
CS 31: Intro to Systems
ISAs and Assembly

Vasanta Chaganti & Kevin Webb

Swarthmore College

September 26, 2023

Overview

• How to directly interact with hardware

• Instruction set architecture (ISA)
• Interface between programmer and CPU

• Established instruction format (assembly lang)

• Assembly programming (x86_64)

Abstraction

User / Programmer
Wants low complexity

Applications
Specific functionality

Software library
Reusable functionality

Complex devices
Compute & I/O

Operating system
Manage resources

Abstraction

Applications
Specific functionality

Complex devices
Compute & I/O

Operating system
Manage resources

Last week: Circuits, Hardware Implementation

This week: Machine Interface

Compilation Steps (.c to a.out)

text

executable
binary

C program (p1.c)

Executable code (a.out)

Usually compile to a.out in
a single step: gcc p1.c

Compiler (gcc)

Reality is more complex:
there are intermediate steps!

Compilation Steps (.c to a.out)

text

text

executable
binary

Compiler (gcc -S)

C program (p1.c)

Assembly program (p1.s)

Executable code (a.out)

You can see the results of
intermediate compilation
steps using different gcc flags

CS75

Assembly Code

Human-readable form of CPU instructions
• Almost a 1-to-1 mapping to hardware instructions (Machine Code)

• Hides some details:
• Registers have names rather than numbers

• Instructions have names rather than variable-size codes

We’re going to use x86_64 assembly
• Can compile C to x86_64 assembly on our system:

 gcc -S code.c # open code.s in an editor to view

C to Assembly

C
int main(void) {

 long a = 10;

 long b = 20;

 a = a + b;

 return a;

}

x86_64 Assembly
push %rbp

mov %rsp,%rbp

movq $10,-0x10(%rbp)

movq $20,-0x8(%rbp)

mov -0x8(%rbp),%rax

add %rax,-0x10(%rbp)

mov -0x10(%rbp),%rax

pop %rbp

ret

Compilation Steps (.c to a.out)

text

text

binary

executable
binary

Compiler (gcc -S)

Assembler (gcc -c (or as))

Linker (gcc (or ld))

C program (p1.c)

Assembly program (p1.s)

Object code (p1.o)

Executable code (a.out)

Library obj. code
(libc.a)

Other object files
(p2.o, p3.o, …)

You can see the results of
intermediate compilation
steps using different gcc flags

Machine
Code

Machine Code

Binary (0’s and 1’s) encoding of instructions
• Opcode bits identify the instruction

• Other bits encode operand(s), where to store the results
 (ex) 01001010 opcode operands

 01 001 010
 ADD %r1 %r2

• bits fed through different
CPU circuitry:

MUX
Register #0

Register #1

Register #2
. . . MUX

A
L
U

01 | 001 | 010

0:

1:

2:

3:

4:

…

N-1:

(Memory)

Assembly to Machine Code

x86_64 Assembly
push %rbp

mov %rsp,%rbp

movq $10,-0x10(%rbp)

movq $20,-0x8(%rbp)

mov -0x8(%rbp),%rax

add %rax,-0x10(%rbp)

mov -0x10(%rbp),%rax

pop %rbp

ret

x86_64 Machine Code
55

48 89 e5

48 c7 45 f0 0a 00 00 00

48 c7 45 f8 14 00 00 00

48 8b 45 f8

48 01 45 f0

48 8b 45 f0

5d

c3

Compilation Steps (.c to a.out)

text

text

binary

executable
binary

Compiler (gcc -S)

Assembler (gcc -c (or as))

Linker (gcc (or ld))

C program (p1.c)

Assembly program (p1.s)

Object code (p1.o)

Executable code (a.out)

Library obj. code
(libc.a)

Other object files
(p2.o, p3.o, …)

High-level language

CPU-specific format (011010…)

Interface for speaking to CPU

Instruction Set Architecture (ISA)

• ISA (or simply architecture):
Interface between lowest software level and the hardware.

• Defines the language for controlling CPU state:
• Defines a set of instructions and specifies their machine code format

• Makes CPU resources (registers, flags) available to the programmer

• Allows instructions to access main memory (potentially with limitations)

• Provides control flow mechanisms (instructions to change what executes next)

Instruction Set Architecture (ISA)

• The agreed-upon interface between all software that runs on the
machine and the hardware that executes it.

I/O systemCPU / Processor

Compiler

Operating
System

Application / Program

Digital Circuits

Logic Gates

Instruction Set
 Architecture

ISA Examples

• Intel IA-32 (80x86)

• ARM

• MIPS

• PowerPC

• IBM Cell

• Motorola 68k

• Intel x86_64

• Intel IA-64 (Itanium)

• VAX

• SPARC

• Alpha

• IBM 360

How many of these ISAs have you
used? (Don’t worry if you’re not sure. Try to guess
based on the types of CPUs/devices you interact with.)

• Intel IA-32 (80x86)

• ARM

• MIPS

• PowerPC

• IBM Cell

• Motorola 68k

• Intel x86_64

• Intel IA-64 (Itanium)

• VAX

• SPARC

• Alpha

• IBM 360

A. 0
B. 1-2
C. 3-4

D. 5-6
E. 7+

ISA Characteristics

• Above ISA: High-level language (C, Python, …)
• Hides ISA from users

• Allows a program to run on any machine
(after translation by human and/or compiler)

• Below ISA: Hardware implementing ISA can change (faster, smaller, …)
• ISA is like a CPU “family”

Hardware Implementation

High-level language
ISA

ISA Characteristics

• Above ISA: High-level language (C, Python, …)
• Hides ISA from users

• Allows a program to run on any machine
(after translation by human and/or compiler)

• Below ISA: Hardware implementing ISA can change (faster, smaller, …)
• ISA is like a CPU “family”

Hardware Implementation

High-level language
ISA

Instruction Translation

sum.s from sum.c:

 gcc –S sum.c

• Instructions to set up the stack
frame and get argument values

• An add instruction to compute sum

• Instructions to return from function

long sum(long x, long y) {

 long result;

 result = x + y;

 return result;

}

sum.c (High-level C)

push %rbp

mov %rsp,%rbp

mov %rdi,-0x18(%rbp)

mov %rsi,-0x20(%rbp)

mov -0x18(%rbp),%rdx

mov -0x20(%rbp),%rax

add %rdx,%rax

mov %rax,-0x8(%rbp)

mov -0x8(%rbp),%rax

pop %rbp

ret

sum.s (Assembly)

Instruction Translation

sum.s from sum.c:

 gcc –S sum.c

• What should these instructions do?

• What is/isn’t allowed by hardware?

• How complex should they be?

Example: supporting multiplication

long sum(long x, long y) {

 long result;

 result = x + y;

 return result;

}

sum.c (High-level C)

push %rbp

mov %rsp,%rbp

mov %rdi,-0x18(%rbp)

mov %rsi,-0x20(%rbp)

mov -0x18(%rbp),%rdx

mov -0x20(%rbp),%rax

add %rdx,%rax

mov %rax,-0x8(%rbp)

mov -0x8(%rbp),%rax

pop %rbp

ret

sum.s (Assembly)

C statement: A = A*B

Simple instructions:

LOAD A, R1

LOAD B, R2

PROD R1, R2

STORE R2, A

Powerful instructions:

MULT B, A

Translation:
Load the values ‘A’ and ‘B’ from memory into registers (R1 and R2) ,
compute the product, store the result in memory where ‘A’ was.

Which would you use if you were designing
an ISA for your CPU? (Why?)

Simple instructions:

LOAD A, R1

LOAD B, R2

PROD R1, R2

STORE R2, A

Powerful instructions:

MULT B, A

A. Simple

B. Powerful

C. Something else

RISC versus CISC (Historically)

• Complex Instruction Set Computing (CISC)
• Large, rich instruction set
• More complicated instructions built into hardware
• Multiple clock cycles per instruction
• Easier for humans to reason about

• Reduced Instruction Set Computing (RISC)
• Small, highly optimized set of instructions
• Memory accesses are specific instructions
• One instruction per clock cycle
• Compiler: more work, more potential optimization

So . . . Which System “Won”?

• Most ISAs (after mid/late 1980’s) are RISC

• The ubiquitous Intel x86 is CISC
Tablets and smartphones (ARM) taking over?

• x86 breaks down CISC assembly into multiple, RISC-like,
machine language instructions

• Distinction between RISC and CISC is less clear
• Some RISC instruction sets have more instructions than some CISC sets

ISA Examples

• Intel IA-32 (CISC)

• ARM (RISC)

• MIPS (RISC)

• PowerPC (RISC)

• IBM Cell (RISC)

• Motorola 68k (CISC)

• Intel x86_64 (CISC)

• Intel IA-64 (Neither, VLIW)

• VAX (CISC)

• SPARC (RISC)

• Alpha (RISC)

• IBM 360 (CISC)

ISA Characteristics

• Above ISA: High-level language (C, Python, …)
• Hides ISA from users

• Allows a program to run on any machine
(after translation by human and/or compiler)

• Below ISA: Hardware implementing ISA can change (faster, smaller, …)
• ISA is like a CPU “family”

Hardware Implementation

High-level language
ISA

Intel x86 Family

Intel i386 (1985)

• 12 MHz - 40 MHz

• ~300,000 transistors

• Component size: 1.5 µm

Intel Core i9 9900k (2018)

• ~4,000 MHz

• ~7,000,000,000 transistors

• Component size: 14 nm

Everything in this family uses the same ISA (Same instructions)!

Recall: Instruction Set Architecture (ISA)

• ISA (or simply architecture):
Interface between lowest software level and the hardware.

• Defines the language for controlling CPU state:
• Defines a set of instructions and specifies their machine code format

• Makes CPU resources (registers, flags) available to the programmer

• Allows instructions to access main memory (potentially with limitations)

• Provides control flow mechanisms (instructions to change what executes next)

Processor State in Registers

• Working memory for currently
executing program
• Temporary data

(%rax - %r15)

• Location of runtime stack
(%rbp, %rsp)

• Address of next instruction to
execute (%rip)

• Status of recent ALU tests
(CF, ZF, SF, OF)

%rip

General purpose
registers

Current stack top

Current stack frame

Program Counter (PC)

CF ZF SF OF Condition codes
(flags)

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rsp

%rbp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

Component Registers

• Registers starting with “r” are
64-bit registers

• Sometimes, you might only want to
store 32 bits (e.g., int variable)

• You can access the lower 32 bits of a
register:
• with a prefix of e rather than r for

registers %rax - %rdi
(e.g., %eax, %ebx, …, %esi, %edi)

• with a suffix of d for registers
%r8 - %r15
(e.g., %r8d, %r9d, …, %r15d)

%rip

General purpose
registers

Current stack top

Current stack frame

Program Counter (PC)

CF ZF SF OF Condition codes
(flags)

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rsp

%rbp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

Assembly Programmer’s View of State

CPU
Memory

Addresses

Data

Instructions

Registers:

 PC: Program counter (%rip)

Condition codes (%EFLAGS)

General Purpose (%rax - %r15)

Memory:

• Byte addressable array

• Program code and data

• Execution stack

name value

%rax

%rbx

%rcx

%rdx

…

%r15

%rsp

%rbp

%rip next instr

addr (PC)

%EFLAGS cond. codes

address value

0x00000000

0x00000001

…

Program:

 data

 instrs

 stack

0xffffffff

Registers

BUS

Types of assembly instructions

• Data movement
• Move values between registers and memory

• Examples: mov, movl, movq

• Load: move data from memory to register

• Store: move data from register to memory

The suffix letters specify
how many bytes to move

(not always necessary,
depending on context).

l -> 32 bits
q -> 64 bits

Data Movement

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Program Counter (PC): Memory address of next instr
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

Move values between memory and registers or between two registers.

Types of assembly instructions

• Data movement
• Move values between registers and memory

• Arithmetic
• Uses ALU to compute a value

• Examples: add, addl, addq, sub, subl, subq…

Arithmetic

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Program Counter (PC): Memory address of next instr
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

Use ALU to compute a value, store result in register / memory.

Types of assembly instructions

• Data movement
• Move values between registers and memory

• Arithmetic
• Uses ALU to compute a value

• Control
• Change PC based on ALU condition code state

• Example: jmp

Control

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Program Counter (PC): Memory address of next instr
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

Change PC based on ALU condition code state.

Types of assembly instructions

• Data movement
• Move values between registers and memory

• Arithmetic
• Uses ALU to compute a value

• Control
• Change PC based on ALU condition code state

• Stack / Function call (We’ll cover these in detail later)
• Shortcut instructions for common operations

Addressing Modes

• Instructions need to be told where to get operands or store results

• Variety of options for how to address those locations

• A location might be:
• A register

• A location in memory

• In x86_64, an instruction can access at most one memory location

Addressing Mode: Register

• Instructions can refer to the name of a register

• Examples:
• mov %rax, %r15

(Copy the contents of %rax into %r15 -- overwrites %r15, no change to %rax)

• add %r9, %rdx
(Add the contents of %r9 and %rdx, store the result in %rdx, no change to %r9)

Addressing Mode: Immediate

• Refers to a constant or “literal” value, starts with $

• Allows programmer to hard-code a number

• Can be either decimal (no prefix) or hexadecimal (0x prefix)

mov $10, %rax
• Put the constant value 10 in register rax.

add $0xF, %rdx
• Add 15 (0xF) to %rdx and store the result in %rdx.

Addressing Mode: Memory

• Accessing memory requires you to specify which address you want.
• Put the address in a register.

• Access the register with () around the register’s name.

mov (%rcx), %rax
• Use the address in register %rcx to access memory, store result in register %rax

Addressing Mode: Memory

movl (%rcx), %rax
• Use the address in register %rcx to access memory, store result in register %rax

(Memory)

name value

%rax 0

%rcx 0x1A68

…

CPU Registers
0x0:

0x8:

0x10:

0x18:

…

0x1A60

0x1A68 42

0x1A70

0x1A78

…

0xFFFFFFFF:

Addressing Mode: Memory

movl (%rcx), %rax
• Use the address in register %rcx to access memory, store result in register %rax

name value

%rax 0

%rcx 0x1A68

…

CPU Registers
0x0:

0x8:

0x10:

0x18:

…

0x1A60

0x1A68 42

0x1A70

0x1A78

…

0xFFFFFFFF:

(Memory)

1. Index into memory using the
address in rcx.

0x0:

0x8:

0x10:

0x18:

…

0x1A60

0x1A68 42

0x1A70

0x1A78

…

0xFFFFFFFF:

Addressing Mode: Memory

movl (%rcx), %rax
• Use the address in register %rcx to access memory, store result in register %rax

name value

%rax 42

%rcx 0x1A68

…

CPU Registers (Memory)

1. Index into memory using the
address in rcx.

2. Copy value at that
address to rax.

Addressing Mode: Displacement

• Like memory mode, but with a constant offset
• Offset is often negative, relative to %rbp

movl -24(%rbp), %rax
• Take the address in %rbp, subtract 24 from it, index into memory and store

the result in %rax.

Addressing Mode: Displacement

movl -24(%rbp), %rax
• Take the address in %rbp, subtract 24 from it, index into memory and store

the result in %rax.

(Memory)

name value

%rax 0

%rcx 0x1A68

%rbp 0x1A70

…

CPU Registers

1. Access address:
0x1A78 – 24 => 0x1A60

0x0:

0x8:

0x10:

0x18:

…

0x1A60 11

0x1A68 42

0x1A70

0x1A78

…

0xFFFFFFFF:

0x0:

0x8:

0x10:

0x18:

…

0x1A60 11

0x1A68 42

0x1A70

0x1A78 Not this!

…

0xFFFFFFFF:

Addressing Mode: Displacement

movl -24(%rbp), %rax
• Take the address in %rbp, subtract 24 from it, index into memory and store

the result in %rax.

(Memory)

name value

%rax 11

%rcx 0x1A68

%rbp 0x1A70

…

CPU Registers

1. Access address:
0x1A78 – 24 => 0x1A60

2. Copy value at that
address to rax.

Let’s try a few examples...

What will the state of registers and memory
look like after executing these instructions?

sub $16, %rsp

movq $3, -8(%rbp)

mov $10, %rax

sal $1, %rax

add -8(%rbp), %rax

movq %rax, -16(%rbp)

add $16, %rsp

x is stored at rbp-8

y is stored at rbp-16

Registers

Name Value

%rax 0

%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value

…

0x1FFF000AD0 0

0x1FFF000AD8 0

0x1FFF000AE0 0x1FFF000AF0

…

What will the state of registers and memory
look like after executing these instructions?

sub $16, %rsp

movq $3, -8(%rbp)

mov $10, %rax

sal $1, %rax

add -8(%rbp), %rax

movq %rax, -16(%rbp)

add $16, %rsp

x is stored at rbp-8

y is stored at rbp-16

Registers

Name Value

%rax 2

%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value

0x1FFF000AD0 3

0x1FFF000AD8 10

0x1FFF000AE0 0x1FFF000AF0

Registers

Name Value

%rax 10

%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value

0x1FFF000AD0 23

0x1FFF000AD8 10

0x1FFF000AE0 0x1FFF000AF0

Registers

Name Value

%rax 23

%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value

0x1FFF000AD0 23

0x1FFF000AD8 3

0x1FFF000AE0 0x1FFF000AF0

A.

B.

C.

Solution

sub $16, %rsp

movq $3, -8(%rbp)

mov $10, %rax

sal $1, %rax

add -8(%rbp), %rax

movq %rax, -16(%rbp)

add $16, %rsp

x is stored at rbp-8

y is stored at rbp-16

Registers

Name Value

%rax 0

%rsp …AE0

%rbp …AE0

Memory

Address Value

0x1FFF000AD0 0

0x1FFF000AD8 0

0x1FFF000AE0 0x1FFF000AF0

Assembly Visualization Tool

• The authors of Dive into Systems,
including Swarthmore faculty with
help from Swarthmore students, have
developed a tool to help visualize
assembly code execution:

• https://asm.diveintosystems.org

• For this example, use the
arithmetic mode.

sub $16, %rsp

movq $3, -8(%rbp)

mov $10, %rax

sal $1, %rax

add -8(%rbp), %rax

movq %rax, -16(%rbp)

add $16, %rsp

https://asm.diveintosystems.org/

Solution

sub $16, %rsp Subtract 16 from %rsp, %rsp <- 0x…AD0

movq $3, -8(%rbp) Move constant 3 to value at 0x…AD8 (x)

mov $10, %rax Move constant 10 to register %rax

sal $1, %rax Shift the value in %rax left by 1 bit

add -8(%rbp), %rax Add the value at 0x…AD8 (x) to %rax

movq %rax, -16(%rbp) Store the value in %rax at 0x…AD0 (y)

add $16, %rsp Add 16 to %rsp, %rsp <- 0x…AE0

x is stored at rbp-8

y is stored at rbp-16

Registers

Name Value

%rax 23

%rsp …AE0

%rbp …AE0

Memory

Address Value

0x1FFF000AD0 23

0x1FFF000AD8 3

0x1FFF000AE0 0x1FFF000AF0

C code equivalent:
x = 3;

y = x + (10 << 1);

What will the state of registers and memory
look like after executing these instructions?

…

mov %rbp, %rcx

sub $8, %rcx

movq (%rcx), %rax

or %rax, -16(%rbp)

neg %rax

Registers

Name Value

%rax 0

%rcx 0

%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value

…

0x1FFF000AD0 8

0x1FFF000AD8 5

0x1FFF000AE0 0x1FFF000AF0

…

How might you implement the following C code in
assembly?
 z = x ^ y

x is stored at %rbp-8

y is stored at %rbp-16

z is stored at %rbp-24

Registers

Name Value

%rax 0

%rdx 0

%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value

0x1FFF000AC8 (z)

0x1FFF000AD0 (y)

0x1FFF000AD8 (x)

0x1FFF000AE0 0x1FFF000AF0

…

movq -8(%rbp), %rax
movq -16(%rbp), %rdx
xor %rax, %rdx
movq %rax, -24(%rbp)

A:
movq -8(%rbp), %rax
movq -16(%rbp), %rdx
xor %rax, %rdx
movq %rax, -8(%rbp)

C:

movq -8(%rbp), %rax
movq -16(%rbp), %rdx
xor %rdx, %rax
movq %rax, -24(%rbp)

B:
movq -24(%rbp), %rax
movq -16(%rbp), %rdx
xor %rdx, %rax
movq %rax, -8(%rbp)

D:

How might you implement the following C code in
assembly?
 x = y >> 3 | x * 8

x is stored at %rbp-8

y is stored at %rbp-16

z is stored at %rbp-24

Registers

Name Value

%rax 0

%rdx 0

%rsp 0x1FFF000AE0

%rbp 0x1FFF000AE0

Memory

Address Value

0x1FFF000AC8 (z)

0x1FFF000AD0 (y)

0x1FFF000AD8 (x)

0x1FFF000AE0 0x1FFF000AF0

…

Solutions (other instruction sequences can work too!)

• z = x ^ y

movq -8(%rbp), %rax

movq -16(%rbp), %rdx

xor %rdx, %rax

movq %rax, -24(%rbp)

• x = y >> 3 | x * 8

mov -8(%rbp), %rax

imul $8, %rax

movq -16(%rbp), %rdx

sar $3, %rdx

or %rax, %rdx

movq %rdx, -8(%rbp)

Recall Memory Operands

• displacement(%reg)
• e.g., add %rax, -8(%rbp)

• x86_64 allows a memory operand as the source or destination,
but NOT BOTH!
• One of the operands must be a register

• This would not be allowed:
• add -8(%rbp), -16(%rbp)

• If you wanted this, movq one value into a register first

Control Flow

• Previous examples focused on:
• data movement (mov, movq)

• arithmetic (add, sub, or, neg, sal, etc.)

• Up next: Jumping!

(Changing which
instruction we
execute next.)

Relevant XKCD

xkcd #292

https://xkcd.com/292/

Unconditional Jumping / Goto
A label is a place you might jump to.

Labels ignored except for goto/jumps.

(Skipped over if encountered)

 int x = 20;
L1:
 int y = x + 30;
L2:
 printf(“%d, %d\n”, x, y);

int main(void) {

 long a = 10;

 long b = 20;

 goto label1;

 a = a + b;

label1:

 return;

Unconditional Jumping / Goto

int main(void) {

 long a = 10;

 long b = 20;

 goto label1;

 a = a + b;

label1:

 return;

pushq %rbp

 mov %rsp, %rbp

 sub $16, %rsp

 movq $10, -16(%ebp)

 movq $20, -8(%ebp)

 jmp label1

 movq -8(%rbp), $rax

 add $rax, -16(%rbp)

 movq -16(%rbp), %rax

label1:

 leave

Unconditional Jumping / Goto

Usage besides goto?
• infinite loop
• break;
• continue;
• functions (handled differently)

• Often, we only want to jump
when something is true / false.

• Need some way to compare
values, jump based on
comparison results.

pushq %rbp

 mov %rsp, %rbp

 sub $16, %rsp

 movq $10, -16(%ebp)

 movq $20, -8(%ebp)

 jmp label1

 movq -8(%rbp), $rax

 add $rax, -16(%rbp)

 movq -16(%rbp), %rax

label1:

 leave

Condition Codes (or Flags)

• Set in two ways:
1. As “side effects” produced by ALU

2. In response to explicit comparison instructions

• x86_64 condition codes tell you:
• If the result is zero (ZF)

• If the result’s first bit is set (negative if signed) (SF)

• If the result overflowed (assuming unsigned) (CF)

• If the result overflowed (assuming signed) (OF)

Processor State in Registers

• Working memory for currently
executing program
• Temporary data

(%rax - %r15)

• Location of runtime stack
(%rbp, %rsp)

• Address of next instruction to
execute (%rip)

• Status of recent ALU tests
(CF, ZF, SF, OF)

%rip

General purpose
registers

Current stack top

Current stack frame

Program Counter (PC)

CF ZF SF OF Condition codes
(flags)

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rsp

%rbp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

Instructions that set condition codes

1. Arithmetic/logic side effects (add, sub, or, etc.)

2. CMP and TEST:
cmp b, a like computing a-b without storing result

• Sets OF if overflow, Sets CF if carry-out,
Sets ZF if result zero, Sets SF if results is negative

test b, a like computing a&b without storing result
• Sets ZF if result zero, sets SF if a&b < 0

OF and CF flags are zero (there is no overflow with &)

Which flags would this sub set?

• Suppose %rax holds 5, %rcx holds 7

sub $5, %rax

If the result is zero (ZF)
If the result’s first bit is set (negative if signed) (SF)
If the result overflowed (assuming unsigned) (CF)
If the result overflowed (assuming signed) (OF)

A. ZF
B. SF
C. CF and ZF
D. CF and SF
E. CF, SF, and CF

Which flags would this cmp set?

• Suppose %rax holds 5, %rcx holds 7

cmp %rcx, %rax

A. ZF
B. SF
C. CF and ZF
D. CF and SF
E. CF, SF, and CF

If the result is zero (ZF)
If the result’s first bit is set (negative if signed) (SF)
If the result overflowed (assuming unsigned) (CF)
If the result overflowed (assuming signed) (OF)

Conditional Jumping
• Jump based on which condition codes are set

Condition Description

jmp 1 Unconditional

je ZF Equal / Zero

jne ~ZF Not Equal / Not Zero

js SF Negative

jns ~SF Nonnegative

jg ~(SF^OF)&~ZF Greater (Signed)

jge ~(SF^OF) Greater or Equal (Signed)

jl (SF^OF) Less (Signed)

jle (SF^OF)|ZF Less or Equal (Signed)

ja ~CF&~ZF Above (unsigned jg)

jb CF Below (unsigned)

Jump Instructions:
(See book section 7.4.1)

You do not need to
memorize these!

Example Scenario
long userval;

scanf(“%d”, &userval);

if (userval == 42) {

 userval += 5;

} else {

 userval -= 10;

}

…

• Suppose user gives us a
value via scanf

• We want to check to
see if it equals 42
• If so, add 5

• If not, subtract 10

How would we use jumps/CCs for this?
long userval;

scanf(“%d”, &userval);

if (userval == 42) {

 userval += 5;

} else {

 userval -= 10;

}

…

Assume userval is stored in %eax at this point.

How could we use jumps/CCs to implement this C code?
long userval;

scanf(“%ld”, &userval);

if (userval == 42) {

 userval += 5;

} else {

 userval -= 10;

}

…

Assume userval is stored in %rax at this point.

cmp $42, %rax

 jne L2

L1:

 sub $10, %rax

 jmp DONE

L2:

 add $5, %rax

DONE:

 …

(B)cmp $42, %rax

 je L2

L1:

 sub $10, %rax

 jmp DONE

L2:

 add $5, %rax

DONE:

 …

(A)

cmp $42, %rax

 jne L2

L1:

 add $5, %rax

 jmp DONE

L2:

 sub $10, %rax

DONE:

 …

(C)

Visualization demo

• Try this in arithmetic mode:

https://asm.diveintosystems.org

Change the value 3 to 42 to alter the
behavior.

Initialize rax

 mov $3, %rax

 cmp $42, %rax

 je L2

L1:

 sub $10, %rax

 jmp DONE

L2:

 add $5, %rax

DONE:

https://asm.diveintosystems.org/

Loops

• We’ll look at these in the lab!

Summary

• ISA defines what programmer can do on hardware
• Which instructions are available
• How to access state (registers, memory, etc.)
• This is the architecture’s assembly language

• In this course, we’ll be using x86_64
• Instructions for:

• moving data (mov, movl, movq)
• arithmetic (add, sub, imul, or, sal, etc.)
• control (jmp, je, jne, etc.)

• Condition codes for making control decisions
• If the result is zero (ZF)
• If the result’s first bit is set (negative if signed) (SF)
• If the result overflowed (assuming unsigned) (CF)
• If the result overflowed (assuming signed) (OF)

	Slide 1: CS 31: Intro to Systems ISAs and Assembly
	Slide 9: Overview
	Slide 10: Abstraction
	Slide 11: Abstraction
	Slide 12: Compilation Steps (.c to a.out)
	Slide 13: Compilation Steps (.c to a.out)
	Slide 14: Assembly Code
	Slide 15: C to Assembly
	Slide 16: Compilation Steps (.c to a.out)
	Slide 17: Machine Code
	Slide 18: Assembly to Machine Code
	Slide 19: Compilation Steps (.c to a.out)
	Slide 20: Instruction Set Architecture (ISA)
	Slide 21: Instruction Set Architecture (ISA)
	Slide 22: ISA Examples
	Slide 23: How many of these ISAs have you used? (Don’t worry if you’re not sure. Try to guess based on the types of CPUs/devices you interact with.)
	Slide 24: ISA Characteristics
	Slide 25: ISA Characteristics
	Slide 26: Instruction Translation
	Slide 27: Instruction Translation
	Slide 28: C statement: A = A*B
	Slide 29: Which would you use if you were designing an ISA for your CPU? (Why?)
	Slide 30: RISC versus CISC (Historically)
	Slide 31: So . . . Which System “Won”?
	Slide 32: ISA Examples
	Slide 33: ISA Characteristics
	Slide 34: Intel x86 Family
	Slide 35: Recall: Instruction Set Architecture (ISA)
	Slide 36: Processor State in Registers
	Slide 37: Component Registers
	Slide 38: Assembly Programmer’s View of State
	Slide 39: Types of assembly instructions
	Slide 40: Data Movement
	Slide 41: Types of assembly instructions
	Slide 42: Arithmetic
	Slide 43: Types of assembly instructions
	Slide 44: Control
	Slide 45: Types of assembly instructions
	Slide 46: Addressing Modes
	Slide 47: Addressing Mode: Register
	Slide 48: Addressing Mode: Immediate
	Slide 49: Addressing Mode: Memory
	Slide 50: Addressing Mode: Memory
	Slide 51: Addressing Mode: Memory
	Slide 52: Addressing Mode: Memory
	Slide 53: Addressing Mode: Displacement
	Slide 54: Addressing Mode: Displacement
	Slide 55: Addressing Mode: Displacement
	Slide 56: Let’s try a few examples...
	Slide 57: What will the state of registers and memory look like after executing these instructions?
	Slide 58: What will the state of registers and memory look like after executing these instructions?
	Slide 59: Solution
	Slide 60: Assembly Visualization Tool
	Slide 61: Solution
	Slide 62: What will the state of registers and memory look like after executing these instructions?
	Slide 63: How might you implement the following C code in assembly? z = x ^ y
	Slide 64: How might you implement the following C code in assembly? x = y >> 3 | x * 8
	Slide 65: Solutions (other instruction sequences can work too!)
	Slide 66: Recall Memory Operands
	Slide 67: Control Flow
	Slide 68: Relevant XKCD
	Slide 69: Unconditional Jumping / Goto
	Slide 70: Unconditional Jumping / Goto
	Slide 71: Unconditional Jumping / Goto
	Slide 72: Condition Codes (or Flags)
	Slide 73: Processor State in Registers
	Slide 74: Instructions that set condition codes
	Slide 75: Which flags would this sub set?
	Slide 76: Which flags would this cmp set?
	Slide 77: Conditional Jumping
	Slide 78: Example Scenario
	Slide 79: How would we use jumps/CCs for this?
	Slide 80: How could we use jumps/CCs to implement this C code?
	Slide 81: Visualization demo
	Slide 82: Loops
	Slide 83: Summary

