
CS 31: Intro to Systems
Digital Logic

Vasanta Chaganti & Kevin Webb

Swarthmore College

September 19, 2023

Reading Quiz

Today

• Hardware basics
• Machine memory models

• Digital signals

• Logic gates

• Manipulating/Representing values in hardware
• Adders

• Storage & memory (latches)

Drawing Circuits: Borrow
some paper if you need to!

Hardware Models (1940’s)

• Harvard Architecture:

• Von Neumann Architecture:

Program
Memory

Input/Output

Data
Memory

CPU
(Control and
Arithmetic)

CPU
(Control and
Arithmetic)

Program
and
Data

Memory

Input/Output

Von Neumann

13

EDVAC 1945

John von Neumann

“The father of modern
machines”

Stored Program Concept

Von Neumann Architecture Model

• Computer is a generic computing machine:
• Based on Alan Turing’s Universal Turing Machine

• Stored program model: computer stores program rather
than encoding it (feed in data and instructions)

• No distinction between data and instructions memory

• 5 parts connected by buses (wires):
• Memory, Control, Processing, Input, Output

The CPU

1. Processing Unit: Execute instructions to produce a result
• ALU (arithmetic logic unit): set of circuits for arithmetic (ADD, SUB, etc.)

• Registers: temporary storage for instructions (scratch space)

2. Control Unit: Keep track of which instruction to execute next and
what that instruction says to do.

Memory

3. Data and instruction storage in “main memory” (RAM)
• Each byte in memory has a unique address

Memory

4. Input: Data coming into the CPU from outside sources
• keyboard, mouse, network, hard drive

5. Output: Data leaving the CPU to the outside world
• video display, audio, network, hard drive, printer

Goal: Build a CPU (model)

Three main classifications of hardware circuits:

1. ALU: implement arithmetic & logic functionality
• Example: adder circuit to add two values together

2. Storage: to store binary values
• Example: set of CPU registers (“register file”) to store temporary values

3. Control: support/coordinate instruction execution
• Example: circuitry to fetch the next instruction from memory and decode it

Abstraction

User / Programmer
Wants low complexity

Applications
Specific functionality

Software library
Reusable functionality

Complex devices
Compute & I/O

Operating system
Manage resources

Abstraction

Complex devices
Compute & I/O

Hardware Circuits

Logic Gates

Transistors

Here be dragons.
(Electrical Engineering)

…
(Physics)

Logic Gates
Input: Boolean value(s) (high and low voltages for 1 and 0)

Output: Boolean value result of Boolean function
 Always present, but may change when input changes

a

b

out

out = a & b

And

a

b

out

out = a | b

Or

a
out

out = ~a

Not

A B A & B A | B ~A

0 0 0 0 1

0 1 0 1 1

1 0 0 1 0

1 1 1 1 0

More Logic Gates

a

b

out

out = ~(a | b)

NOR

a

b

out

out = ~(a & b)

NAND

Note the circle on the output.
This circle means bitwise “not”
(flip bits).

A B A NAND B A NOR B

0 0 1 1

0 1 1 0

1 0 1 0

1 1 0 0

Combinational Logic Circuits

• Build up higher level processor functionality from basic gates

• Outputs are boolean functions of inputs

• Outputs continuously respond to changes to inputs

Acyclic Network of Gates

Inputs Outputs

What does this circuit output?
And Or Not

X

Y

Output

X Y OutA OutB OutC OutD OutE

0 0 0 1 0 1 0

0 1 0 1 0 0 1

1 0 1 0 1 1 1

1 1 0 0 1 1 0

Clicker Choices

Building more interesting circuits…

• Build-up XOR from basic gates (AND, OR, NOT)

• Q: When is A^B ==1?

A B A ^ B

0 0 0

0 1 1

1 0 1

1 1 0

Which of these is an XOR circuit?

• General strategy:

1. Determine truth table (given ->)

2. Determine for which rows the result is 1
• express each row with 1 result in terms of input values

A, B combined with AND, NOT

• combine each row expression with OR

3. Translate expression to a circuit

And Or Not

A B A ^ B

0 0 0

0 1 1

1 0 1

1 1 0

Which of these is an XOR circuit?

Draw an XOR circuit using AND, OR, and
NOT gates.

I’ll show you the clicker options after
you’ve had some time.

And Or Not

A B A ^ B

0 0 0

0 1 1

1 0 1

1 1 0

Which of these is an XOR circuit?

A

B

A

B

A

B

A

B

E: None of these are XOR.

A: B:

C: D:

XOR Circuit: Abstraction

A^B == (~A & B) | (A & ~B)

A

B out = A^B

A:0 B:0 A^B:

A:0 B:1 A^B:

A:1 B:0 A^B:

A:1 B:1 A^B:

=

Recall Goal: Build a CPU (model)

Three main classifications of hardware circuits:

1. ALU: implement arithmetic & logic functionality
• Example: adder circuit to add two values together

2. Storage: to store binary values
• Example: set of CPU registers (“register file”) to store temporary values

3. Control: support/coordinate instruction execution
• Example: circuitry to fetch the next instruction from memory and decode it

Recall Goal: Build a CPU (model)

Three main classifications of hardware circuits:

1. ALU: implement arithmetic & logic functionality
• Example: adder circuit to add two values together

Start with ALU components (e.g., adder circuit, bitwise operator circuits)

Combine component circuits into ALU!

Arithmetic Circuits

• 1 bit adder: A+B

• Two outputs:
1. Obvious one: the sum

2. Other one: ??

A B Sum (A + B) Cout
0 0

0 1

1 0

1 1

Which of these circuits is a one-bit adder?

A

B
Sum

Cout

A

B
Sum

Cout

A

B

Cout

Sum A

B
Sum

Cout

A: B:

C: D:

A B Sum (A + B) Cout

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

More than one bit?

• When adding, sometimes have carry in too

 0011010

 + 0001111

More than one bit?

• When adding, sometimes have carry in too

 1111

 0011010

 + 0001111

Write Boolean expressions
for Sum = 1 and Cout = 1

• When is Sum 1?

• When is Cout 1?

A B Cin Sum Cout

0 0 0 0 0

0 1 0 1 0

1 0 0 1 0

1 1 0 0 1

0 0 1 1 0

0 1 1 0 1

1 0 1 0 1

1 1 1 1 1

One-bit (full) adder

• Need to include:

 carry-in and carry-out

= 1-bit
adder

Cin

Cout

A

B Sum

A B Cin Sum Cout

0 0 0 0 0

0 1 0 1 0

1 0 0 1 0

1 1 0 0 1

0 0 1 1 0

0 1 1 0 1

1 0 1 0 1

1 1 1 1 1

Multi-bit Adder (Ripple-carry Adder)

1-bit
adder

0

Cout

A0

B0 Sum0

1-bit
adder

Cout

A1

B1 Sum1

1-bit
adder

Cout

A3

B3 Sum3

1-bit
adder

Cout

A2

B2 Sum2

…

1-bit
adder

Cout

AN-1

BN-1 SumN-1

Three-bit Adder (Ripple-carry Adder)

1-bit
adder

0

0

1

1-bit
adder

1

1

1-bit
adder

0

0

010
+ 011 = 3-bit

adder

A0

A1
A2

B0

B1

B2

Carry out

Carry in

Sum0

Sum1

Sum2

Arithmetic Logic Unit (ALU)

• One component that knows how to manipulate bits in multiple ways
• Addition

• Subtraction

• Multiplication / Division

• Bitwise AND, OR, NOT, etc.

• Built by combining components
• Take advantage of sharing HW when possible

(e.g., subtraction using adder)

Simple 3-bit ALU: Add and bitwise OR

3-bit
adder

Sum0
Sum1
Sum2

A0

A1
A2

B0

B1

B2

3-bit inputs
A and B:

Or0

Or2

Or1

At any given time, we
only want the output
from ONE of these!

Out0

Out1

Out2

Simple 3-bit ALU: Add and bitwise OR

3-bit
adder

Sum0
Sum1
Sum2

A0

A1
A2

B0

B1

B2

3-bit inputs
A and B:

Or0

Or2

Or1

At any given time, we
only want the output
from ONE of these!

Out0

Out1

Out2

Simple 3-bit ALU: Add and bitwise OR

3-bit
adder

Sum0
Sum1
Sum2

A0

A1
A2

B0

B1

B2

3-bit inputs
A and B:

Or0

Or2

Or1

Extra input: control signal to select Sum vs. OR

Circuit that takes
in Sum0-2 / Or0-2

and only outputs
one of them,

based on control
signal.

Out0

Out1

Out2

Which of these circuits lets us select between
two inputs?

Control Signal

Input 1

Input 2

Control Signal

Input 1

Input 2

Control Signal

Input 1

Input 2

A: B:

C:

Multiplexor: Chooses an input value

Inputs: 2N data inputs, N signal bits

Output: is one of the 2N input values

• Control signal c, chooses the input for output

• When c is 1: choose a, when c is 0: choose b

out
b

c

a out = (c & a)|(~c &b)

1 bit 2-way MUX

N-Way Multiplexor
Choose one of N inputs, need log2 N select bits

D0

D3

Out

c0

c1

MUX4

D2

D1

4-Way Multiplexor

C Input to
 choose D0

D0

c1
c0

.

c1 c2 Output

0 0 D0

0 1 D1

1 0 D2

1 1 D3

Example 1-bit, 4-way MUX

• When select input is 2 (0b10): C chosen as output

Out

A

s0

B

1 bit 4-way MUXs1

D

C

s

Out
1 bit
4-way
MUX

A
B
C
D

S Out

0 A

1 B

2 C

3 D
C

0

1

11 C

0

0

0

=

Simple 3-bit ALU: Add and bitwise OR

3-bit
adder

Sum0
Sum1
Sum2

A0

A1
A2

B0

B1

B2

3-bit inputs
A and B:

Or0

Or2

Or1

Extra input: control signal to select Sum vs. OR

Multiplexor!

ALU: Arithmetic Logic Unit

• Arithmetic and logic circuits: ADD, SUB, NOT, …

• Control circuits: use op bits to select output

• Circuits around ALU:
• Select input values X and Y from instruction or register
• Select op bits from instruction to feed into ALU
• Feed output somewhere

OF

A
L
U

Y

X op Y

op bits: selects which op to output

Output flags: set as a
side effect of op
(e.g., overflow detected)

ADD 2 3

X

CPU
Instruction:

Goal: Build a CPU (model)

Three main classifications of hardware circuits:

1. ALU: implement arithmetic & logic functionality
• Example: adder circuit to add two values together

2. Storage: to store binary values
• Example: set of CPU registers (“register file”) to store temporary values

3. Control: support/coordinate instruction execution
• Example: circuitry to fetch the next instruction from memory and decode it

Goal: Build a CPU (model)

Three main classifications of hardware circuits:

2. Storage: to store binary values
• Example: set of CPU registers (“register file”) to store temporary values

Give the CPU a “scratch space” to perform calculations and keep track of
the state its in.

CPU so far…

• We can perform arithmetic!

• Storage questions:
• Where to the ALU input values come from?

• Where do we store the result?

• What does this “register” thing mean?

A
L
U

?

?

?

Memory Circuit Goals: Starting Small

• Store a 0 or 1

• Retrieve the 0 or 1 value on demand (read)

• Set the 0 or 1 value on demand (write)

R-S Latch: Stores Value Q
When R and S are both 1: Maintain a value

R and S are never both simultaneously 0

• To write a new value:
• Set S to 0 momentarily (R stays at 1): to write a 1
• Set R to 0 momentarily (S stays at 1): to write a 0

Q (value stored)

~Q

S

R

R-S Latch

a

b

Gated D Latch
Controls S-R latch writing, ensures S & R never both 0

Q (value stored)

~Q

S

R

R-S Latch
D

WE

D: into top NAND, ~D into bottom NAND
WE: write-enabled, when set, latch is set to value of D

Latches used in registers (up next) and SRAM (caches, later)
 Fast, not very dense, expensive

DRAM: capacitor-based:

An N-bit Register

• Fixed-size storage (8-bit, 32-bit, 64-bit, etc.)

• Gated D latch lets us store one bit
• Connect N of them to the same write-enable wire!

Write-enable:

N-bit input
wires (bus):

N-bit Register

…

Bit 0

Bit 1

Bit N-1

Data out64-bit Register=

“Register file”

• A set of registers for the CPU to store temporary values.

• This is (finally)
something you
will interact with!

• Instructions of form:
• “add R1 + R2, store result in R3”

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

Memory Circuit Summary

• Lots of abstraction going on here!
• Gates hide the details of transistors.

• Build R-S Latches out of gates to store one bit.

• Combining multiple latches gives us N-bit register.

• Grouping N-bit registers gives us register file.

• Register file’s simple interface:
• Read Rx’s value, use for calculation

• Write Ry’s value to store result

CPU so far…

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

We know how to store data (in register file).
We know how to perform arithmetic on it, by feeding it to ALU.

Remaining questions:
 Which register(s) do we use as input to ALU?
 Which operation should the ALU perform?
 To which register should we store the result? All this info comes from

our program:
a series of instructions.

Goal: Build a CPU (model)

Three main classifications of hardware circuits:

1. ALU: implement arithmetic & logic functionality
• Example: adder circuit to add two values together

2. Storage: to store binary values
• Example: set of CPU registers (“register file”) to store temporary values

3. Control: support/coordinate instruction execution
• Example: circuitry to fetch the next instruction from memory and decode it

Goal: Build a CPU (model)

Three main classifications of hardware circuits:

3. Control: support/coordinate instruction execution
• Example: circuitry to fetch the next instruction from memory and decode it

Keep track of where we are in the program.

Execute an instruction, move on to the next…

Recall: Von Neumann Model

CPU
(Control and
Arithmetic)

Input/Output

Program
and
Data

Memory

We’re building this.
Our program (instructions) live
here. We’ll assume for now that
we can access it like an array.

0:

1:

2:

3:

4:

…

N-1:

Mem Addresses
(buckets)

CPU Game Plan

• Fetch instruction from memory

• Decode what the instruction is telling us to do
• Tell the ALU what it should be doing

• Find the correct operands

• Execute the instruction (arithmetic, etc.)

• Store the result

Program State

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Let’s add two more special registers (not in register file) to keep track of the program.

Program Counter (PC): Memory address of next instr
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

Fetching instructions.

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Load IR with the contents of memory at the address stored in the PC.

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction at Address 0

Decoding instructions.

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

Decoding instructions.

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR):

OP Code tells
ALU which
operation to
perform.

OP Code | Reg A | Reg B | Result

Decoding instructions.

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR):

Register ID #’s
specify input
arguments.

OP Code | Reg A | Reg B | Result

Executing instructions.

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR):

Let the ALU do
its thing.
(e.g., Add)

OP Code | Reg A | Reg B | Result

Storing results.

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

We’ve just computed something. Where do we put it?

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR):

Result location
specifies
where to store
ALU output.

OP Code | Reg A | Reg B | Result

Questions so far?

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

We’ve just computed something. Where do we put it?

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR):

Result location
specifies
where to store
ALU output.

OP Code | Reg A | Reg B | Result

Why do we need a program counter? Can’t we just
start executing instruction at address 0 and count up
one at a time from there?

A. We don’t, it’s there for convenience.

B. Some instructions might skip the PC forward by
more than one.

C. Some instructions might adjust the PC backwards.

D. We need the PC for some other reason(s).

Storing results.

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR):

Result might be:
 Memory
 Register
 PC

OP Code | Reg A | Reg B | Result

Recap CPU Model

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Four stages: fetch instruction, decode instruction, execute, store result

Program Counter (PC): Memory address of next instr
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction contents (bits)

Fetching instructions.

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Load IR with the contents of memory at the address stored in the PC.

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): Instruction at Address 0

Decoding instructions.

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR): OP Code | Reg A | Reg B | Result

Decoding instructions.

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR):

OP Code tells
ALU which
operation to
perform.

OP Code | Reg A | Reg B | Result

Decoding instructions.

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR):

Register ID #’s
specify input
arguments.

OP Code | Reg A | Reg B | Result

Executing instructions.

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Interpret the instruction bits: What operation? Which arguments?

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR):

Let the ALU do
its thing.
(e.g., Add)

OP Code | Reg A | Reg B | Result

Storing results.

32-bit Register #0
WE

Data in

32-bit Register #1
WE

Data in

32-bit Register #2
WE

Data in

32-bit Register #3
WE

Data in

…

MUX

MUX

Register File

A
L
U

Interpret the instruction bits: Store result in register, memory, PC.

Program Counter (PC): Address 0
0:

1:

2:

3:

4:

…

N-1:

(Memory)

Instruction Register (IR):

Result might be:
 Memory
 Register
 PC

OP Code | Reg A | Reg B | Result

Clocking

• Need to periodically transition from one instruction to the next.

• It takes time to fetch from memory, for signal to propagate through
wires, etc.
• Too fast: don’t fully compute result

• Too slow: waste time

Clock Driven System
• Everything in a CPU is driven by a discrete clock

• clock: an oscillator circuit, generates hi low pulse

• clock cycle: one hi-low pair

• Clock determines how fast system runs
• Processor can only do one thing per clock cycle

• Usually just one part of executing an instruction

• 1GHz processor:

1 billion cycles/second → 1 cycle every nanosecond

Clock

1 cycle

1 0 1 0 1 0 1 0 1 0

Cycle Time: Laundry Analogy

• Discrete stages: fetch, decode, execute, store

• Analogy (laundry): washer, dryer, folding, dresser

W Dy F Dr

4 Hours

You have big problems if you have
millions of loads of laundry to do….

Laundry

W Dy F Dr

4 Hours

W Dy F Dr

4 Hours

W Dy F Dr

4 Hours

4-hour cycle time.

