Types
	Slide 50: Recall: Dereferencing a Pointer
	Slide 51: void *
	Slide 52: NULL: A special pointer value.
	Slide 53: Given these two setup statements, how many of the following dereference operations are invalid?
	Slide 54: What will this do?
	Slide 55: Why Pointers?
	Slide 56: Why Pointers?
	Slide 57: So we declared a pointer…
	Slide 58: Allocating (Heap) Memory
	Slide 59: Recall: void *
	Slide 60: Allocation Size
	Slide 61: sizeof()
	Slide 62: Example
	Slide 63: Example
	Slide 64: Example
	Slide 65: Example
	Slide 66: Example
	Slide 67: Example
	Slide 68: Why sizeof() is important
	Slide 69: You’re designing a system. What should happen if a program requests memory and the system doesn’t have enough available?
	Slide 70: Running out of Memory
	Slide 71: Running out of Memory
	Slide 72: What do you expect to happen to the 100-byte chunk if we do this?
	Slide 73: “Memory Leak”
	Slide 74: Why doesn’t C do garbage collection?
	Slide 75: Memory Bookkeeping
	Slide 76: Metadata
	Slide 77: Metadata
	Slide 78: Metadata
	Slide 79: Metadata
	Slide 80: Metadata
	Slide 81: Resume here
	Slide 82: Pointers as Arrays
	Slide 83: Pointers as Arrays
	Slide 84: Pointers as Arrays
	Slide 85: Pointers as Arrays
	Slide 86: Pointers as Arrays
	Slide 87: Pointers as Arrays
	Slide 88: Pointers as Arrays
	Slide 89: Pointers as Arrays
	Slide 90: Pointers as Arrays
	Slide 91: Pointer Arithmetic
	Slide 92: Pointer Arithmetic
	Slide 93: Pointer Arithmetic
	Slide 94: Why Pointers?
	Slide 95: Function Arguments
	Slide 96: Function Arguments
	Slide 97: Pass by Pointer
	Slide 98: Function Arguments
	Slide 99: Pointer Arguments
	Slide 100: Pointer Arguments
	Slide 101: Pointer Arguments
	Slide 102: Pointer Arguments
	Slide 103: Readfile Library
	Slide 104: Pass by Pointer - Example
	Slide 105: Passing Arrays
	Slide 106: Passing Arrays
	Slide 107: Passing Arrays
	Slide 108: Passing Arrays
	Slide 109: Can you return an array?
	Slide 110: Consider the memory…
	Slide 111: Consider the memory…
	Slide 112: Consider the memory…
	Slide 113: Using the Heap
	Slide 114: Pointers to Pointers
	Slide 115: Up Next:

