
CS 31: Intro to Systems C Programming
L07-08: ISA Assembly

Vasanta Chaganti & Kevin Webb
Swarthmore College

September 26-28, 2023

2

“If you can do
logic gates in your
head, please
confirm you are
not a replicant”

http://smbc-comics.com/comic/logic-gates

Reading Quiz

• Note the red border!

• 1 minute per question

• No talking, no laptops, phones during the quiz

Check your frequency:

• Iclicker2: frequency AA
• Iclicker+: green light next to selection

For new devices this should be okay,
For used you may need to reset frequency

Reset:
1. hold down power button until

blue light flashes (2secs)
2. Press the frequency code: AA

vote status light will indicate success

Agenda

• Hardware basics
• Machine memory models
• Digital signals
• Logic gates

Today

• How to directly interact with hardware

• Instruction set architecture (ISA)
– Interface between programmer and CPU
– Established instruction format (assembly lang)

• Assembly programming (x86_64)

Abstraction

User / Programmer
Wants low complexity

Applications
Specific functionality

Software library
Reusable functionality

Complex devices
Compute & I/O

Operating system
Manage resources

Abstraction

Applications
Specific functionality

Complex devices
Compute & I/O

Operating system
Manage resources

Last week: Circuits, Hardware Implementation

This week: Machine Interface

CPU Game Plan

• Fetch instruction from memory

• Decode what the instruction is telling us to do
– Tell the ALU what it should be doing
– Find the correct operands

• Execute the instruction (arithmetic, etc.)

• Store the result

Machine Code

Binary (0’s and 1’s) Encoding of ISA Instructions
– some bits: encode the instruction (opcode bits)
– others encode operand(s)

 (eg) 01001010 opcode operands
 01 001 010
 ADD %r1 %r2

– different bits fed
through different
CPU circuitry:

MUXRegister #0

Register #1

Register #2
. . . MUX

A
L
U

01 | 001 | 010

15

0:

1:

2:

3:

4:

…

N-1:

(Memory)

Hardware: Control, Storage, ALU circuitry
Slide 16

Program Counter (PC): Address 0

0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

Let the ALU do
its thing.
(e.g., Add)

• acts on instruction
bits to execute
individual instructions

• PC value used to
determine next
instruction to execute

64-bit Register #0WE
Data in

64-bit Register #1WE
Data in

64-bit Register #2WE
Data in

64-bit Register #3WE
Data in

…

MUX

MUX

Register File

A
L
U

Pipelining (CPU)

F

DF

EDF

SEDF

SEDF

1 Nanosecond

1st nanosecond:

2nd nanosecond:

3rd nanosecond:

4th nanosecond:

5th nanosecond:

Steady state: One instruction finishes every nanosecond!
(Clock rate can be faster.)

CPU Stages: fetch, decode,
 execute, store results

Slide 17

How a computer runs a program:

• We know: How HW Executes Instructions:
• This Week: Instructions and ISA
– Program Encoding: C code to assembly code
– Learn IA32 Assembly programming

Program
Operating System

Computer Hardware

18

Interaction
Between
Programs
and HW

Compilation Steps (.c to a.out)

text

executable
binary

C program (p1.c)

Executable code (a.out)

Usually compile to a.out in
a single step: gcc –m32 p1.c

-m32 tells gcc to compile for
32-bit Intel machines

Compiler (gcc –o)

Reality is more complex:
there are intermediate steps!

Slide 19

Compile

machine code instructions

Compilation Steps (.c to a.out)

text

text

executable
binary

Compiler (gcc -S)

C program (p1.c)

Assembly program (p1.s)

Executable code (a.out)

You can see the results of
intermediate compilation
steps using different gcc flagsCS75

Slide 20

machine code instructions

Compilation Steps (.c to a.out)

text

text

binary

executable
binary

Compiler (gcc -S)

Assembler (gcc -c (or as = gcc’s assembler))

Linker (gcc (or ld))

C program (p1.c)

Assembly program (p1.s)

Object code (p1.o)

Executable code (a.out)

Library obj. code
(libc.a)