Finishes a laundry load every cycle.

(6 laundry loads per day)

Pipelining (Laundry)

W

DyW

FDyW

DrFDyW

DrFDyW

1 Hour

1st hour:

2nd hour:

3rd hour:

4th hour:

5th hour:

Steady state: One load finishes every hour!
(Not every four hours like before.)

Pipelining (CPU)

F

DF

EDF

SEDF

SEDF

1 Nanosecond

1st nanosecond:

2nd nanosecond:

3rd nanosecond:

4th nanosecond:

5th nanosecond:

Steady state: One instruction finishes every nanosecond!
(Clock rate can be faster.)

CPU Stages: fetch, decode,
 execute, store results

Pipelining

(For more details about this and the other things we talked about here,
take architecture.)

Up next

• Talking to the CPU: Assembly language

	Slide 1: CS 31: Intro to Systems Digital Logic
	Slide 2: Reading Quiz
	Slide 11: Today
	Slide 12: Hardware Models (1940’s)
	Slide 13: Von Neumann
	Slide 14: Von Neumann Architecture Model
	Slide 15: The CPU
	Slide 16: Memory
	Slide 17: Memory
	Slide 18: Goal: Build a CPU (model)
	Slide 19: Abstraction
	Slide 20: Abstraction
	Slide 21: Logic Gates
	Slide 22: More Logic Gates
	Slide 23: Combinational Logic Circuits
	Slide 24: What does this circuit output?
	Slide 27: Building more interesting circuits…
	Slide 28: Which of these is an XOR circuit?
	Slide 29: Which of these is an XOR circuit?
	Slide 30: Which of these is an XOR circuit?
	Slide 32: XOR Circuit: Abstraction
	Slide 34: Recall Goal: Build a CPU (model)
	Slide 35: Recall Goal: Build a CPU (model)
	Slide 36: Arithmetic Circuits
	Slide 37: Which of these circuits is a one-bit adder?
	Slide 39: More than one bit?
	Slide 40: More than one bit?
	Slide 41: Write Boolean expressions for Sum = 1 and Cout = 1
	Slide 44: One-bit (full) adder
	Slide 45: Multi-bit Adder (Ripple-carry Adder)
	Slide 46: Three-bit Adder (Ripple-carry Adder)
	Slide 47: Arithmetic Logic Unit (ALU)
	Slide 48: Simple 3-bit ALU: Add and bitwise OR
	Slide 49: Simple 3-bit ALU: Add and bitwise OR
	Slide 50: Simple 3-bit ALU: Add and bitwise OR
	Slide 51: Which of these circuits lets us select between two inputs?
	Slide 53: Multiplexor: Chooses an input value
	Slide 54: N-Way Multiplexor
	Slide 55: Example 1-bit, 4-way MUX
	Slide 56: Simple 3-bit ALU: Add and bitwise OR
	Slide 57: ALU: Arithmetic Logic Unit
	Slide 58: Goal: Build a CPU (model)
	Slide 59: Goal: Build a CPU (model)
	Slide 60: CPU so far…
	Slide 61: Memory Circuit Goals: Starting Small
	Slide 62: R-S Latch: Stores Value Q
	Slide 63: Gated D Latch
	Slide 64: An N-bit Register
	Slide 65: “Register file”
	Slide 66: Memory Circuit Summary
	Slide 67: CPU so far…
	Slide 68: Goal: Build a CPU (model)
	Slide 69: Goal: Build a CPU (model)
	Slide 70: Recall: Von Neumann Model
	Slide 71: CPU Game Plan
	Slide 72: Program State
	Slide 73: Fetching instructions.
	Slide 74: Decoding instructions.
	Slide 75: Decoding instructions.
	Slide 76: Decoding instructions.
	Slide 77: Executing instructions.
	Slide 78: Storing results.
	Slide 79: Questions so far?
	Slide 80: Why do we need a program counter? Can’t we just start executing instruction at address 0 and count up one at a time from there?
	Slide 82: Storing results.
	Slide 83: Recap CPU Model
	Slide 84: Fetching instructions.
	Slide 85: Decoding instructions.
	Slide 86: Decoding instructions.
	Slide 87: Decoding instructions.
	Slide 88: Executing instructions.
	Slide 89: Storing results.
	Slide 90: Clocking
	Slide 91: Clock Driven System
	Slide 92: Cycle Time: Laundry Analogy
	Slide 93: Laundry
	Slide 94: Pipelining (Laundry)
	Slide 95: Pipelining (CPU)
	Slide 96: Pipelining
	Slide 97: Up next
	Slide 98