Other object files
(p2.o, p3.o, …)

You can see the results of
intermediate compilation
steps using different gcc flags

Slide 21

machine code instructions

Machine Code

Binary (0’s and 1’s) Encoding of ISA Instructions
– some bits: encode the instruction (opcode bits)
– others encode operand(s)

 (eg) 01001010 opcode operands
 01 001 010
 ADD %r1 %r2

– different bits fed
through different
CPU circuitry:

MUXRegister #0

Register #1

Register #2
. . . MUX

A
L
U

01 | 001 | 010

22

0:

1:

2:

3:

4:

…

N-1:

(Memory)

Assembly Code

text

text

binary

executable
binary

Compiler (gcc -S)

Assembler (gcc -c (or as = gcc’s assembler))

Linker (gcc (or ld))

C program (p1.c)

Assembly program (p1.s)

Object code (p1.o)

Executable code (a.out)

Human Readable Form
of Machine Code

Slide 23

machine code instructions

What is “assembly”?

Assembly is the
“human readable”
form of the
instructions a
machine can
understand.

push %rbp
mov %rsp, %rbp
sub $16, %rsp
movl $10, -8(%rbp)
movl $20, -4(%rbp)
movl -4(%rbp), $rax
addl $rax, -8(%rbp)
movl -8(%rbp), %rax
leave

objdump –d a.out

Object / Executable / Machine Code

Assembly
push %ebp
mov %esp, %ebp
sub $16, %esp
movl $10, -8(%ebp)
movl $20, -4(%ebp)
movl -4(%ebp), $eax
addl $eax, -8(%ebp)
movl -8(%ebp), %eax
leave

Machine Code (Hexadecimal)
55
89 E5
83 EC 10
C7 45 F8 0A 00 00 00
C7 45 FC 14 00 00 00
8B 45 FC
01 45 F8
B8 45 F8
C9

Slide 25

Almost a 1-to-1 mapping to Machine Code
Hides some details like num bytes in instructions

Object / Executable / Machine Code

Assembly
push %ebp
mov %esp, %ebp
sub $16, %esp
movl $10, -8(%ebp)
movl $20, -4(%ebp)
movl -4(%ebp), $eax
addl $eax, -8(%ebp)
movl -8(%ebp), %eax
leave

Machine Code (Hexadecimal)
55
89 E5
83 EC 10
C7 45 F8 0A 00 00 00
C7 45 FC 14 00 00 00
8B 45 FC
01 45 F8
B8 45 F8
C9

int main() {
 int a = 10;
 int b = 20;

 a = a + b;

 return a;
}

Slide 26

Compilation Steps (.c to a.out)

text

text

binary

executable
binary

Compiler (gcc –m32 -S)

Assembler (gcc -c (or as))

Linker (gcc (or ld))

C program (p1.c)

Assembly program (p1.s)

Object code (p1.o)

Executable code (a.out)

High-level language

CPU-specific format
(011010…)

Interface for speaking
to CPU

Slide 27

Instruction Set Architecture (ISA)

• ISA (or simply architecture):
Interface between lowest software level and the hardware.

• Defines the language for controlling CPU state:
– Defines a set of instructions and specifies their machine code format
– Makes CPU resources (registers, flags) available to the programmer
– Allows instructions to access main memory (potentially with limitations)
– Provides control flow mechanisms (instructions to change what executes

next)

Instruction Set Architecture (ISA)

The agreed-upon interface between all software that runs on the machine
and the hardware that executes it.

I/O systemCPU / Processor

Compiler
Operating

System

Application / Program

Digital Circuits

Logic Gates

Instruction Set
 Architecture

Instruction Set Architecture (ISA)

The agreed-upon interface between all software that runs on the machine
and the hardware that executes it.

Slide 30

High-level language

Hardware
Implementation

Instruction Set
 Architecture

Instruction Set Architecture (ISA)

• ISA is Interface between CPU and Compiler:
– Compiler translates program source code to

machine code of a target ISA
– (e.g.) C program à gcc à ISA machine code (0’s and

1’s)

31

ISA Examples

• Intel IA-32 (80x86)
• ARM
• MIPS
• PowerPC
• IBM Cell
• Motorola 68k

• Intel x86_64
• Intel IA-64 (Itanium)
• VAX
• SPARC
• Alpha
• IBM 360

Intel x86 Family

Intel i386 (1985)
• 12 MHz - 40 MHz
• ~300,000 transistors
• Component size: 1.5 µm

Intel Core i9 9900k (2018)
• ~4,000 MHz
• ~7,000,000,000 transistors
• Component size: 14 nm

Everything in this family uses the same ISA (Same instructions)!

Instruction Set Architecture (ISA)

• ISA (or simply architecture):
Interface between lowest software level and the hardware.

• Defines the language for controlling CPU state:
– Defines a set of instructions and specifies their machine code format
– Makes CPU resources (registers, flags) available to the programmer
– Allows instructions to access main memory (potentially with limitations)
– Provides control flow mechanisms (instructions to change what executes

next)

What are registers? Do we even need them?

A. Registers are small and fast memory used as scratch
space (to store temporary variables) to perform
operations on the ALU

B. Registers are on the same chip as the ALU.

C. We can move data and instructions from main memory
to registers, through a bus (group of wires) connecting
main memory to the register file.

D. General purpose registers are accessed via %rax - %ebp.
Special purpose registers like the program counter
reference the location of the next instruction in main
memory.

E. All of the above

Bus

Processor State in Registers

Working memory for currently
executing program
– Temporary data: %rax - %r15

– Current stack frame
– %rbp: base pointer
– %rsp: stack pointer

– Address of next instruction to
execute: %rip

– Status of recent ALU tests
(CF, ZF, SF, OF)

%rip

General purpose
registers

Current stack top

Current stack frame

Program Counter (PC)

CF ZF SF OF Condition codes
(flags)

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rsp

%rbp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

Component Registers

%rip

General purpose
registers

Current stack top

Current stack frame

Program Counter (PC)

CF ZF SF OF Condition codes
(flags)

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rsp

%rbp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

• Registers starting with “r” are
64-bit registers
– %rax, %rbx, …, %rsi, %rdi

• Sometimes, you might only want to
store 32 bits (e.g., int variable)

– You can access the lower 32 bits of a
register with prefix e:

– %eax, %ebx, …, %esi, %edi

– with a suffix of d for registers %r8 to %r15
– %r8d, %r9d, …, %r15d

Assembly Programmer’s View of State
CPU

Memory

Addresses

Data

Instructions

Registers:
 PC: Program counter (%rip)

Condition codes (%RFLAGS)
General Purpose (%rax - %r15)

Memory:
• Byte addressable array
• Program code and data
• Execution stack

name value
%rax

%rbx

%rcx

%rdx

…

%r15

%rsp

%rbp

%rip next instr
addr (PC)

%RFLAGS cond. codes

address value

0x00000000

0x00000001

…

Program:
 data
 instrs
 stack

0xffffffff

64-bit (8 byte) Registers

BUS

Types of assembly instructions

• Data movement
– Move values between registers and memory
– Examples: mov, movl, movq

• Load: move data from memory to register

• Store: move data from register to memory

The suffix letters specify
how many bytes to move

(not always necessary,
depending on context).

l -> 32 bits
q -> 64 bits

Data Movement

64-bit Register #0WE
Data in

64-bit Register #1WE
Data in

64-bit Register #2WE
Data in

64-bit Register #3WE
Data in

…

MUX

MUX

Register File

A
L
U

Program Counter (PC): Memory address of next instr 0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

Move values between memory and registers or between two registers.

Types of assembly instructions

• Data movement
– Move values between registers and memory

• Arithmetic
– Uses ALU to compute a value
– Examples: add, addl, addq, sub, subl, subq…

Arithmetic

64-bit Register #0WE
Data in

64-bit Register #1WE
Data in

64-bit Register #2WE
Data in

64-bit Register #3WE
Data in

…

MUX

MUX

Register File

A
L
U

Program Counter (PC): Memory address of next instr 0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

Use ALU to compute a value, store result in register / memory.

Types of assembly instructions

• Data movement
– Move values between registers and memory

• Arithmetic
– Uses ALU to compute a value

• Control
– Change PC based on ALU condition code state
– Example: jmp

Control

64-bit Register #0WE
Data in

64-bit Register #1WE
Data in

64-bit Register #2WE
Data in

64-bit Register #3WE
Data in

…

MUX

MUX

Register File

A
L
U

Program Counter (PC): Memory address of next instr 0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

Change PC based on ALU condition code state.

Types of assembly instructions

• Data movement
– Move values between registers and memory

• Arithmetic
– Uses ALU to compute a value

• Control
– Change PC based on ALU condition code state

• Stack / Function call (We’ll cover these in detail later)
– Shortcut instructions for common operations

Addressing Modes

• Instructions need to be told where to get operands or store results

• Variety of options for how to address those locations

• A location might be:
– A register
– A location in memory

• In x86_64, an instruction can access at most one memory location

Addressing Modes

• Instructions can refer to:
– the name of a register (%rax, %rbx, etc)
– to a constant or “literal” value, starts with $
– (%rax) : accessing memory

• treat the value in %rax as a memory address,

Addressing Mode: Memory

movl (%rcx), %rax
– Use the address in register %rcx to access memory,
– then, store result at that memory address in register %rax

name value

%rax 0

%rcx 0x1A68

…

CPU Registers
0x0:

0x8:

0x10:

0x18:

…

0x1A60

0x1A68 42

0x1A70

0x1A78

…

0xFFFFFFFF:

(Memory)

1. Index into memory using the
address in rcx.

0x0:

0x8:

0x10:

0x18:

…

0x1A60

0x1A68 42

0x1A70

0x1A78

…

0xFFFFFFFF:

Addressing Mode: Memory

name value

%rax 42

%rcx 0x1A68

…

CPU Registers (Memory)

1. Index into memory using the
address in rcx.

2. Copy value at that
address to rax.

movl (%rcx), %rax
– Use the address in register %rcx to access memory,
– then, store result at that memory address in register %rax

Addressing Mode: Register

• Instructions can refer to the name of a register

• Examples:
– mov %rax, %r15

(Copy the contents of %rax into %r15 -- overwrites %r15, no change to %rax)

– add %r9, %rdx
(Add the contents of %r9 and %rdx, store the result in %rdx, no change to %r9)

Addressing Mode: Immediate

• Refers to a constant or “literal” value, starts with $

• Allows programmer to hard-code a number

• Can be either decimal (no prefix) or hexadecimal (0x prefix)

mov $10, %rax
– Put the constant value 10 in register rax.

add $0xF, %rdx
– Add 15 (0xF) to %rdx and store the result in %rdx.

Addressing Mode: Memory

• Accessing memory requires you to specify which address you want.
– Put the address in a register.
– Access the register with () around the register’s name.

mov (%rcx), %rax
– Use the address in register %rcx to access memory, store result in

register %rax

Addressing Mode: Displacement

• Like memory mode, but with a constant offset
– Offset is often negative, relative to %rbp

movl -16(%rbp), %rax
– Take the address in %rbp, subtract 16 from it, index into memory and store

the result in %rax.

Addressing Mode: Displacement

movl -16(%rbp), %rax
– Take the address in %rbp, subtract 16 from it, index into memory and store

the result in %rax.

(Memory)

name value

%rax 0

%rcx 0x1A68

%rbp 0x1A70

…

CPU Registers

1. Access address:
0x1A70 – 16 => 0x1A60

0x0:

0x8:

0x10:

0x18:

…

0x1A60 11

0x1A68 42

0x1A70

0x1A78

…

0xFFFFFFFF:

0x0:

0x8:

0x10:

0x18:

…

0x1A60 11

0x1A68 42

0x1A70

0x1A78 Not this!

…

0xFFFFFFFF:

Addressing Mode: Displacement

movl -16(%rbp), %rax
– Take the address in %rbp, subtract 24 from it, index into memory and store

the result in %rax.

(Memory)

name value

%rax 11

%rcx 0x1A68

%rbp 0x1A70

…

CPU Registers

1. Access address:
0x1A70 – 16 => 0x1A60

2. Copy value at that
address to rax.

Let’s try a few examples...

What will the state of registers and memory look like
after executing these instructions?

sub $16, %rsp
movq $3, -8(%rbp)
mov $10, %rax
sal $1, %rax
add -8(%rbp), %rax
movq %rax, -16(%rbp)
add $16, %rsp

x is stored at rbp-8
y is stored at rbp-16

Registers

Name Value

%rax 0

%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value

…

0x1FFF000AD0 0

0x1FFF000AD8 0

0x1FFF000AE0 0x1FFF000AF0

…

What will the state of registers and memory look like
after executing these instructions?

Registers

Name Value

%rax 2

%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value

0x1FFF000AD0 3

0x1FFF000AD8 10

0x1FFF000AE0 0x1FFF000AF0

Registers

Name Value

%rax 10

%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value

0x1FFF000AD0 23

0x1FFF000AD8 10

0x1FFF000AE0 0x1FFF000AF0

Registers

Name Value

%rax 23

%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value

0x1FFF000AD0 23

0x1FFF000AD8 3

0x1FFF000AE0 0x1FFF000AF0

A.

B.

C.

sub $16, %rsp
movq $3, -8(%rbp)
mov $10, %rax
sal $1, %rax
add -8(%rbp), %rax
movq %rax, -16(%rbp)
add $16, %rsp

x is stored at rbp-8
y is stored at rbp-16

Solution

Registers

Name Value

%rax 0

%rsp …AE0

%rbp …AE0

Memory

Address Value

0x1FFF000AD0 0

0x1FFF000AD8 0

0x1FFF000AE0 0x1FFF000AF0

sub $16, %rsp
movq $3, -8(%rbp)
mov $10, %rax
sal $1, %rax
add -8(%rbp), %rax
movq %rax, -16(%rbp)
add $16, %rsp

x is stored at rbp-8
y is stored at rbp-16

Assembly Visualization Tool

• The authors of Dive into Systems,
including Swarthmore faculty with
help from Swarthmore students,
have developed a tool to help
visualize assembly code execution:

• https://asm.diveintosystems.org

• For this example, use the
arithmetic mode.

sub $16, %rsp
movq $3, -8(%rbp)
mov $10, %rax
sal $1, %rax
add -8(%rbp), %rax
movq %rax, -16(%rbp)
add $16, %rsp

x is stored at rbp-8
y is stored at rbp-16

https://asm.diveintosystems.org/

Solution

sub $16, %rsp Subtract constant 16 from %rsp
movq $3, -8(%rbp) Move constant 3 to address %rbp-8
mov $10, %rax Move constant 10 to register %rax
sal $1, %rax Shift the value in %rax left by 1 bit
add -8(%rbp), %rax Add the value at address %rbp-8 to %rax
movq %rax, -16(%rbp) Store the value in %rax at address rbp-16
add $16, %rsp Add constant 16 to %rsp

x is stored at rbp-8
y is stored at rbp-16

Registers

Name Value

%rax 23

%rsp …AE0

%rbp …AE0

Memory

Address Value

0x1FFF000AD0 23

0x1FFF000AD8 3

0x1FFF000AE0 0x1FFF000AF0

C code equivalent:
x = 3;

y = x + (10 << 1);

sub $16, %rsp
movq $3, -8(%rbp)
mov $10, %rax
sal $1, %rax
add -8(%rbp), %rax
movq %rax, -16(%rbp)
add $16, %rsp

x is stored at rbp-8
y is stored at rbp-16

What will the state of registers and memory look like
after executing these instructions?

…
mov %rbp, %rcx
sub $8, %rcx
movq (%rcx), %rax
or %rax, -16(%rbp)
neg %rax

Registers

Name Value

%rax 0

%rcx 0

%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value

…

0x1FFF000AD0 8

0x1FFF000AD8 5

0x1FFF000AE0 0x1FFF000AF0

…

How might you implement the following C code in assembly?
z = x ^ y

x is stored at %rbp-8
y is stored at %rbp-16
z is stored at %rbp-24

Registers

Name Value

%rax 0

%rdx 0

%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value

0x1FFF000AC8 (z)

0x1FFF000AD0 (y)

0x1FFF000AD8 (x)

0x1FFF000AE0 0x1FFF000AF0

…
movq -8(%rbp), %rax
movq -16(%rbp), %rdx
xor %rax, %rdx
movq %rax, -24(%rbp)

A:
movq -8(%rbp), %rax
movq -16(%rbp), %rdx
xor %rax, %rdx
movq %rax, -8(%rbp)

C:

movq -8(%rbp), %rax
movq -16(%rbp), %rdx
xor %rdx, %rax
movq %rax, -24(%rbp)

B:
movq -24(%rbp), %rax
movq -16(%rbp), %rdx
xor %rdx, %rax
movq %rax, -8(%rbp)

D:

How might you implement the following C code in assembly?
x = y >> 3 | x * 8

x is stored at %rbp-8
y is stored at %rbp-16
z is stored at %rbp-24

Registers

Name Value

%rax 0

%rdx 0

%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value

0x1FFF000AC8 (z)

0x1FFF000AD0 (y)

0x1FFF000AD8 (x)

0x1FFF000AE0 0x1FFF000AF0

…

Solutions (other instruction sequences can work too!)

• z = x ^ y

movq -8(%rbp), %rax
movq -16(%rbp), %rdx
xor %rdx, %rax
movq %rax, -24(%rbp)

• x = y >> 3 | x * 8

mov -8(%rbp), %rax
imul $8, %rax
movq -16(%rbp), %rdx
sar $3, %rdx
or %rax, %rdx
movq %rdx, -8(%rbp)

Recall Memory Operands

• displacement(%reg)
– e.g., add %rax, -8(%rbp)

• x86_64 allows a memory operand as the source or destination,
but NOT BOTH!
– One of the operands must be a register

• This would not be allowed:
– add -8(%rbp), -16(%rbp)
– If you wanted this, movq one value into a register first

Control Flow

• Previous examples focused on:
– data movement (mov, movq)
– arithmetic (add, sub, or, neg, sal, etc.)

• Up next: Jumping!

(Changing which
instruction we
execute next.)

Relevant XKCD

xkcd #292

https://xkcd.com/292/

Unconditional Jumping / Goto

A label is a place you might jump to.

Labels ignored except for goto/jumps.

(Skipped over if encountered)

 int x = 20;
L1:
 int y = x + 30;
L2:
 printf(“%d, %d\n”, x, y);

int main(void) {
 long a = 10;
 long b = 20;

 goto label1;
 a = a + b;

label1:
 return;

Unconditional Jumping / Goto

int main(void) {
 long a = 10;
 long b = 20;

 goto label1;
 a = a + b;

label1:
 return;

pushq %rbp
 mov %rsp, %rbp
 sub $16, %rsp
 movq $10, -16(%ebp)
 movq $20, -8(%ebp)
 jmp label1
 movq -8(%rbp), $rax
 add $rax, -16(%rbp)
 movq -16(%rbp), %rax
label1:
 leave

these instructions
are never
executed in this
code

Unconditional Jumping / Goto

Usage besides goto?
– infinite loop
– break;
– continue;
– functions (handled differently)

• Often, we only want to jump
when some condition is true /
false.

• We need some way to compare
values, jump based on
comparison results.

pushq %rbp
 mov %rsp, %rbp
 sub $16, %rsp
 movq $10, -16(%ebp)
 movq $20, -8(%ebp)
 jmp label1
 movq -8(%rbp), $rax
 add $rax, -16(%rbp)
 movq -16(%rbp), %rax
label1:
 leave

Condition Codes (or Flags)

• Set in two ways:
1. As “side effects” produced by ALU
2. In response to explicit comparison instructions

• x86_64 condition codes tell you:
– If the result is zero (ZF)
– If the result’s first bit is set (negative if signed) (SF)
– If the result overflowed (assuming unsigned) (CF)
– If the result overflowed (assuming signed) (OF)

Processor State in Registers

Working memory for currently
executing program
– Temporary data: %rax - %r15

– Current stack frame
– %rbp: base pointer
– %rsp: stack pointer

– Address of next instruction to
execute: %rip

– Status of recent ALU tests
(CF, ZF, SF, OF)

%rip

General purpose
registers

Current stack top

Current stack frame

Program Counter (PC)

CF ZF SF OF Condition codes
(flags)

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rsp

%rbp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

Instructions that set condition codes

1. Arithmetic/logic side effects (add, sub, or, etc.)

2. CMP and TEST:
cmp b, a like computing a-b without storing result

• Sets OF if overflow, Sets CF if carry-out,
Sets ZF if result zero, Sets SF if results is negative

test b, a like computing a&b without storing result
• Sets ZF if result zero, sets SF if a&b < 0

OF and CF flags are zero (there is no overflow with &)

Which flags would this sub set?

Suppose %rax holds 5, %rcx holds 7

sub $5, %rax
If the result is zero (ZF)
If the result’s first bit is set (negative if signed) (SF)
If the result overflowed (assuming unsigned) (CF)
If the result overflowed (assuming signed) (OF)

A. ZF
B. SF
C. CF and ZF
D. CF and SF
E. CF, SF, and CF

Which flags would this sub set?

Suppose %rax holds 5, %rcx holds 7

sub $5, %rax
If the result is zero (ZF)
If the result’s first bit is set (negative if signed) (SF)
If the result overflowed (assuming unsigned) (CF)
If the result overflowed (assuming signed) (OF)

A. ZF
B. SF
C. CF and ZF
D. CF and SF
E. CF, SF, and CF

Which flags would this cmp set?

Suppose %rax holds 5, %rcx holds 7

cmp %rcx, %rax

A. ZF
B. SF
C. CF and ZF
D. CF and SF
E. CF, SF, and CF

If the result is zero (ZF)
If the result’s first bit is set (negative if signed) (SF)
If the result overflowed (assuming unsigned) (CF)
If the result overflowed (assuming signed) (OF)

Which flags would this cmp set?

Suppose %rax holds 5, %rcx holds 7

cmp %rcx, %rax

A. ZF
B. SF
C. CF and ZF
D. CF and SF
E. CF, SF, and CF

If the result is zero (ZF)
If the result’s first bit is set (negative if signed) (SF)
If the result overflowed (assuming unsigned) (CF)
If the result overflowed (assuming signed) (OF)

Conditional Jumping
Jump based on which condition codes are set

Condition Description
jmp 1 Unconditional
je ZF Equal / Zero
jne ~ZF Not Equal / Not Zero
js SF Negative
jns ~SF Nonnegative
jg ~(SF^OF)&~ZF Greater (Signed)
jge ~(SF^OF) Greater or Equal (Signed)
jl (SF^OF) Less (Signed)
jle (SF^OF)|ZF Less or Equal (Signed)
ja ~CF&~ZF Above (unsigned jg)
jb CF Below (unsigned)

Jump Instructions:
(See book section 7.4.1)

You do not need to
memorize these!

Example Scenario

• Suppose user gives us
a value via scanf

• We want to check to
see if it equals 42
– If so, add 5
– If not, subtract 10

long userval;
scanf(“%ld”, &userval);

if (userval == 42) {
 userval = userval + 5;
} else {
 userval = userval - 10;
}

How would we use jumps/CCs for this?

long userval;
scanf(“%ld”, &userval);

if (userval == 42) {
 userval = userval + 5;
} else {
 userval = userval - 10;
}

Assume userval is stored in
%rax at this point.

How could we use jumps/CCs to implement this C code?

cmp $42, %rax
 jne L2
L1:
 sub $10, %rax
 jmp DONE
L2:
 add $5, %rax
DONE:

(B)cmp $42, %rax
 je L2
L1:
 sub $10, %rax
 jmp DONE
L2:
 add $5, %rax
DONE:

(A) cmp $42, %rax
 jne L2
L1:
 add $5, %rax
 jmp DONE
L2:
 sub $10, %rax
DONE:

(C)

long userval;
scanf(“%ld”, &userval);

if (userval == 42) {
 userval = userval + 5;
} else {
 userval = userval - 10;
}

Assume userval is stored in
%rax at this point.

How could we use jumps/CCs to implement this C code?

cmp $42, %rax
 jne L2
L1:
 sub $10, %rax
 jmp DONE
L2:
 add $5, %rax
DONE:

(B)cmp $42, %rax
 je L2
L1:
 sub $10, %rax
 jmp DONE
L2:
 add $5, %rax
DONE:

(A) cmp $42, %rax
 jne L2
L1:
 add $5, %rax
 jmp DONE
L2:
 sub $10, %rax
DONE:

(C)

long userval;
scanf(“%ld”, &userval);

if (userval == 42) {
 userval = userval + 5;
} else {
 userval = userval - 10;
}

Assume userval is stored in
%rax at this point.

Visualization demo
Try this in arithmetic mode:

https://asm.diveintosystems.org

Change the value 3 to 42 to alter the
behavior.

Initialize rax
 mov $3, %rax

 cmp $42, %rax
 je L2
L1:
 sub $10, %rax
 jmp DONE
L2:
 add $5, %rax
DONE:

https://asm.diveintosystems.org/

C Loops to x86_64

do-while:
do {
 loop body
} while (cond);

C goto translations:
loop:
 loop body
 if(cond) goto loop

while:

while(cond) {
 loop body
}

if(!cond) goto done
loop:
 loop body
 if(cond) goto loop
done:

for:

for(init; cond; step){
 loop body
}

init code
 if(!cond) goto done
loop:
 loop body
 step
 if(cond) goto loop
done:

Convert to C goto:
x = 0;
for(i=0; i < 10; i++) {
 x = x + 1;
}
z = x * 3;

for:

for(init; cond; step){
 loop body
}

init code
<fill in your answer here>

Convert to C goto:

for:

for(init; cond; step){
 loop body
}

init code
 if(!cond) goto done
loop:
 loop body
 step
 if(cond) goto loop
done:

x = 0;
for(i=0; i < 10; i++) {
 x = x + 1;
}
z = x * 3;

CPU Registers

Using Jump Instructions
• jmp label # unconditional jump (ex. jmp .L2)
• jge label # conditional jump (ex. if >=) (je, jne, js, jg, …)

movl $0, %rax
movl $4, %rbx
movl $0, %rdx
jmp .L2

.L1:
addl $1, %rax

.L2:
addl %rax, %rdx
cmp %rax, %rbx # R[%ebx] – R[%eax]
jge .L1

%rax

%rdx

%rbx

Try out this code: what does it do?

(A label is a place you might jump to. Labels ignored except for goto/jumps)

CPU Registers

Using Jump Instructions
• jmp label # unconditional jump (ex. jmp .L2)
• jge label # conditional jump (ex. if >=) (je, jne, js, jg, …)

movq $0, %rax
movq $4, %rbx
movq $0, %rdx
jmp .L2

.L1:
addq $1, %rax

.L2:
addq %rax, %rdx
cmp %rax, %rbx # R[%rbx] – R[%rax]
jge .L1

%rax 0 1

%rdx 0 0

%rbx 4

Try out this code: what does it do?

(A label is a place you might jump to. Labels ignored except for goto/jumps)

Loops

• We will look at more of these in the lab!

Summary
• ISA defines what programmer can do on hardware
– Which instructions are available
– How to access state (registers, memory, etc.)
– This is the architecture’s assembly language

• In this course, we’ll be using x86_64
– Instructions for:

• moving data (mov, movl, movq)
• arithmetic (add, sub, imul, or, sal, etc.)
• control (jmp, je, jne, etc.)

– Condition codes for making control decisions
• If the result is zero (ZF)
• If the result’s first bit is set (negative if signed) (SF)
• If the result overflowed (assuming unsigned) (CF)
• If the result overflowed (assuming signed) (OF)

